51
|
Roese-Koerner B, Stappert L, Brüstle O. Notch/Hes signaling and miR-9 engage in complex feedback interactions controlling neural progenitor cell proliferation and differentiation. NEUROGENESIS 2017; 4:e1313647. [PMID: 28573150 PMCID: PMC5443189 DOI: 10.1080/23262133.2017.1313647] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/27/2016] [Accepted: 01/18/2017] [Indexed: 02/04/2023]
Abstract
Canonical Notch signaling has diverse functions during nervous system development and is critical for neural progenitor self-renewal, timing of differentiation and specification of various cell fates. A key feature of Notch-mediated self-renewal is its fluctuating activity within the neural progenitor cell population and the oscillatory expression pattern of the Notch effector Hes1 and its target genes. A negative feedback loop between Hes1 and neurogenic microRNA miR-9 was found to be part of this oscillatory clock. In a recent study we discovered that miR-9 expression is further modulated by direct binding of the Notch intracellular domain/RBPj transcriptional complex to the miR-9_2 promoter. In turn, miR-9 not only targets Hes1 but also Notch2 to attenuate Notch signaling and promote neuronal differentiation. Here, we discuss how the two interwoven feedback loops may provide an additional fail-save mechanism to control proliferation and differentiation within the neural progenitor cell population. Furthermore, we explore potential implications of miR-9-mediated regulation of Notch/Hes1 signaling with regard to neural progenitor homeostasis, patterning, timing of differentiation and tumor formation.
Collapse
Affiliation(s)
- Beate Roese-Koerner
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn Medical Faculty, Bonn, Germany
| | - Laura Stappert
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn Medical Faculty, Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn Medical Faculty, Bonn, Germany
| |
Collapse
|
52
|
Mall M, Kareta MS, Chanda S, Ahlenius H, Perotti N, Zhou B, Grieder SD, Ge X, Drake S, Ang CE, Walker BM, Vierbuchen T, Fuentes DR, Brennecke P, Nitta KR, Jolma A, Steinmetz LM, Taipale J, Südhof TC, Wernig M. Myt1l safeguards neuronal identity by actively repressing many non-neuronal fates. Nature 2017; 544:245-249. [PMID: 28379941 PMCID: PMC11348803 DOI: 10.1038/nature21722] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 02/23/2017] [Indexed: 12/18/2022]
Abstract
Normal differentiation and induced reprogramming require the activation of target cell programs and silencing of donor cell programs. In reprogramming, the same factors are often used to reprogram many different donor cell types. As most developmental repressors, such as RE1-silencing transcription factor (REST) and Groucho (also known as TLE), are considered lineage-specific repressors, it remains unclear how identical combinations of transcription factors can silence so many different donor programs. Distinct lineage repressors would have to be induced in different donor cell types. Here, by studying the reprogramming of mouse fibroblasts to neurons, we found that the pan neuron-specific transcription factor Myt1-like (Myt1l) exerts its pro-neuronal function by direct repression of many different somatic lineage programs except the neuronal program. The repressive function of Myt1l is mediated via recruitment of a complex containing Sin3b by binding to a previously uncharacterized N-terminal domain. In agreement with its repressive function, the genomic binding sites of Myt1l are similar in neurons and fibroblasts and are preferentially in an open chromatin configuration. The Notch signalling pathway is repressed by Myt1l through silencing of several members, including Hes1. Acute knockdown of Myt1l in the developing mouse brain mimicked a Notch gain-of-function phenotype, suggesting that Myt1l allows newborn neurons to escape Notch activation during normal development. Depletion of Myt1l in primary postmitotic neurons de-repressed non-neuronal programs and impaired neuronal gene expression and function, indicating that many somatic lineage programs are actively and persistently repressed by Myt1l to maintain neuronal identity. It is now tempting to speculate that similar 'many-but-one' lineage repressors exist for other cell fates; such repressors, in combination with lineage-specific activators, would be prime candidates for use in reprogramming additional cell types.
Collapse
Affiliation(s)
- Moritz Mall
- Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine
| | - Michael S. Kareta
- Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine
- Current Address: Children’s Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA
| | - Soham Chanda
- Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute
| | | | - Nicholas Perotti
- Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine
| | - Bo Zhou
- Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute
| | - Sarah D. Grieder
- Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine
| | - Xuecai Ge
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
- Current Address: Molecular and Cellular Biology, University of California Merced, Merced, CA 95343, USA
| | - Sienna Drake
- Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
| | - Cheen Euong Ang
- Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine
| | - Brandon M. Walker
- Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine
| | - Thomas Vierbuchen
- Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine
| | - Daniel R. Fuentes
- Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine
| | - Philip Brennecke
- Department of Genetics
- Current Address: Leibniz-Institute for Molecular Pharmacology, 13125 Berlin, Germany
| | - Kazuhiro R. Nitta
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
- Current Address: Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan
| | - Arttu Jolma
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Lars M. Steinmetz
- Department of Genetics
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Jussi Taipale
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
- Genome Scale Biology Program, University of Helsinki, 00014 Helsinki, Finland
| | - Thomas C. Südhof
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute
| | - Marius Wernig
- Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine
| |
Collapse
|