51
|
Sinnamon JR, Torkenczy KA, Linhoff MW, Vitak SA, Mulqueen RM, Pliner HA, Trapnell C, Steemers FJ, Mandel G, Adey AC. The accessible chromatin landscape of the murine hippocampus at single-cell resolution. Genome Res 2019; 29:857-869. [PMID: 30936163 PMCID: PMC6499306 DOI: 10.1101/gr.243725.118] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 03/21/2019] [Indexed: 11/29/2022]
Abstract
Here we present a comprehensive map of the accessible chromatin landscape of the mouse hippocampus at single-cell resolution. Substantial advances of this work include the optimization of a single-cell combinatorial indexing assay for transposase accessible chromatin (sci-ATAC-seq); a software suite, scitools, for the rapid processing and visualization of single-cell combinatorial indexing data sets; and a valuable resource of hippocampal regulatory networks at single-cell resolution. We used sci-ATAC-seq to produce 2346 high-quality single-cell chromatin accessibility maps with a mean unique read count per cell of 29,201 from both fresh and frozen hippocampi, observing little difference in accessibility patterns between the preparations. By using this data set, we identified eight distinct major clusters of cells representing both neuronal and nonneuronal cell types and characterized the driving regulatory factors and differentially accessible loci that define each cluster. Within pyramidal neurons, we identified four major clusters, including CA1 and CA3 neurons, and three additional subclusters. We then applied a recently described coaccessibility framework, Cicero, which identified 146,818 links between promoters and putative distal regulatory DNA. Identified coaccessibility networks showed cell-type specificity, shedding light on key dynamic loci that reconfigure to specify hippocampal cell lineages. Lastly, we performed an additional sci-ATAC-seq preparation from cultured hippocampal neurons (899 high-quality cells, 43,532 mean unique reads) that revealed substantial alterations in their epigenetic landscape compared with nuclei from hippocampal tissue. This data set and accompanying analysis tools provide a new resource that can guide subsequent studies of the hippocampus.
Collapse
Affiliation(s)
- John R Sinnamon
- The Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Kristof A Torkenczy
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Michael W Linhoff
- The Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Sarah A Vitak
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Ryan M Mulqueen
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Hannah A Pliner
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | | | - Gail Mandel
- The Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Andrew C Adey
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239, USA
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
- Knight Center for Early Detection Advanced Research, Oregon Health and Science University, Portland, Oregon 97239, USA
| |
Collapse
|
52
|
Brookes E, Riccio A. Location, location, location: nuclear structure regulates gene expression in neurons. Curr Opin Neurobiol 2019; 59:16-25. [PMID: 31005709 DOI: 10.1016/j.conb.2019.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/27/2019] [Accepted: 03/18/2019] [Indexed: 12/27/2022]
Abstract
Genome architecture plays a critical role in regulating the expression of genes that are essential for nervous system development. During neuronal differentiation, spatially and temporally regulated transcription allows neuronal migration, the growth of dendrites and axons, and at later stages, synaptic formation and the establishment of neuronal circuitry. Genome topology and relocation of gene loci within the nucleus are now regarded as key factors that contribute to transcriptional regulation. Here, we review recent work supporting the hypothesis that the dynamic organization of chromatin within the nucleus impacts gene activation in response to extrinsic signalling and during neuronal differentiation. The consequences of disruption of the genome architecture on neuronal health will be also discussed.
Collapse
Affiliation(s)
- Emily Brookes
- MRC Laboratory of Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Antonella Riccio
- MRC Laboratory of Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
53
|
Amberg N, Laukoter S, Hippenmeyer S. Epigenetic cues modulating the generation of cell-type diversity in the cerebral cortex. J Neurochem 2019; 149:12-26. [PMID: 30276807 PMCID: PMC6587822 DOI: 10.1111/jnc.14601] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 09/13/2018] [Accepted: 09/26/2018] [Indexed: 12/29/2022]
Abstract
The cerebral cortex is composed of a large variety of distinct cell-types including projection neurons, interneurons, and glial cells which emerge from distinct neural stem cell lineages. The vast majority of cortical projection neurons and certain classes of glial cells are generated by radial glial progenitor cells in a highly orchestrated manner. Recent studies employing single cell analysis and clonal lineage tracing suggest that neural stem cell and radial glial progenitor lineage progression are regulated in a profound deterministic manner. In this review we focus on recent advances based mainly on correlative phenotypic data emerging from functional genetic studies in mice. We establish hypotheses to test in future research and outline a conceptual framework how epigenetic cues modulate the generation of cell-type diversity during cortical development.
Collapse
Affiliation(s)
- Nicole Amberg
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Susanne Laukoter
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | | |
Collapse
|
54
|
Kishi Y, Gotoh Y. Regulation of Chromatin Structure During Neural Development. Front Neurosci 2018; 12:874. [PMID: 30618540 PMCID: PMC6297780 DOI: 10.3389/fnins.2018.00874] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/09/2018] [Indexed: 11/13/2022] Open
Abstract
The regulation of genome architecture is a key determinant of gene transcription patterns and neural development. Advances in methodologies based on chromatin conformation capture (3C) have shed light on the genome-wide organization of chromatin in developmental processes. Here, we review recent discoveries regarding the regulation of three-dimensional (3D) chromatin conformation, including promoter-enhancer looping, and the dynamics of large chromatin domains such as topologically associated domains (TADs) and A/B compartments. We conclude with perspectives on how these conformational changes govern neural development and may go awry in disease states.
Collapse
Affiliation(s)
- Yusuke Kishi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
55
|
Neuronal Chromatin Architecture Regulator CTCF Dictates Remote Memory. J Neurosci 2018; 38:10239-10240. [PMID: 30487296 DOI: 10.1523/jneurosci.1869-18.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 11/21/2022] Open
|
56
|
CTCF Governs the Identity and Migration of MGE-Derived Cortical Interneurons. J Neurosci 2018; 39:177-192. [PMID: 30377227 DOI: 10.1523/jneurosci.3496-17.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 12/13/2022] Open
Abstract
The CCCTC-binding factor (CTCF) is a central regulator of chromatin topology recently linked to neurodevelopmental disorders such as intellectual disability, autism, and schizophrenia. The aim of this study was to identify novel roles of CTCF in the developing mouse brain. We provide evidence that CTCF is required for the expression of the LIM homeodomain factor LHX6 involved in fate determination of cortical interneurons (CINs) that originate in the medial ganglionic eminence (MGE). Conditional Ctcf ablation in the MGE of mice of either sex leads to delayed tangential migration, abnormal distribution of CIN in the neocortex, a marked reduction of CINs expressing parvalbumin and somatostatin (Sst), and an increased number of MGE-derived cells expressing Lhx8 and other markers of basal forebrain projection neurons. Likewise, Ctcf-null MGE cells transplanted into the cortex of wild-type hosts generate fewer Sst-expressing CINs and exhibit lamination defects that are efficiently rescued upon reexpression of LHX6. Collectively, these data indicate that CTCF regulates the dichotomy between Lhx6 and Lhx8 to achieve correct specification and migration of MGE-derived CINs.SIGNIFICANCE STATEMENT This work provides evidence that CCCTC-binding factor (CTCF) controls an early fate decision point in the generation of cortical interneurons mediated at least in part by Lhx6. Importantly, the abnormalities described could reflect early molecular and cellular events that contribute to human neurological disorders previously linked to CTCF, including schizophrenia, autism, and intellectual disability.
Collapse
|
57
|
Ito K, Takizawa T. Nuclear Architecture in the Nervous System: Development, Function, and Neurodevelopmental Diseases. Front Genet 2018; 9:308. [PMID: 30127803 PMCID: PMC6087739 DOI: 10.3389/fgene.2018.00308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/19/2018] [Indexed: 12/22/2022] Open
Abstract
Decades of study have shown that epigenetic regulation plays an important role in neural development and function. Several layers of epigenetic mechanisms control functions of the eukaryotic cell nucleus, a well-organized subcellular organelle with distinct compartments: chromatin, its related architectural proteins, and nuclear bodies. As these components function together in the epigenetic regulation of cellular development and functions, they are collectively termed nuclear architecture. In the nervous system, dynamic rearrangement of nuclear architecture correlates with alteration of transcription programs. During maturation and upon depolarization, neurons undergo a reorganization of nuclear architecture that alters gene expression programs. As such changes allow for specialized functions, including learning and memory, nuclear architecture is distinct among cell types. Studying nuclear architecture of neurons may uncover cell-division-independent mechanisms of global and local changes to nuclear architecture. We herein review recent research concerning nuclear architecture in the nervous system and will discuss its importance to the development, maturation, function, and diseases of the nervous system.
Collapse
Affiliation(s)
- Kenji Ito
- Department of Pediatrics, Graduate School of Medicine, Gunma University, Maebashi, Japan.,Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Takumi Takizawa
- Department of Pediatrics, Graduate School of Medicine, Gunma University, Maebashi, Japan
| |
Collapse
|
58
|
Galloway A, Adeluyi A, O'Donovan B, Fisher ML, Rao CN, Critchfield P, Sajish M, Turner JR, Ortinski PI. Dopamine Triggers CTCF-Dependent Morphological and Genomic Remodeling of Astrocytes. J Neurosci 2018; 38:4846-4858. [PMID: 29712779 PMCID: PMC5966792 DOI: 10.1523/jneurosci.3349-17.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/29/2018] [Accepted: 04/19/2018] [Indexed: 02/07/2023] Open
Abstract
Dopamine is critical for processing of reward and etiology of drug addiction. Astrocytes throughout the brain express dopamine receptors, but consequences of astrocytic dopamine receptor signaling are not well established. We found that extracellular dopamine triggered rapid concentration-dependent stellation of astrocytic processes that was not a result of dopamine oxidation but instead relied on both cAMP-dependent and cAMP-independent dopamine receptor signaling. This was accompanied by reduced duration and increased frequency of astrocytic Ca2+ transients, but little effect on astrocytic voltage-gated potassium channel currents. To isolate possible mechanisms underlying these structural and functional changes, we used whole-genome RNA sequencing and found prominent dopamine-induced enrichment of genes containing the CCCTC-binding factor (CTCF) motif, suggesting involvement of chromatin restructuring in the nucleus. CTCF binding to promoter sites bidirectionally regulates gene transcription and depends on activation of poly-ADP-ribose polymerase 1 (PARP1). Accordingly, antagonism of PARP1 occluded dopamine-induced changes, whereas a PARP1 agonist facilitated dopamine-induced changes on its own. These results indicate that astrocyte response to elevated dopamine involves PARP1-mediated CTCF genomic restructuring and concerted expression of gene networks. Our findings propose epigenetic regulation of chromatin landscape as a critical factor in the rapid astrocyte response to dopamine.SIGNIFICANCE STATEMENT Although dopamine is widely recognized for its role in modulating neuronal responses both in healthy and disease states, little is known about dopamine effects at non-neuronal cells in the brain. To address this gap, we performed whole-genome sequencing of astrocytes exposed to elevated extracellular dopamine and combined it with evaluation of effects on astrocyte morphology and function. We demonstrate a temporally dynamic pattern of genomic plasticity that triggers pronounced changes in astrocyte morphology and function. We further show that this plasticity depends on activation of genes sensitive to DNA-binding protein CTCF. Our results propose that a broad pattern of astrocyte responses to dopamine specifically relies on CTCF-dependent gene networks.
Collapse
Affiliation(s)
- Ashley Galloway
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina 29209
- Integrated Program in Biomedical Sciences, University of South Carolina, Columbia, South Carolina 29209, and
| | - Adewale Adeluyi
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208
| | - Bernadette O'Donovan
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina 29209
| | - Miranda L Fisher
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208
| | - Chintada Nageswara Rao
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208
| | - Peyton Critchfield
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina 29209
| | - Mathew Sajish
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208
| | - Jill R Turner
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208
| | - Pavel I Ortinski
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina 29209,
| |
Collapse
|
59
|
Abstract
Herpes simplex virus 1 (HSV-1) establishes a lifelong latent infection in host peripheral neurons, including the neurons of the trigeminal ganglia (TG). HSV-1 can reactivate from neurons to cause recurrent infection. During latency, the insulator protein CTCF occupies DNA binding sites on the HSV-1 genome, and these sites have been previously characterized as functional enhancer-blocking insulators. Previously, CTCF was found to be dissociated from wild-type virus postreactivation but not in mutants that do not reactivate, indicating that CTCF eviction may also be an important component of reactivation. To further elucidate the role of CTCF in reactivation of HSV-1, we used recombinant adeno-associated virus (rAAV) vectors to deliver a small interfering RNA targeting CTCF to peripheral neurons latent with HSV-1 in rabbit TG. Our data show that CTCF depletion resulted in long-term and persistent shedding of infectious virus in the cornea and increased ICP0 expression in the ganglia, indicating that CTCF depletion facilitates HSV-1 reactivation.IMPORTANCE Increasing evidence has shown that the insulator protein CTCF regulates gene expression of DNA viruses, including the gammaherpesviruses. While CTCF occupation and insulator function control gene expression in DNA viruses, CTCF eviction has been correlated to increased lytic gene expression and the dissolution of transcriptional domains. Our previous data have shown that in the alphaherpesvirus HSV-1, CTCF was found to be dissociated from the HSV-1 genome postreactivation, further indicating a global role for CTCF eviction in the transition from latency to reactivation in HSV-1 genomes. Using an rAAV8, we targeted HSV-1-infected peripheral neurons for CTCF depletion to show that CTCF depletion precedes the shedding of infectious virus and increased lytic gene expression in vivo, providing the first evidence that CTCF depletion facilitates HSV-1 reactivation.
Collapse
|
60
|
Remote Memory and Cortical Synaptic Plasticity Require Neuronal CCCTC-Binding Factor (CTCF). J Neurosci 2018; 38:5042-5052. [PMID: 29712785 DOI: 10.1523/jneurosci.2738-17.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/30/2018] [Accepted: 04/08/2018] [Indexed: 12/20/2022] Open
Abstract
The molecular mechanism of long-term memory has been extensively studied in the context of the hippocampus-dependent recent memory examined within several days. However, months-old remote memory maintained in the cortex for long-term has not been investigated much at the molecular level yet. Various epigenetic mechanisms are known to be important for long-term memory, but how the 3D chromatin architecture and its regulator molecules contribute to neuronal plasticity and systems consolidation is still largely unknown. CCCTC-binding factor (CTCF) is an 11-zinc finger protein well known for its role as a genome architecture molecule. Male conditional knock-out mice in which CTCF is lost in excitatory neurons during adulthood showed normal recent memory in the contextual fear conditioning and spatial water maze tasks. However, they showed remarkable impairments in remote memory in both tasks. Underlying the remote memory-specific phenotypes, we observed that female CTCF conditional knock-out mice exhibit disrupted cortical LTP, but not hippocampal LTP. Similarly, we observed that CTCF deletion in inhibitory neurons caused partial impairment of remote memory. Through RNA sequencing, we observed that CTCF knockdown in cortical neuron culture caused altered expression of genes that are highly involved in cell adhesion, synaptic plasticity, and memory. These results suggest that remote memory storage in the cortex requires CTCF-mediated gene regulation in neurons, whereas recent memory formation in the hippocampus does not.SIGNIFICANCE STATEMENT CCCTC-binding factor (CTCF) is a well-known 3D genome architectural protein that regulates gene expression. Here, we use two different CTCF conditional knock-out mouse lines and reveal, for the first time, that CTCF is critically involved in the regulation of remote memory. We also show that CTCF is necessary for appropriate expression of genes, many of which we found to be involved in the learning- and memory-related processes. Our study provides behavioral and physiological evidence for the involvement of CTCF-mediated gene regulation in the remote long-term memory and elucidates our understanding of systems consolidation mechanisms.
Collapse
|
61
|
Davis L, Onn I, Elliott E. The emerging roles for the chromatin structure regulators CTCF and cohesin in neurodevelopment and behavior. Cell Mol Life Sci 2018; 75:1205-1214. [PMID: 29110030 PMCID: PMC11105208 DOI: 10.1007/s00018-017-2706-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/09/2017] [Accepted: 10/31/2017] [Indexed: 12/19/2022]
Abstract
Recent genetic and technological advances have determined a role for chromatin structure in neurodevelopment. In particular, compounding evidence has established roles for CTCF and cohesin, two elements that are central in the establishment of chromatin structure, in proper neurodevelopment and in regulation of behavior. Genetic aberrations in CTCF, and in subunits of the cohesin complex, have been associated with neurodevelopmental disorders in human genetic studies, and subsequent animal studies have established definitive, although sometime opposing roles, for these factors in neurodevelopment and behavior. Considering the centrality of these factors in cellular processes in general, the mechanisms through which dysregulation of CTCF and cohesin leads specifically to neurological phenotypes is intriguing, although poorly understood. The connection between CTCF, cohesin, chromatin structure, and behavior is likely to be one of the next frontiers in our understanding of the development of behavior in general, and neurodevelopmental disorders in particular.
Collapse
Affiliation(s)
- Liron Davis
- Molecular and Behavioral Neurosciences Laboratory, Faculty of Medicine in the Galilee, Bar-Ilan University, Hanrietta Sold 8, 1311502, Safed, Israel
| | - Itay Onn
- Chromosome Instability and Dynamics Laboratory, Faculty of Medicine in the Galilee, Bar-Ilan University, 1311502, Safed, Israel
| | - Evan Elliott
- Molecular and Behavioral Neurosciences Laboratory, Faculty of Medicine in the Galilee, Bar-Ilan University, Hanrietta Sold 8, 1311502, Safed, Israel.
| |
Collapse
|
62
|
Arzate-Mejía RG, Recillas-Targa F, Corces VG. Developing in 3D: the role of CTCF in cell differentiation. Development 2018; 145:dev137729. [PMID: 29567640 PMCID: PMC5897592 DOI: 10.1242/dev.137729] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CTCF is a highly conserved zinc-finger DNA-binding protein that mediates interactions between distant sequences in the genome. As a consequence, CTCF regulates enhancer-promoter interactions and contributes to the three-dimensional organization of the genome. Recent studies indicate that CTCF is developmentally regulated, suggesting that it plays a role in cell type-specific genome organization. Here, we review these studies and discuss how CTCF functions during the development of various cell and tissue types, ranging from embryonic stem cells and gametes, to neural, muscle and cardiac cells. We propose that the lineage-specific control of CTCF levels, and its partnership with lineage-specific transcription factors, allows for the control of cell type-specific gene expression via chromatin looping.
Collapse
Affiliation(s)
- Rodrigo G Arzate-Mejía
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Félix Recillas-Targa
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Victor G Corces
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
63
|
Taguchi YH. Tensor decomposition-based unsupervised feature extraction identifies candidate genes that induce post-traumatic stress disorder-mediated heart diseases. BMC Med Genomics 2017; 10:67. [PMID: 29322921 PMCID: PMC5763504 DOI: 10.1186/s12920-017-0302-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Although post-traumatic stress disorder (PTSD) is primarily a mental disorder, it can cause additional symptoms that do not seem to be directly related to the central nervous system, which PTSD is assumed to directly affect. PTSD-mediated heart diseases are some of such secondary disorders. In spite of the significant correlations between PTSD and heart diseases, spatial separation between the heart and brain (where PTSD is primarily active) prevents researchers from elucidating the mechanisms that bridge the two disorders. Our purpose was to identify genes linking PTSD and heart diseases. METHODS In this study, gene expression profiles of various murine tissues observed under various types of stress or without stress were analyzed in an integrated manner using tensor decomposition (TD). RESULTS Based upon the obtained features, ∼ 400 genes were identified as candidate genes that may mediate heart diseases associated with PTSD. Various gene enrichment analyses supported biological reliability of the identified genes. Ten genes encoding protein-, DNA-, or mRNA-interacting proteins-ILF2, ILF3, ESR1, ESR2, RAD21, HTT, ATF2, NR3C1, TP53, and TP63-were found to be likely to regulate expression of most of these ∼ 400 genes and therefore are candidate primary genes that cause PTSD-mediated heart diseases. Approximately 400 genes in the heart were also found to be strongly affected by various drugs whose known adverse effects are related to heart diseases and/or fear memory conditioning; these data support the reliability of our findings. CONCLUSIONS TD-based unsupervised feature extraction turned out to be a useful method for gene selection and successfully identified possible genes causing PTSD-mediated heart diseases.
Collapse
Affiliation(s)
- Y-H Taguchi
- Department of Physics, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan.
| |
Collapse
|
64
|
Abnormal Microglia and Enhanced Inflammation-Related Gene Transcription in Mice with Conditional Deletion of Ctcf in Camk2a-Cre-Expressing Neurons. J Neurosci 2017; 38:200-219. [PMID: 29133437 DOI: 10.1523/jneurosci.0936-17.2017] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 10/21/2017] [Accepted: 11/09/2017] [Indexed: 01/22/2023] Open
Abstract
CCCTC-binding factor (CTCF) is an 11 zinc finger DNA-binding domain protein that regulates gene expression by modifying 3D chromatin structure. Human mutations in CTCF cause intellectual disability and autistic features. Knocking out Ctcf in mouse embryonic neurons is lethal by neonatal age, but the effects of CTCF deficiency in postnatal neurons are less well studied. We knocked out Ctcf postnatally in glutamatergic forebrain neurons under the control of Camk2a-Cre. CtcfloxP/loxP;Camk2a-Cre+ (Ctcf CKO) mice of both sexes were viable and exhibited profound deficits in spatial learning/memory, impaired motor coordination, and decreased sociability by 4 months of age. Ctcf CKO mice also had reduced dendritic spine density in the hippocampus and cerebral cortex. Microarray analysis of mRNA from Ctcf CKO mouse hippocampus identified increased transcription of inflammation-related genes linked to microglia. Separate microarray analysis of mRNA isolated specifically from Ctcf CKO mouse hippocampal neurons by ribosomal affinity purification identified upregulation of chemokine signaling genes, suggesting crosstalk between neurons and microglia in Ctcf CKO hippocampus. Finally, we found that microglia in Ctcf CKO mouse hippocampus had abnormal morphology by Sholl analysis and increased immunostaining for CD68, a marker of microglial activation. Our findings confirm that Ctcf KO in postnatal neurons causes a neurobehavioral phenotype in mice and provide novel evidence that CTCF depletion leads to overexpression of inflammation-related genes and microglial dysfunction.SIGNIFICANCE STATEMENT CCCTC-binding factor (CTCF) is a DNA-binding protein that organizes nuclear chromatin topology. Mutations in CTCF cause intellectual disability and autistic features in humans. CTCF deficiency in embryonic neurons is lethal in mice, but mice with postnatal CTCF depletion are less well studied. We find that mice lacking Ctcf in Camk2a-expressing neurons (Ctcf CKO mice) have spatial learning/memory deficits, impaired fine motor skills, subtly altered social interactions, and decreased dendritic spine density. We demonstrate that Ctcf CKO mice overexpress inflammation-related genes in the brain and have microglia with abnormal morphology that label positive for CD68, a marker of microglial activation. Our findings suggest that inflammation and dysfunctional neuron-microglia interactions are factors in the pathology of CTCF deficiency.
Collapse
|
65
|
Gomez-Velazquez M, Badia-Careaga C, Lechuga-Vieco AV, Nieto-Arellano R, Tena JJ, Rollan I, Alvarez A, Torroja C, Caceres EF, Roy AR, Galjart N, Delgado-Olguin P, Sanchez-Cabo F, Enriquez JA, Gomez-Skarmeta JL, Manzanares M. CTCF counter-regulates cardiomyocyte development and maturation programs in the embryonic heart. PLoS Genet 2017; 13:e1006985. [PMID: 28846746 PMCID: PMC5591014 DOI: 10.1371/journal.pgen.1006985] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/08/2017] [Accepted: 08/17/2017] [Indexed: 11/27/2022] Open
Abstract
Cardiac progenitors are specified early in development and progressively differentiate and mature into fully functional cardiomyocytes. This process is controlled by an extensively studied transcriptional program. However, the regulatory events coordinating the progression of such program from development to maturation are largely unknown. Here, we show that the genome organizer CTCF is essential for cardiogenesis and that it mediates genomic interactions to coordinate cardiomyocyte differentiation and maturation in the developing heart. Inactivation of Ctcf in cardiac progenitor cells and their derivatives in vivo during development caused severe cardiac defects and death at embryonic day 12.5. Genome wide expression analysis in Ctcf mutant hearts revealed that genes controlling mitochondrial function and protein production, required for cardiomyocyte maturation, were upregulated. However, mitochondria from mutant cardiomyocytes do not mature properly. In contrast, multiple development regulatory genes near predicted heart enhancers, including genes in the IrxA cluster, were downregulated in Ctcf mutants, suggesting that CTCF promotes cardiomyocyte differentiation by facilitating enhancer-promoter interactions. Accordingly, loss of CTCF disrupts gene expression and chromatin interactions as shown by chromatin conformation capture followed by deep sequencing. Furthermore, CRISPR-mediated deletion of an intergenic CTCF site within the IrxA cluster alters gene expression in the developing heart. Thus, CTCF mediates local regulatory interactions to coordinate transcriptional programs controlling transitions in morphology and function during heart development. Properly regulated gene expression in time and space during development and differentiation requires not only transcriptional inputs, but also specific structuring of the chromatin. CTCF is a DNA binding factor that is believed to be critical for this process through binding to tens of thousands of sites across the genome. Despite the knowledge gained in recent years on the role of CTCF in genome organization, its functions in vivo are poorly understood. To address this issue, we studied the effect of genetically deleting CTCF in differentiating cardiomyocytes at early stages of mouse development. Surprisingly only a fraction of genes change their expression when CTCF is removed. Importantly, misregulated genes control opposing genetic programs in charge of development and patterning on one hand, and cardiomyocyte maturation on the other. This imbalance leads to faulty mitochondria and incorrect expression of cardiac patterning genes, and subsequent embryonic lethality. Our results suggest that CTCF is not necessary for maintenance of global genome structure, but coordinates dynamic genetic programs controlling phenotypic transitions in developing cells and tissues.
Collapse
Affiliation(s)
| | | | - Ana Victoria Lechuga-Vieco
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | | | - Juan J. Tena
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Isabel Rollan
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Alba Alvarez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Carlos Torroja
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Eva F. Caceres
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Anna R. Roy
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Niels Galjart
- Department of Cell Biology and Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Paul Delgado-Olguin
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Heart and Stroke Richard Lewar Centre of Excellence, Toronto, Ontario, Canada
| | | | | | - Jose Luis Gomez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Miguel Manzanares
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
66
|
Abstract
This paper provides a brief introductory review of the most recent advances in our knowledge about the structural and functional aspects of two transcriptional regulators: MeCP2, a protein whose mutated forms are involved in Rett syndrome; and CTCF, a constitutive transcriptional insulator. This is followed by a description of the PTMs affecting these two proteins and an analysis of their known interacting partners. A special emphasis is placed on the recent studies connecting these two proteins, focusing on the still poorly understood potential structural and functional interactions between the two of them on the chromatin substrate. An overview is provided for some of the currently known genes that are dually regulated by these two proteins. Finally, a model is put forward to account for their possible involvement in their regulation of gene expression.
Collapse
Affiliation(s)
- Juan Ausió
- a Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada.,b Center for Biomedical Research, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Philippe T Georgel
- c Department of Biological Sciences, Marshall University, Huntington, WV 25755, USA.,d Cell Differentiation and Development Center, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
67
|
Bastaki F, Nair P, Mohamed M, Malik EM, Helmi M, Al-Ali MT, Hamzeh AR. Identification of a novel CTCF mutation responsible for syndromic intellectual disability - a case report. BMC MEDICAL GENETICS 2017; 18:68. [PMID: 28619046 PMCID: PMC5472882 DOI: 10.1186/s12881-017-0429-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 05/28/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Autosomal dominant mental retardation 21 (MRD21) is a very rare condition, characterized by short stature, microcephaly, mild facial dysmorphisms and intellectual disability that ranged from mild to severe. MRD21 is caused by mutations in CCCTC-binding factor (CTCF) and this was established through only four unrelated cases, two of which had frameshift mutations. CTCF is a master transcriptional regulator that controls chromatin structure and may serve as insulator and transcriptional activator and repressor. CASE PRESENTATION This study presents, clinically and molecularly, an Emirati patient with de novo frameshift mutation in CTCF. This novel mutation was uncovered using whole exome sequencing and was confirmed by Sanger sequencing in the trio. In silico analysis, using SIFT Indel, indicates that this frameshift; p.Lys206Profs*13 is functionally damaging with the likely involvement of nonsense-mediated mRNA decay. CONCLUSIONS Upon comparing the clinical picture of the herewith-reported individual with previously reported cases of MRD21, there seems to be many common symptoms, and few new ones that were not observed before. This helps to further define this rare condition and its molecular underpinnings.
Collapse
Affiliation(s)
- Fatma Bastaki
- Pediatric Department, Latifa Hospital, Dubai Health Authority, Dubai, United Arab Emirates
| | - Pratibha Nair
- Centre for Arab Genomic Studies, P.O. Box 22252, Dubai, United Arab Emirates
| | - Madiha Mohamed
- Pediatric Department, Latifa Hospital, Dubai Health Authority, Dubai, United Arab Emirates
| | - Ethar Mustafa Malik
- Pediatric Department, Latifa Hospital, Dubai Health Authority, Dubai, United Arab Emirates
| | - Mustafa Helmi
- Pediatric Department, Latifa Hospital, Dubai Health Authority, Dubai, United Arab Emirates
| | | | - Abdul Rezzak Hamzeh
- Centre for Arab Genomic Studies, P.O. Box 22252, Dubai, United Arab Emirates.
| |
Collapse
|
68
|
Beagan JA, Duong MT, Titus KR, Zhou L, Cao Z, Ma J, Lachanski CV, Gillis DR, Phillips-Cremins JE. YY1 and CTCF orchestrate a 3D chromatin looping switch during early neural lineage commitment. Genome Res 2017; 27:1139-1152. [PMID: 28536180 PMCID: PMC5495066 DOI: 10.1101/gr.215160.116] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 05/01/2017] [Indexed: 01/17/2023]
Abstract
CTCF is an architectural protein with a critical role in connecting higher-order chromatin folding in pluripotent stem cells. Recent reports have suggested that CTCF binding is more dynamic during development than previously appreciated. Here, we set out to understand the extent to which shifts in genome-wide CTCF occupancy contribute to the 3D reconfiguration of fine-scale chromatin folding during early neural lineage commitment. Unexpectedly, we observe a sharp decrease in CTCF occupancy during the transition from naïve/primed pluripotency to multipotent primary neural progenitor cells (NPCs). Many pluripotency gene-enhancer interactions are anchored by CTCF, and its occupancy is lost in parallel with loop decommissioning during differentiation. Conversely, CTCF binding sites in NPCs are largely preexisting in pluripotent stem cells. Only a small number of CTCF sites arise de novo in NPCs. We identify another zinc finger protein, Yin Yang 1 (YY1), at the base of looping interactions between NPC-specific genes and enhancers. Putative NPC-specific enhancers exhibit strong YY1 signal when engaged in 3D contacts and negligible YY1 signal when not in loops. Moreover, siRNA knockdown of Yy1 specifically disrupts interactions between key NPC enhancers and their target genes. YY1-mediated interactions between NPC regulatory elements are often nested within constitutive loops anchored by CTCF. Together, our results support a model in which YY1 acts as an architectural protein to connect developmentally regulated looping interactions; the location of YY1-mediated interactions may be demarcated in development by a preexisting topological framework created by constitutive CTCF-mediated interactions.
Collapse
Affiliation(s)
- Jonathan A Beagan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Michael T Duong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Katelyn R Titus
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Linda Zhou
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Zhendong Cao
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jingjing Ma
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Caroline V Lachanski
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Daniel R Gillis
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jennifer E Phillips-Cremins
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
69
|
Chen KW, Chen L. Epigenetic Regulation of BDNF Gene during Development and Diseases. Int J Mol Sci 2017; 18:ijms18030571. [PMID: 28272318 PMCID: PMC5372587 DOI: 10.3390/ijms18030571] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/01/2017] [Indexed: 12/14/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is required for the development of the nervous system, proper cognitive function and memory formation. While aberrant expression of BDNF has been implicated in neurological disorders, the transcriptional regulation of BDNF remains to be elucidated. In response to different stimuli, BDNF expression can be initiated from different promoters. Several studies have suggested that the expression of BDNF is regulated by promoter methylation. An emerging theme points to the possibility that histone modifications at the BDNF promoters may link to the neurological pathology. Thus, understanding the epigenetic regulation at the BDNF promoters will shed light on future therapies for neurological disorders. The present review summarizes the current knowledge of histone modifications of the BDNF gene in neuronal diseases, as well as the developmental regulation of the BDNF gene based on data from the Encyclopedia of DNA Elements (ENCODE).
Collapse
Affiliation(s)
- Kuan-Wei Chen
- Institute of Molecular Medicine and Department of Medical Science, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.
| | - Linyi Chen
- Institute of Molecular Medicine and Department of Medical Science, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.
- Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|