51
|
Pawley LC, Hueston CM, O'Leary JD, Kozareva DA, Cryan JF, O'Leary OF, Nolan YM. Chronic intrahippocampal interleukin-1β overexpression in adolescence impairs hippocampal neurogenesis but not neurogenesis-associated cognition. Brain Behav Immun 2020; 83:172-179. [PMID: 31604142 DOI: 10.1016/j.bbi.2019.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/02/2019] [Accepted: 10/05/2019] [Indexed: 02/06/2023] Open
Abstract
Both neuroinflammation and adult hippocampal neurogenesis (AHN) are implicated in many neurodegenerative disorders as well as in neuropsychiatric disorders, which often become symptomatic during adolescence. A better knowledge of the impact that chronic neuroinflammation has on the hippocampus during the adolescent period could lead to the discovery of new therapeutics for some of these disorders. The hippocampus is particularly vulnerable to altered concentrations of the pro-inflammatory cytokine interleukin-1β (IL-1β), with elevated levels implicated in the aetiology of neurodegenerative disorders such as Alzheimer's and Parkinson's, and stress-related disorders such as depression. The effect of acutely and chronically elevated concentrations of hippocampal IL-1β have been shown to reduce AHN in adult rodents. However, the effect of exposure to chronic overexpression of hippocampal IL-1β during adolescence, a time of increased vulnerability, hasn't been fully interrogated. Thus, in this study we utilized a lentiviral approach to induce chronic overexpression of IL-1β in the dorsal hippocampus of adolescent male Sprague Dawley rats for 5 weeks, during which time its impact on cognition and hippocampal neurogenesis were examined. A reduction in hippocampal neurogenesis was observed along with a reduced level of neurite branching on hippocampal neurons. However, there was no effect of IL-1β overexpression on performance in pattern separation, novel object recognition or spontaneous alternation in the Y maze. Our study has highlighted that chronic IL-1β overexpression in the hippocampus during the adolescent period exerts a negative impact on neurogenesis independent of cognitive performance, and suggests a degree of resilience of the adolescent hippocampus to inflammatory insult.
Collapse
Affiliation(s)
- Lauren C Pawley
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Cara M Hueston
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - James D O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Danka A Kozareva
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Olivia F O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| |
Collapse
|
52
|
Trinchero MF, Herrero M, Schinder AF. Rejuvenating the Brain With Chronic Exercise Through Adult Neurogenesis. Front Neurosci 2019; 13:1000. [PMID: 31619959 PMCID: PMC6759473 DOI: 10.3389/fnins.2019.01000] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/04/2019] [Indexed: 12/22/2022] Open
Abstract
The aging brain presents a general decline in plasticity that also affects hippocampal neurogenesis. Besides the well-known reduction in the rate of neuronal generation, development of new neurons is largely delayed in the aging brain. We have recently shown that this slow development is accelerated when middle-aged mice perform voluntary exercise in a running wheel. It is unclear whether the effects of exercise on neurogenic plasticity are persistent in time in a manner that might influence neuronal cohorts generated over an extended time span. To clarify these issues, we examined the effects of exercise length in 3-week-old neurons and found that their development is accelerated only when running occurs for long (3-4 weeks) but not short periods (1 week). Furthermore, chronic running acted with similar efficiency on neurons that were born at the onset, within, or at the end of the exercise period, lasting until 3 months. Interestingly, no effects were observed on neurons born 1 month after exercise had ended. Our results indicate that multiple neuronal cohorts born throughout the exercise span integrate very rapidly in the aging brain, such that the effects of running will accumulate and expand network assembly promoted by neurogenesis. These networks are likely to be more complex than those assembled in a sedentary mouse due to the faster and more efficient integration of new neurons.
Collapse
Affiliation(s)
- Mariela F Trinchero
- Laboratorio de Plasticidad Neuronal, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Magalí Herrero
- Laboratorio de Plasticidad Neuronal, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Alejandro F Schinder
- Laboratorio de Plasticidad Neuronal, Fundación Instituto Leloir, Buenos Aires, Argentina
| |
Collapse
|
53
|
Leal-Galicia P, Romo-Parra H, Rodríguez-Serrano LM, Buenrostro-Jáuregui M. Regulation of adult hippocampal neurogenesis exerted by sexual, cognitive and physical activity: An update. J Chem Neuroanat 2019; 101:101667. [PMID: 31421204 DOI: 10.1016/j.jchemneu.2019.101667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 07/29/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022]
Abstract
In 1962, Joseph Altman described that the brain generates neurons after the postnatal period, and this continues throughout your life (Altman, 1962). This was a breakthrough in the neuroscience field because before this the accepted paradigm was that the brain only generated neurons during the embryonal development. This discovery has been controversial ever since, especially since one of the areas of the brain with neurogenic properties is the hippocampus, which is the area involved in memory storage and neurodegenerative processes. The adult hippocampal neurogenesis modulates in response to different environmental factors. In this article, we review how exercise and cognitive and sexual activity can regulate the generation of new neurons in the hippocampal in an adult brain and the impact of these new neurons in the brain circuitry.
Collapse
Affiliation(s)
- P Leal-Galicia
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, México.
| | - H Romo-Parra
- Facultad de Psicología, Universidad Anáhuac, Mexico City, Mexico
| | - L M Rodríguez-Serrano
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, México
| | - M Buenrostro-Jáuregui
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, México.
| |
Collapse
|
54
|
Trinchero MF, Herrero M, Monzón-Salinas MC, Schinder AF. Experience-Dependent Structural Plasticity of Adult-Born Neurons in the Aging Hippocampus. Front Neurosci 2019; 13:739. [PMID: 31379489 PMCID: PMC6651579 DOI: 10.3389/fnins.2019.00739] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/02/2019] [Indexed: 12/28/2022] Open
Abstract
Synaptic modification in cortical structures underlies the acquisition of novel information that results in learning and memory formation. In the adult dentate gyrus, circuit remodeling is boosted by the generation of new granule cells (GCs) that contribute to specific aspects of memory encoding. These forms of plasticity decrease in the aging brain, where both the rate of adult neurogenesis and the speed of morphological maturation of newly generated neurons decline. In the young-adult brain, a brief novel experience accelerates the integration of new neurons. The extent to which such degree of plasticity is preserved in the aging hippocampus remains unclear. In this work, we characterized the time course of functional integration of adult-born GCs in middle-aged mice. We performed whole-cell recordings in developing GCs from Ascl1CreERT2;CAGfloxStopTom mice and found a late onset of functional excitatory synaptogenesis, which occurred at 4 weeks (vs. 2 weeks in young-adult mice). Overall mature excitability and maximal glutamatergic connectivity were achieved at 10 weeks. In contrast, large mossy fiber boutons (MFBs) in CA3 displayed mature morphological features including filopodial extensions at 4 weeks, suggesting that efferent connectivity develops faster than afference. Notably, new GCs from middle-aged mice exposed to enriched environment for 7 days showed an advanced degree of maturity at 3 weeks, revealed by the high frequency of excitatory postsynaptic responses, complex dendritic trees, and large size of MFBs with filopodial extensions. These findings demonstrate that adult-born neurons act as sensors that transduce behavioral stimuli into major network remodeling in the aging brain.
Collapse
Affiliation(s)
| | | | | | - Alejandro F. Schinder
- Laboratorio de Plasticidad Neuronal, Fundación Instituto Leloir, Buenos Aires, Argentina
| |
Collapse
|
55
|
Beckervordersandforth R. Newborn Neurons in the Aged Hippocampus-Scarce and Slow but Highly Plastic. Cell Rep 2019; 21:1127-1128. [PMID: 29091752 DOI: 10.1016/j.celrep.2017.10.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In this issue of Cell Reports, Trinchero et al. (2017) demonstrate that newborn neurons in the aged hippocampus are delayed in development but are highly susceptible to stimuli improving neuronal activity. This plasticity is mediated cell-intrinsically by neurotrophin signaling.
Collapse
Affiliation(s)
- Ruth Beckervordersandforth
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
56
|
Kirschen GW, Ge S. Young at heart: Insights into hippocampal neurogenesis in the aged brain. Behav Brain Res 2019; 369:111934. [PMID: 31054278 DOI: 10.1016/j.bbr.2019.111934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/09/2019] [Accepted: 04/30/2019] [Indexed: 12/24/2022]
Abstract
While the existence and importance of adult hippocampal neurogenesis in young adult rodents has been well-established, such qualities in aged animals and humans have remained poorly understood. Most evidence in humans has come from hippocampal volumetric changes that provide no direct proof of new neurons in adulthood. Here, we review the basic neurobiological evidence for adult hippocampal neurogenesis in the aged brain of experimental animals with short and long lifespans, and humans. The rate of cell cycling and addition of new hippocampal neurons to the existing hippocampal circuit undoubtedly decreases with age. Yet, neural stem/progenitor cells that persist into senescence may activate and produce a substantial number of functional new neurons that exhibit enhanced survival and integration given the right set of conditions. There thus exists remarkable potential for newly-generated neurons in the senescent hippocampus to make important circuit- and behavioral-level contributions, which may serve as a target for future therapeutics.
Collapse
Affiliation(s)
- Gregory W Kirschen
- Medical Scientist Training Program (MSTP), Renaissance School of Medicine at Stony Brook University, 101 Nicolls Rd, Stony Brook, NY 11794, United States.
| | - Shaoyu Ge
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, United States
| |
Collapse
|
57
|
Boulanger-Weill J, Sumbre G. Functional Integration of Newborn Neurons in the Zebrafish Optic Tectum. Front Cell Dev Biol 2019; 7:57. [PMID: 31058148 PMCID: PMC6477100 DOI: 10.3389/fcell.2019.00057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/29/2019] [Indexed: 11/15/2022] Open
Abstract
Neurogenesis persists during adulthood in restricted parts of the vertebrate brain. In the optic tectum (OT) of the zebrafish larva, newborn neurons are continuously added and contribute to visual information processing. Recent studies have started to describe the functional development and fate of newborn neurons in the OT. Like the mammalian brain, newborn neurons in the OT require sensory inputs for their integration into local networks and survival. Recent findings suggest that the functional development of newborn neurons requires both activity-dependent and hard-wired mechanisms for proper circuit integration. Here, we review these findings and argue that the study of neurogenesis in non-mammalian species will help elucidate the general mechanisms of circuit assembly following neurogenesis.
Collapse
Affiliation(s)
- Jonathan Boulanger-Weill
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA, United States
| | - Germán Sumbre
- Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
58
|
De Vincenti AP, Ríos AS, Paratcha G, Ledda F. Mechanisms That Modulate and Diversify BDNF Functions: Implications for Hippocampal Synaptic Plasticity. Front Cell Neurosci 2019; 13:135. [PMID: 31024262 PMCID: PMC6465932 DOI: 10.3389/fncel.2019.00135] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/19/2019] [Indexed: 11/16/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin that has pleiotropic effects on neuronal morphology and synaptic plasticity that underlie hippocampal circuit development and cognition. Recent advances established that BDNF function is controlled and diversified by molecular and cellular mechanisms including trafficking and subcellular compartmentalization of different Bdnf mRNA species, pre- vs. postsynaptic release of BDNF, control of BDNF signaling by tropomyosin receptor kinase B (TrkB) receptor interactors and conversion of pro-BDNF to mature BDNF and BDNF-propeptide. Defects in these regulatory mechanisms affect dendritic spine formation and morphology of pyramidal neurons as well as synaptic integration of newborn granule cells (GCs) into preexisting circuits of mature hippocampus, compromising the cognitive function. Here, we review recent findings describing novel dynamic mechanisms that diversify and locally control the function of BDNF in hippocampal neurons.
Collapse
Affiliation(s)
- Ana Paula De Vincenti
- División de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Antonella S Ríos
- División de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.,Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Gustavo Paratcha
- División de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Fernanda Ledda
- División de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.,Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires, Argentina
| |
Collapse
|
59
|
Kostin A, Alam MA, McGinty D, Szymusiak R, Alam MN. Chronic Suppression of Hypothalamic Cell Proliferation and Neurogenesis Induces Aging-Like Changes in Sleep–Wake Organization in Young Mice. Neuroscience 2019; 404:541-556. [DOI: 10.1016/j.neuroscience.2019.01.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 12/14/2018] [Accepted: 01/28/2019] [Indexed: 10/27/2022]
|
60
|
Voss MW, Soto C, Yoo S, Sodoma M, Vivar C, van Praag H. Exercise and Hippocampal Memory Systems. Trends Cogn Sci 2019; 23:318-333. [PMID: 30777641 PMCID: PMC6422697 DOI: 10.1016/j.tics.2019.01.006] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/11/2019] [Accepted: 01/16/2019] [Indexed: 01/17/2023]
Abstract
No medications prevent or reverse age-related cognitive decline. Physical activity (PA) enhances memory in rodents, but findings are mixed in human studies. As a result, exercise guidelines specific for brain health are absent. Here, we re-examine results from human studies, and suggest the use of more sensitive tasks to evaluate PA effects on age-related changes in the hippocampus, such as relational memory and mnemonic discrimination. We discuss recent advances from rodent and human studies into the underlying mechanisms at both the central and peripheral levels, including neurotrophins and myokines that could contribute to improved memory. Finally, we suggest guidelines for future research to help expedite well-founded PA recommendations for the public.
Collapse
Affiliation(s)
- Michelle W Voss
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA.
| | - Carmen Soto
- Laboratory of Neurogenesis and Neuroplasticity, Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Seungwoo Yoo
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, and Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Matthew Sodoma
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
| | - Carmen Vivar
- Laboratory of Neurogenesis and Neuroplasticity, Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Henriette van Praag
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, and Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
61
|
Rodríguez-Iglesias N, Sierra A, Valero J. Rewiring of Memory Circuits: Connecting Adult Newborn Neurons With the Help of Microglia. Front Cell Dev Biol 2019; 7:24. [PMID: 30891446 PMCID: PMC6411767 DOI: 10.3389/fcell.2019.00024] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/08/2019] [Indexed: 12/16/2022] Open
Abstract
New neurons are continuously generated from stem cells and integrated into the adult hippocampal circuitry, contributing to memory function. Several environmental, cellular, and molecular factors regulate the formation of new neurons, but the mechanisms that govern their incorporation into memory circuits are less explored. Herein we will focus on microglia, the resident immune cells of the CNS, which modulate the production of new neurons in the adult hippocampus and are also well suited to participate in their circuit integration. Microglia may contribute to the refinement of brain circuits during development and exert a role in physiological and pathological conditions by regulating axonal and dendritic growth; promoting the formation, elimination, and relocation of synapses; modulating excitatory synaptic maturation; and participating in functional synaptic plasticity. Importantly, microglia are able to sense subtle changes in their environment and may use this information to differently modulate hippocampal wiring, ultimately impacting on memory function. Deciphering the role of microglia in hippocampal circuitry constant rewiring will help to better understand the influence of microglia on memory function.
Collapse
Affiliation(s)
- Noelia Rodríguez-Iglesias
- Laboratory of Glial Cell Biology, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Amanda Sierra
- Laboratory of Glial Cell Biology, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, Leioa, Spain.,Ikerbasque Foundation, Bilbao, Spain
| | - Jorge Valero
- Laboratory of Glial Cell Biology, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, Leioa, Spain.,Ikerbasque Foundation, Bilbao, Spain
| |
Collapse
|
62
|
Recalibrating the Relevance of Adult Neurogenesis. Trends Neurosci 2019; 42:164-178. [PMID: 30686490 DOI: 10.1016/j.tins.2018.12.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/28/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
Abstract
Conflicting reports about whether adult hippocampal neurogenesis occurs in humans raise questions about its significance for human health and the relevance of animal models. Drawing upon published data, I review species' neurogenesis rates across the lifespan and propose that accelerated neurodevelopmental timing is consistent with lower rates of neurogenesis in adult primates and humans. Nonetheless, protracted neurogenesis may produce populations of neurons that retain plastic properties for long intervals, and have distinct functions depending on when in the lifespan they were born. With some conceptual recalibration we may therefore be able to reconcile seemingly disparate findings and continue to ask how adult neurogenesis, as studied in animals, is relevant for human health.
Collapse
|
63
|
Llorens-Martín M. Exercising New Neurons to Vanquish Alzheimer Disease. Brain Plast 2018; 4:111-126. [PMID: 30564550 PMCID: PMC6296267 DOI: 10.3233/bpl-180065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
Alzheimer disease (AD) is the most common type of dementia in individuals over 65 years of age. The neuropathological hallmarks of the condition are Tau neurofibrillary tangles and Amyloid-β senile plaques. Moreover, certain susceptible regions of the brain experience a generalized lack of neural plasticity and marked synaptic alterations during the progression of this as yet incurable disease. One of these regions, the hippocampus, is characterized by the continuous addition of new neurons throughout life. This phenomenon, named adult hippocampal neurogenesis (AHN), provides a potentially endless source of new synaptic elements that increase the complexity and plasticity of the hippocampal circuitry. Numerous lines of evidence show that physical activity and environmental enrichment (EE) are among the most potent positive regulators of AHN. Given that neural plasticity is markedly decreased in many neurodegenerative diseases, the therapeutic potential of making certain lifestyle changes, such as increasing physical activity, is being recognised in several non-pharmacologic strategies seeking to slow down or prevent the progression of these diseases. This review article summarizes current evidence supporting the putative therapeutic potential of EE and physical exercise to increase AHN and hippocampal plasticity both under physiological and pathological circumstances, with a special emphasis on neurodegenerative diseases and AD.
Collapse
Affiliation(s)
- María Llorens-Martín
- Department of Molecular Neuropathology, Centro de Biología Molecular “Severo Ochoa”, CBMSO, CSIC-UAM, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases CIBERNED, Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
64
|
Cope EC, Opendak M, LaMarca EA, Murthy S, Park CY, Olson LB, Martinez S, Leung JM, Graham AL, Gould E. The effects of living in an outdoor enclosure on hippocampal plasticity and anxiety-like behavior in response to nematode infection. Hippocampus 2018; 29:366-377. [PMID: 30252982 DOI: 10.1002/hipo.23033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/23/2018] [Accepted: 09/20/2018] [Indexed: 12/17/2022]
Abstract
The hippocampus of rodents undergoes structural remodeling throughout adulthood, including the addition of new neurons. Adult neurogenesis is sensitive to environmental enrichment and stress. Microglia, the brain's resident immune cells, are involved in adult neurogenesis by engulfing dying new neurons. While previous studies using laboratory environmental enrichment have investigated alterations in brain structure and function, they do not provide an adequate reflection of living in the wild, in which stress and environmental instability are common. Here, we compared mice living in standard laboratory settings to mice living in outdoor enclosures to assess the complex interactions among environment, gut infection, and hippocampal plasticity. We infected mice with parasitic worms and studied their effects on adult neurogenesis, microglia, and functions associated with the hippocampus, including cognition and anxiety regulation. We found an increase in immature neuron numbers of mice living in outdoor enclosures regardless of infection. While outdoor living prevented increases in microglial reactivity induced by infection in both the dorsal and ventral hippocampus, outdoor mice with infection had fewer microglia and microglial processes in the ventral hippocampus. We observed no differences in cognitive performance on the hippocampus-dependent object location task between infected and uninfected mice living in either setting. However, we found that infection caused an increase in anxiety-like behavior in the open field test but only in outdoor mice. These findings suggest that living conditions, as well as gut infection, interact to produce complex effects on brain structure and function.
Collapse
Affiliation(s)
- Elise C Cope
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, New Jersey
| | - Maya Opendak
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, New Jersey
| | - Elizabeth A LaMarca
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, New Jersey
| | - Sahana Murthy
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, New Jersey
| | - Christin Y Park
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, New Jersey
| | - Lyra B Olson
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, New Jersey
| | - Susana Martinez
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, New Jersey
| | - Jacqueline M Leung
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey
| | - Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey
| | - Elizabeth Gould
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, New Jersey
| |
Collapse
|
65
|
Adult Hippocampal Neurogenesis: A Coming-of-Age Story. J Neurosci 2018; 38:10401-10410. [PMID: 30381404 DOI: 10.1523/jneurosci.2144-18.2018] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022] Open
Abstract
What has become standard textbook knowledge over the last decade was a hotly debated matter a decade earlier: the proposition that new neurons are generated in the adult mammalian CNS. The early discovery by Altman and colleagues in the 1960s was vulnerable to criticism due to the lack of technical strategies for unequivocal demonstration, quantification, and physiological analysis of newly generated neurons in adult brain tissue. After several technological advancements had been made in the field, we published a paper in 1996 describing the generation of new neurons in the adult rat brain and the decline of hippocampal neurogenesis during aging. The paper coincided with the publication of several other studies that together established neurogenesis as a cellular mechanism in the adult mammalian brain. In this Progressions article, which is by no means a comprehensive review, we recount our personal view of the initial setting that led to our study and we discuss some of its implications and developments that followed. We also address questions that remain regarding the regulation and function of neurogenesis in the adult mammalian brain, in particular the existence of neurogenesis in the adult human brain.
Collapse
|
66
|
Noggin rescues age-related stem cell loss in the brain of senescent mice with neurodegenerative pathology. Proc Natl Acad Sci U S A 2018; 115:11625-11630. [PMID: 30352848 PMCID: PMC6233090 DOI: 10.1073/pnas.1813205115] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of age-related neurodegeneration. Damage initially occurs in the hippocampus, a neurogenic brain region essential in forming memories. Since there is no cure for AD, therapeutic strategies that may aid to slow hippocampal dysfunction are necessary. We describe the precocious hippocampal stem cell loss of a mouse model that mimics the onset of pathological AD-like neurodegeneration. The loss is due to an increase in BMP6 that limits neurogenesis. We demonstrate that blocking BMP signaling by means of Noggin administration is beneficial to the hippocampal microenvironment, restoring stem cell numbers, neurogenesis, and behavior. Our findings support further development of BMP antagonists into translatable molecules for the rescue of stem cells and neurogenesis in neurodegeneration/aging. Increasing age is the greatest known risk factor for the sporadic late-onset forms of neurodegenerative disorders such as Alzheimer’s disease (AD). One of the brain regions most severely affected in AD is the hippocampus, a privileged structure that contains adult neural stem cells (NSCs) with neurogenic capacity. Hippocampal neurogenesis decreases during aging and the decrease is exacerbated in AD, but the mechanistic causes underlying this progressive decline remain largely unexplored. We here investigated the effect of age on NSCs and neurogenesis by analyzing the senescence accelerated mouse prone 8 (SAMP8) strain, a nontransgenic short-lived strain that spontaneously develops a pathological profile similar to that of AD and that has been employed as a model system to study the transition from healthy aging to neurodegeneration. We show that SAMP8 mice display an accelerated loss of the NSC pool that coincides with an aberrant rise in BMP6 protein, enhanced canonical BMP signaling, and increased astroglial differentiation. In vitro assays demonstrate that BMP6 severely impairs NSC expansion and promotes NSC differentiation into postmitotic astrocytes. Blocking the dysregulation of the BMP pathway and its progliogenic effect in vivo by intracranial delivery of the antagonist Noggin restores hippocampal NSC numbers, neurogenesis, and behavior in SAMP8 mice. Thus, manipulating the local microenvironment of the NSC pool counteracts hippocampal dysfunction in pathological aging. Our results shed light on interventions that may allow taking advantage of the brain’s natural plastic capacity to enhance cognitive function in late adulthood and in chronic neurodegenerative diseases such as AD.
Collapse
|
67
|
Casares-Crespo L, Calatayud-Baselga I, García-Corzo L, Mira H. On the Role of Basal Autophagy in Adult Neural Stem Cells and Neurogenesis. Front Cell Neurosci 2018; 12:339. [PMID: 30349462 PMCID: PMC6187079 DOI: 10.3389/fncel.2018.00339] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/13/2018] [Indexed: 12/31/2022] Open
Abstract
Adult neurogenesis persists in the adult mammalian brain due to the existence of neural stem cell (NSC) reservoirs in defined niches, where they give rise to new neurons throughout life. Recent research has begun to address the implication of constitutive (basal) autophagy in the regulation of neurogenesis in the mature brain. This review summarizes the current knowledge on the role of autophagy-related genes in modulating adult NSCs, progenitor cells and their differentiation into neurons. The general function of autophagy in neurogenesis in several areas of the embryonic forebrain is also revisited. During development, basal autophagy regulates Wnt and Notch signaling and is mainly required for adequate neuronal differentiation. The available data in the adult indicate that the autophagy-lysosomal pathway regulates adult NSC maintenance, the activation of quiescent NSCs, the survival of the newly born neurons and the timing of their maturation. Future research is warranted to validate the results of these pioneering studies, refine the molecular mechanisms underlying the regulation of NSCs and newborn neurons by autophagy throughout the life-span of mammals and provide significance to the autophagic process in adult neurogenesis-dependent behavioral tasks, in physiological and pathological conditions. These lines of research may have important consequences for our understanding of stem cell dysfunction and neurogenic decline during healthy aging and neurodegeneration.
Collapse
Affiliation(s)
- Lucía Casares-Crespo
- Stem Cells and Aging Unit, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, València, Spain
| | - Isabel Calatayud-Baselga
- Stem Cells and Aging Unit, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, València, Spain
| | - Laura García-Corzo
- Stem Cells and Aging Unit, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, València, Spain
| | - Helena Mira
- Stem Cells and Aging Unit, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, València, Spain
| |
Collapse
|
68
|
Kirschen GW, Kéry R, Ge S. The Hippocampal Neuro-Glio-Vascular Network: Metabolic Vulnerability and Potential Neurogenic Regeneration in Disease. Brain Plast 2018; 3:129-144. [PMID: 30151338 PMCID: PMC6091038 DOI: 10.3233/bpl-170055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Brain metabolism is a fragile balance between nutrient/oxygen supply provided by the blood and neuronal/glial demand. Small perturbations in these parameters are necessary for proper homeostatic functioning and information processing, but can also cause significant damage and cell death if dysregulated. During embryonic and early post-natal development, massive neurogenesis occurs, a process that continues at a limited rate in adulthood in two neurogenic niches, one in the lateral ventricle and the other in the hippocampal dentate gyrus. When metabolic demand does not correspond with supply, which can occur dramatically in the case of hypoxia or ischemia, or more subtly in the case of neuropsychiatric or neurodegenerative disorders, both of these neurogenic niches can respond—either in a beneficial manner, to regenerate damaged or lost tissue, or in a detrimental fashion—creating aberrant synaptic connections. In this review, we focus on the complex relationship that exists between the cerebral vasculature and neurogenesis across development and in disease states including hypoxic-ischemic injury, hypertension, diabetes mellitus, and Alzheimer’s disease. Although there is still much to be elucidated, we are beginning to appreciate how neurogenesis may help or harm the metabolically-injured brain, in the hopes that these insights can be used to tailor novel therapeutics to regenerate damaged tissue after injury.
Collapse
Affiliation(s)
- Gregory W Kirschen
- Medical Scientist Training Program (MSTP), Stony Brook Medicine, Stony Brook, NY, USA.,Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Rachel Kéry
- Medical Scientist Training Program (MSTP), Stony Brook Medicine, Stony Brook, NY, USA.,Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Shaoyu Ge
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
69
|
Fernandes RM, Correa MG, Dos Santos MAR, Almeida APCPSC, Fagundes NCF, Maia LC, Lima RR. The Effects of Moderate Physical Exercise on Adult Cognition: A Systematic Review. Front Physiol 2018; 9:667. [PMID: 29937732 PMCID: PMC6002532 DOI: 10.3389/fphys.2018.00667] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/14/2018] [Indexed: 12/22/2022] Open
Abstract
Background: Physical exercise is a systematic sequence of movements executed with a predefined purpose. This muscular activity impacts not only on circulatory adaptations, but also neuronal integration with the potential to influence cognition. The aim of this review was to determine whether the literature supports the idea that physical exercise promotes cognitive benefits in healthy adults. Methods: A systematic search for relevant articles was performed according to the Preferred Reporting Items for Systematic Review and Meta-Analysis criteria using available databases (PubMed, LILACS, Scopus, Web of Science, The Cochrane Library, OpenGrey, Google Scholar and CENTRAL). The search terms included “humans” or “adults” or “cognition” or “awareness” or “cognitive dissonance” or “cognitive reserve” or “comprehension” or “consciousness” and “motor activity” or “exercise” or “physical fitness,” and not “aged” or “nervous system diseases,” with the purpose of finding associations between moderate physical exercise and cognition. A methodological quality and risk of bias unit assessed the eligibility of articles. Results: A total of 7179 articles were identified. Following review and quality assessment, three articles were identified to fulfill the inclusion criteria. An association between moderate physical exercise and cognition was observed. Improvements in cognitive parameters such as reduced simple reaction time, improved response precision and working memory were identified among the included articles. Conclusion: This systematic review found that moderate physical exercise improves cognition.
Collapse
Affiliation(s)
- Rafael M Fernandes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Marcio G Correa
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Marcio A R Dos Santos
- Nucleus of Transdisciplinary Studies in Basic Education, Federal University of Pará, Belém, Brazil
| | - Anna P C P S C Almeida
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Nathália C F Fagundes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Lucianne C Maia
- Pediatric Dentistry and Orthodontics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael R Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| |
Collapse
|
70
|
Liu PZ, Nusslock R. Exercise-Mediated Neurogenesis in the Hippocampus via BDNF. Front Neurosci 2018; 12:52. [PMID: 29467613 PMCID: PMC5808288 DOI: 10.3389/fnins.2018.00052] [Citation(s) in RCA: 304] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 01/23/2018] [Indexed: 12/16/2022] Open
Abstract
Exercise is known to have numerous neuroprotective and cognitive benefits, especially pertaining to memory and learning related processes. One potential link connecting them is exercise-mediated hippocampal neurogenesis, in which new neurons are generated and incorporated into hippocampal circuits. The present review synthesizes the extant literature detailing the relationship between exercise and hippocampal neurogenesis, and identifies a key molecule mediating this process, brain-derived neurotrophic factor (BDNF). As a member of the neurotrophin family, BDNF regulates many of the processes within neurogenesis, such as differentiation and survival. Although much more is known about the direct role that exercise and BDNF have on hippocampal neurogenesis in rodents, their corresponding cognitive benefits in humans will also be discussed. Specifically, what is known about exercise-mediated hippocampal neurogenesis will be presented as it relates to BDNF to highlight the critical role that it plays. Due to the inaccessibility of the human brain, much less is known about the role BDNF plays in human hippocampal neurogenesis. Limitations and future areas of research with regards to human neurogenesis will thus be discussed, including indirect measures of neurogenesis and single nucleotide polymorphisms within the BDNF gene.
Collapse
Affiliation(s)
- Patrick Z. Liu
- Department of Psychology, Northwestern University, Evanston, IL, United States
| | | |
Collapse
|
71
|
Mecca C, Giambanco I, Donato R, Arcuri C. Microglia and Aging: The Role of the TREM2-DAP12 and CX3CL1-CX3CR1 Axes. Int J Mol Sci 2018; 19:E318. [PMID: 29361745 PMCID: PMC5796261 DOI: 10.3390/ijms19010318] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 12/21/2022] Open
Abstract
Depending on the species, microglial cells represent 5-20% of glial cells in the adult brain. As the innate immune effector of the brain, microglia are involved in several functions: regulation of inflammation, synaptic connectivity, programmed cell death, wiring and circuitry formation, phagocytosis of cell debris, and synaptic pruning and sculpting of postnatal neural circuits. Moreover, microglia contribute to some neurodevelopmental disorders such as Nasu-Hakola disease (NHD), and to aged-associated neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and others. There is evidence that human and rodent microglia may become senescent. This event determines alterations in the microglia activation status, associated with a chronic inflammation phenotype and with the loss of neuroprotective functions that lead to a greater susceptibility to the neurodegenerative diseases of aging. In the central nervous system (CNS), Triggering Receptor Expressed on Myeloid Cells 2-DNAX activation protein 12 (TREM2-DAP12) is a signaling complex expressed exclusively in microglia. As a microglial surface receptor, TREM2 interacts with DAP12 to initiate signal transduction pathways that promote microglial cell activation, phagocytosis, and microglial cell survival. Defective TREM2-DAP12 functions play a central role in the pathogenesis of several diseases. The CX3CL1 (fractalkine)-CX3CR1 signaling represents the most important communication channel between neurons and microglia. The expression of CX3CL1 in neurons and of its receptor CX3CR1 in microglia determines a specific interaction, playing fundamental roles in the regulation of the maturation and function of these cells. Here, we review the role of the TREM2-DAP12 and CX3CL1-CX3CR1 axes in aged microglia and the involvement of these pathways in physiological CNS aging and in age-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Carmen Mecca
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Ileana Giambanco
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Rosario Donato
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
- Centro Universitario per la Ricerca sulla Genomica Funzionale, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Cataldo Arcuri
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| |
Collapse
|