51
|
miR-410 induces both epithelial-mesenchymal transition and radioresistance through activation of the PI3K/mTOR pathway in non-small cell lung cancer. Signal Transduct Target Ther 2020; 5:85. [PMID: 32528035 PMCID: PMC7290026 DOI: 10.1038/s41392-020-0182-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/02/2020] [Accepted: 01/13/2020] [Indexed: 02/05/2023] Open
Abstract
Radiotherapy remains one of the major treatments for non-small cell lung cancer (NSCLC) patients; whereas intrinsic or acquired radioresistance limits its efficacy. Nevertheless, most studies so far have only focused on acquired resistance. The exact mechanisms of intrinsic radioresistance in NSCLC are still unclear. A few studies have suggested that epithelial–mesenchymal transition (EMT) is associated with radioresistance in NSCLC. However, little is known about whether the abnormal expression of specific microRNAs induces both EMT and radioresistance. We previously found that miR-410 has multiple roles as an oncomiRNA in NSCLC. In this study, we revealed that miR-410 overexpression promoted EMT and radioresistance, accompanied by enhanced DNA damage repair both in vitro and in vivo. Conversely, knockdown of miR-410 showed the opposite effects. We further demonstrated that PTEN was a direct target of miR-410 by using bioinformatic tools and dual-luciferase reporter assays, and the miR-410-induced EMT and radioresistance were reversed by PI3K, Akt, and mTOR inhibitors or by restoring the expression of PTEN in NSCLC cells. In addition, we preliminarily found that the expression of miR-410 was positively correlated with EMT and negatively associated with the expression of PTEN in NSCLC specimens. In summary, these results demonstrated that miR-410 is an important regulator on enhancing both NSCLC EMT and radioresistance by targeting the PTEN/PI3K/mTOR axis. The findings suggest that miR-410-induced EMT might significantly contribute to the enhanced radioresistance. Therefore, miR-410 may serve as a potential biomarker or therapeutic target for NSCLC radiotherapy.
Collapse
|
52
|
Glanzner WG, Gutierrez K, Rissi VB, de Macedo MP, Lopez R, Currin L, Dicks N, Baldassarre H, Agellon LB, Bordignon V. Histone Lysine Demethylases KDM5B and KDM5C Modulate Genome Activation and Stability in Porcine Embryos. Front Cell Dev Biol 2020; 8:151. [PMID: 32211412 PMCID: PMC7076052 DOI: 10.3389/fcell.2020.00151] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/24/2020] [Indexed: 12/16/2022] Open
Abstract
The lysine demethylases KDM5B and KDM5C are highly, but transiently, expressed in porcine embryos around the genome activation stage. Attenuation of KDM5B and KDM5C mRNA hampered embryo development to the blastocyst stage in fertilized, parthenogenetically activated and nuclear transfer embryos. While KDM5B attenuation increased H3K4me2-3 levels on D3 embryos and H3K4me1-2-3 on D5 embryos, KDM5C attenuation increased H3K9me1 on D3 embryos, and H3K9me1 and H3K4me1 on D5 embryos. The relative mRNA abundance of EIF1AX and EIF2A on D3 embryos, and the proportion of D4 embryos presenting a fluorescent signal for uridine incorporation were severely reduced in both KDM5B- and KDM5C-attenuated compared to control embryos, which indicate a delay in the initiation of the embryo transcriptional activity. Moreover, KDM5B and KDM5C attenuation affected DNA damage response and increased DNA double-strand breaks (DSBs), and decreased development of UV-irradiated embryos. Findings from this study revealed that both KDM5B and KDM5C are important regulators of early development in porcine embryos as their attenuation altered H3K4 and H3K9 methylation patterns, perturbed embryo genome activation, and decreased DNA damage repair capacity.
Collapse
Affiliation(s)
- Werner Giehl Glanzner
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Karina Gutierrez
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Vitor Braga Rissi
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | | | - Rosalba Lopez
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Luke Currin
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Naomi Dicks
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Hernan Baldassarre
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Luis B Agellon
- School of Human Nutrition, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
53
|
The Critical Role of Hypoxic Microenvironment and Epigenetic Deregulation in Esophageal Cancer Radioresistance. Genes (Basel) 2019; 10:genes10110927. [PMID: 31739546 PMCID: PMC6896142 DOI: 10.3390/genes10110927] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/01/2019] [Accepted: 11/12/2019] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer (EC) is the seventh most common cancer worldwide and the sixth leading cause of death, according to Globocan 2018. Despite efforts made for therapeutic advances, EC remains highly lethal, portending a five-year overall survival of just 15-20%. Hence, the discovery of new molecular targets that might improve therapeutic efficacy is urgently needed. Due to high proliferative rates and also the limited oxygen and nutrient diffusion in tumors, the development of hypoxic regions and consequent activation of hypoxia-inducible factors (HIFs) are a common characteristic of solid tumors, including EC. Accordingly, HIF-1α, involved in cell cycle deregulation, apoptosis, angiogenesis induction and proliferation in cancer, constitutes a predictive marker of resistance to radiotherapy (RT). Deregulation of epigenetic mechanisms, including aberrant DNA methylation and histone modifications, have emerged as critical factors in cancer development and progression. Recently, interactions between epigenetic enzymes and HIF-1α transcription factors have been reported. Thus, further insight into hypoxia-induced epigenetic alterations in EC may allow the identification of novel therapeutic targets and predictive biomarkers, impacting on patient survival and quality of life.
Collapse
|
54
|
Zoeller EL, Pedro B, Konen J, Dwivedi B, Rupji M, Sundararaman N, Wang L, Horton JR, Zhong C, Barwick BG, Cheng X, Martinez ED, Torres MP, Kowalski J, Marcus AI, Vertino PM. Genetic heterogeneity within collective invasion packs drives leader and follower cell phenotypes. J Cell Sci 2019; 132:jcs231514. [PMID: 31515279 PMCID: PMC6803364 DOI: 10.1242/jcs.231514] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022] Open
Abstract
Collective invasion, the coordinated movement of cohesive packs of cells, has become recognized as a major mode of metastasis for solid tumors. These packs are phenotypically heterogeneous and include specialized cells that lead the invasive pack and others that follow behind. To better understand how these unique cell types cooperate to facilitate collective invasion, we analyzed transcriptomic sequence variation between leader and follower populations isolated from the H1299 non-small cell lung cancer cell line using an image-guided selection technique. We now identify 14 expressed mutations that are selectively enriched in leader or follower cells, suggesting a novel link between genomic and phenotypic heterogeneity within a collectively invading tumor cell population. Functional characterization of two phenotype-specific candidate mutations showed that ARP3 enhances collective invasion by promoting the leader cell phenotype and that wild-type KDM5B suppresses chain-like cooperative behavior. These results demonstrate an important role for distinct genetic variants in establishing leader and follower phenotypes and highlight the necessity of maintaining a capacity for phenotypic plasticity during collective cancer invasion.
Collapse
Affiliation(s)
- Elizabeth L Zoeller
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA 30322, USA
| | - Brian Pedro
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA 30322, USA
| | - Jessica Konen
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA 30322, USA
| | - Bhakti Dwivedi
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Manali Rupji
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Niveda Sundararaman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Lei Wang
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chaojie Zhong
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA
| | - Benjamin G Barwick
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elisabeth D Martinez
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Matthew P Torres
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jeanne Kowalski
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA
| | - Adam I Marcus
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA
| | - Paula M Vertino
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
55
|
Shannan B, Matschke J, Chauvistré H, Vogel F, Klein D, Meier F, Westphal D, Bruns J, Rauschenberg R, Utikal J, Forschner A, Berking C, Terheyden P, Dabrowski E, Gutzmer R, Rafei-Shamsabadi D, Meiss F, Heinzerling L, Zimmer L, Livingstone E, Váraljai R, Hoewner A, Horn S, Klode J, Stuschke M, Scheffler B, Marchetto A, Sannino G, Grünewald TGP, Schadendorf D, Jendrossek V, Roesch A. Sequence-dependent cross-resistance of combined radiotherapy plus BRAF V600E inhibition in melanoma. Eur J Cancer 2019; 109:137-153. [PMID: 30721788 DOI: 10.1016/j.ejca.2018.12.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/22/2018] [Accepted: 12/29/2018] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Treatment of patients with metastatic melanoma is hampered by drug-resistance and often requires combination with radiotherapy as last-resort option. However, also after radiotherapy, clinical relapses are common. METHODS & RESULTS Our preclinical models indicated a higher rate of tumour relapse when melanoma cells were first treated with BRAFV600E inhibition (BRAFi) followed by radiotherapy as compared to the reverse sequence. Accordingly, retrospective follow-up data from 65 stage-IV melanoma patients with irradiated melanoma brain metastases confirmed a shortened duration of local response of mitogen-activated protein kinase (MAPK)-inhibitor-pretreated compared with MAPK-inhibitor-naïve intracranial metastases. On the molecular level, we identified JARID1B/KDM5B as a cellular marker for cross-resistance between BRAFi and radiotherapy. JARID1Bhigh cells appeared more frequently under upfront BRAFi as compared with upfront radiation. JARID1B favours cell survival by transcriptional regulation of genes controlling cell cycle, DNA repair and cell death. CONCLUSION The level of cross-resistance between combined MAPK inhibition and radiotherapy is dependent on the treatment sequence. JARID1B may represent a novel therapy-overarching resistance marker.
Collapse
Affiliation(s)
- B Shannan
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK) University of Duisburg-Essen, Germany
| | - J Matschke
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Germany
| | - H Chauvistré
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK) University of Duisburg-Essen, Germany
| | - F Vogel
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK) University of Duisburg-Essen, Germany
| | - D Klein
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Germany
| | - F Meier
- Skin Cancer Center National Center for Tumor Diseases, Department of Dermatology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - D Westphal
- Skin Cancer Center National Center for Tumor Diseases, Department of Dermatology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - J Bruns
- Skin Cancer Center National Center for Tumor Diseases, Department of Dermatology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - R Rauschenberg
- Skin Cancer Center National Center for Tumor Diseases, Department of Dermatology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - J Utikal
- Skin Cancer Unit German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - A Forschner
- Department of Dermatology, Center for Dermatooncology, University Hospital Tübingen, Germany
| | - C Berking
- Department of Dermatology and Allergy, University Hospital of Munich, Munich, Germany
| | - P Terheyden
- Department of Dermatology, University of Luebeck, Luebeck, Germany
| | - E Dabrowski
- Department of Dermatology, Klinikum Ludwigshafen, Ludwigshafen, Germany
| | - R Gutzmer
- Skin Cancer Centre, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - D Rafei-Shamsabadi
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - F Meiss
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - L Heinzerling
- Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - L Zimmer
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK) University of Duisburg-Essen, Germany
| | - Elisabeth Livingstone
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK) University of Duisburg-Essen, Germany
| | - Renáta Váraljai
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK) University of Duisburg-Essen, Germany
| | - A Hoewner
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK) University of Duisburg-Essen, Germany
| | - S Horn
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK) University of Duisburg-Essen, Germany
| | - J Klode
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK) University of Duisburg-Essen, Germany
| | - M Stuschke
- Department of Radiotherapy, West German Cancer Center, University Hospital, University of Duisburg-Essen and the German Cancer Consortium (DKTK) University of Duisburg-Essen, Essen, Germany
| | - B Scheffler
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK) University of Duisburg-Essen, Germany
| | - A Marchetto
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Germany
| | - G Sannino
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Germany
| | - T G P Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - D Schadendorf
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK) University of Duisburg-Essen, Germany
| | - V Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Germany
| | - A Roesch
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK) University of Duisburg-Essen, Germany.
| |
Collapse
|