51
|
Hippen KL, Hefazi M, Larson JH, Blazar BR. Emerging translational strategies and challenges for enhancing regulatory T cell therapy for graft-versus-host disease. Front Immunol 2022; 13:926550. [PMID: 35967386 PMCID: PMC9366169 DOI: 10.3389/fimmu.2022.926550] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/27/2022] [Indexed: 02/03/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative therapy for many types of cancer. Genetic disparities between donor and host can result in immune-mediated attack of host tissues, known as graft versus host disease (GVHD), a major cause of morbidity and mortality following HSCT. Regulatory CD4+ T cells (Tregs) are a rare cell type crucial for immune system homeostasis, limiting the activation and differentiation of effector T cells (Teff) that are self-reactive or stimulated by foreign antigen exposure. Adoptive cell therapy (ACT) with Treg has demonstrated, first in murine models and now in patients, that prophylactic Treg infusion can also suppress GVHD. While clinical trials have demonstrated Treg reduce severe GVHD occurrence, several impediments remain, including Treg variability and practical need for individualized Treg production for each patient. Additionally, there are challenges in the use of in vitro expansion techniques and in achieving in vivo Treg persistence in context of both immune suppressive drugs and in lymphoreplete patients being treated for GVHD. This review will focus on 3 main translational approaches taken to improve the efficacy of tTreg ACT in GVHD prophylaxis and development of treatment options, following HSCT: genetic modification, manipulating TCR and cytokine signaling, and Treg production protocols. In vitro expansion for Treg ACT presents a multitude of approaches for gene modification to improve efficacy, including: antigen specificity, tissue targeting, deletion of negative regulators/exhaustion markers, resistance to immunosuppressive drugs common in GVHD treatment. Such expansion is particularly important in patients without significant lymphopenia that can drive Treg expansion, enabling a favorable Treg:Teff ratio in vivo. Several potential therapeutics have also been identified that enhance tTreg stability or persistence/expansion following ACT that target specific pathways, including: DNA/histone methylation status, TCR/co-stimulation signaling, and IL-2/STAT5 signaling. Finally, this review will discuss improvements in Treg production related to tissue source, Treg subsets, therapeutic approaches to increase Treg suppression and stability during tTreg expansion, and potential for storing large numbers of Treg from a single production run to be used as an off-the-shelf infusion product capable of treating multiple recipients.
Collapse
Affiliation(s)
- Keli L. Hippen
- University of Minnesota Cancer Center and the Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, Minneapolis, MN, United States
| | - Mehrdad Hefazi
- Division of Hematology, Mayo Clinic, Rochester, MN, United States
| | - Jemma H. Larson
- University of Minnesota Cancer Center and the Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, Minneapolis, MN, United States
| | - Bruce R. Blazar
- University of Minnesota Cancer Center and the Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, Minneapolis, MN, United States
| |
Collapse
|
52
|
Aristin Revilla S, Kranenburg O, Coffer PJ. Colorectal Cancer-Infiltrating Regulatory T Cells: Functional Heterogeneity, Metabolic Adaptation, and Therapeutic Targeting. Front Immunol 2022; 13:903564. [PMID: 35874729 PMCID: PMC9304750 DOI: 10.3389/fimmu.2022.903564] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease with one of the highest rates of incidence and mortality among cancers worldwide. Understanding the CRC tumor microenvironment (TME) is essential to improve diagnosis and treatment. Within the CRC TME, tumor-infiltrating lymphocytes (TILs) consist of a heterogeneous mixture of adaptive immune cells composed of mainly anti-tumor effector T cells (CD4+ and CD8+ subpopulations), and suppressive regulatory CD4+ T (Treg) cells. The balance between these two populations is critical in anti-tumor immunity. In general, while tumor antigen-specific T cell responses are observed, tumor clearance frequently does not occur. Treg cells are considered to play an important role in tumor immune escape by hampering effective anti-tumor immune responses. Therefore, CRC-tumors with increased numbers of Treg cells have been associated with promoting tumor development, immunotherapy failure, and a poorer prognosis. Enrichment of Treg cells in CRC can have multiple causes including their differentiation, recruitment, and preferential transcriptional and metabolic adaptation to the TME. Targeting tumor-associated Treg cell may be an effective addition to current immunotherapy approaches. Strategies for depleting Treg cells, such as low-dose cyclophosphamide treatment, or targeting one or more checkpoint receptors such as CTLA-4 with PD-1 with monoclonal antibodies, have been explored. These have resulted in activation of anti-tumor immune responses in CRC-patients. Overall, it seems likely that CRC-associated Treg cells play an important role in determining the success of such therapeutic approaches. Here, we review our understanding of the role of Treg cells in CRC, the possible mechanisms that support their homeostasis in the tumor microenvironment, and current approaches for manipulating Treg cells function in cancer.
Collapse
Affiliation(s)
- Sonia Aristin Revilla
- Center Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands
- Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Onno Kranenburg
- Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Paul J. Coffer
- Center Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands
- *Correspondence: Paul J. Coffer,
| |
Collapse
|
53
|
Pagliano O, Morrison RM, Chauvin JM, Banerjee H, Davar D, Ding Q, Tanegashima T, Gao W, Chakka SR, DeBlasio R, Lowin A, Kara K, Ka M, Zidi B, Amin R, Raphael I, Zhang S, Watkins SC, Sander C, Kirkwood JM, Bosenberg M, Anderson AC, Kuchroo VK, Kane LP, Korman AJ, Rajpal A, West SM, Han M, Bee C, Deng X, Schebye XM, Strop P, Zarour HM. Tim-3 mediates T cell trogocytosis to limit antitumor immunity. J Clin Invest 2022; 132:e152864. [PMID: 35316223 PMCID: PMC9057587 DOI: 10.1172/jci152864] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 03/16/2022] [Indexed: 11/23/2022] Open
Abstract
T cell immunoglobulin mucin domain-containing protein 3 (Tim-3) negatively regulates innate and adaptive immunity in cancer. To identify the mechanisms of Tim-3 in cancer immunity, we evaluated the effects of Tim-3 blockade in human and mouse melanoma. Here, we show that human programmed cell death 1-positive (PD-1+) Tim-3+CD8+ tumor-infiltrating lymphocytes (TILs) upregulate phosphatidylserine (PS), a receptor for Tim-3, and acquire cell surface myeloid markers from antigen-presenting cells (APCs) through transfer of membrane fragments called trogocytosis. Tim-3 blockade acted on Tim-3+ APCs in a PS-dependent fashion to disrupt the trogocytosis of activated tumor antigen-specific CD8+ T cells and PD-1+Tim-3+ CD8+ TILs isolated from patients with melanoma. Tim-3 and PD-1 blockades cooperated to disrupt trogocytosis of CD8+ TILs in 2 melanoma mouse models, decreasing tumor burden and prolonging survival. Deleting Tim-3 in dendritic cells but not in CD8+ T cells impeded the trogocytosis of CD8+ TILs in vivo. Trogocytosed CD8+ T cells presented tumor peptide-major histocompatibility complexes and became the target of fratricide T cell killing, which was reversed by Tim-3 blockade. Our findings have uncovered a mechanism Tim-3 uses to limit antitumor immunity.
Collapse
Affiliation(s)
| | - Robert M. Morrison
- Department of Medicine and UPMC Hillman Cancer Center
- Department of Computational and Systems Biology, School of Medicine
| | | | | | - Diwakar Davar
- Department of Medicine and UPMC Hillman Cancer Center
| | - Quanquan Ding
- Department of Medicine and UPMC Hillman Cancer Center
| | | | - Wentao Gao
- Department of Medicine and UPMC Hillman Cancer Center
| | | | | | - Ava Lowin
- Department of Medicine and UPMC Hillman Cancer Center
| | - Kevin Kara
- Department of Medicine and UPMC Hillman Cancer Center
| | - Mignane Ka
- Department of Medicine and UPMC Hillman Cancer Center
| | - Bochra Zidi
- Department of Medicine and UPMC Hillman Cancer Center
| | - Rada Amin
- Department of Medicine and UPMC Hillman Cancer Center
| | - Itay Raphael
- Department of Medicine and UPMC Hillman Cancer Center
| | - Shuowen Zhang
- Department of Medicine and UPMC Hillman Cancer Center
| | - Simon C. Watkins
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cindy Sander
- Department of Medicine and UPMC Hillman Cancer Center
| | | | - Marcus Bosenberg
- Departments of Dermatology, Pathology, and Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ana C. Anderson
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Vijay K. Kuchroo
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | | | - Alan J. Korman
- Biologics Discovery California, Bristol Myers Squibb, Redwood City, California, USA
| | - Arvind Rajpal
- Biologics Discovery California, Bristol Myers Squibb, Redwood City, California, USA
| | - Sean M. West
- Biologics Discovery California, Bristol Myers Squibb, Redwood City, California, USA
| | - Minhua Han
- Biologics Discovery California, Bristol Myers Squibb, Redwood City, California, USA
| | - Christine Bee
- Biologics Discovery California, Bristol Myers Squibb, Redwood City, California, USA
| | - Xiaodi Deng
- Biologics Discovery California, Bristol Myers Squibb, Redwood City, California, USA
| | - Xiao Min Schebye
- Biologics Discovery California, Bristol Myers Squibb, Redwood City, California, USA
| | - Pavel Strop
- Biologics Discovery California, Bristol Myers Squibb, Redwood City, California, USA
| | - Hassane M. Zarour
- Department of Medicine and UPMC Hillman Cancer Center
- Department of Immunology, and
| |
Collapse
|
54
|
Costa-Madeira JC, Trindade GB, Almeida PHP, Silva JS, Carregaro V. T Lymphocyte Exhaustion During Human and Experimental Visceral Leishmaniasis. Front Immunol 2022; 13:835711. [PMID: 35585983 PMCID: PMC9108272 DOI: 10.3389/fimmu.2022.835711] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/07/2022] [Indexed: 11/18/2022] Open
Abstract
A key point of immunity against protozoan Leishmania parasites is the development of an optimal T cell response, which includes a low apoptotic rate, high proliferative activity and polyfunctionality. During acute infection, antigen-specific T cells recognize the pathogen resulting in pathogen control but not elimination, promoting the development and the maintenance of a population of circulating effector cells that mount rapid response quickly after re-exposure to the parasite. However, in the case of visceral disease, the functionality of specific T cells is lost during chronic infection, resulting in inferior effector functions, poor response to specific restimulation, and suboptimal homeostatic proliferation, a term referred to as T cell exhaustion. Multiple factors, including parasite load, infection duration and host immunity, affect T lymphocyte exhaustion. These factors contribute to antigen persistence by promoting inhibitory receptor expression and sustained production of soluble mediators, influencing suppressive cell function and the release of endogenous molecules into chronically inflamed tissue. Together, these signals encourage several changes, reprogramming cells into a quiescent state, which reflects disease progression to more severe forms, and development of acquired resistance to conventional drugs to treat the disease. These points are discussed in this review.
Collapse
Affiliation(s)
- Juliana C. Costa-Madeira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University from São Paulo, Ribeirão Preto, Brazil
| | - Gabrielly B. Trindade
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University from São Paulo, Ribeirão Preto, Brazil
| | - Paulo H. P. Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University from São Paulo, Ribeirão Preto, Brazil
| | - João S. Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University from São Paulo, Ribeirão Preto, Brazil
- Fiocruz-Bi-Institutional Translational Medicine Project, Ribeirão Preto, Brazil
| | - Vanessa Carregaro
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University from São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
55
|
Kuske M, Haist M, Jung T, Grabbe S, Bros M. Immunomodulatory Properties of Immune Checkpoint Inhibitors-More than Boosting T-Cell Responses? Cancers (Basel) 2022; 14:1710. [PMID: 35406483 PMCID: PMC8996886 DOI: 10.3390/cancers14071710] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022] Open
Abstract
The approval of immune checkpoint inhibitors (ICI) that serve to enhance effector T-cell anti-tumor responses has strongly improved success rates in the treatment of metastatic melanoma and other tumor types. The currently approved ICI constitute monoclonal antibodies blocking cytotoxic T-lymphocyte-associated protein (CTLA)-4 and anti-programmed cell death (PD)-1. By this, the T-cell-inhibitory CTLA-4/CD80/86 and PD-1/PD-1L/2L signaling axes are inhibited. This leads to sustained effector T-cell activity and circumvents the immune evasion of tumor cells, which frequently upregulate PD-L1 expression and modulate immune checkpoint molecule expression on leukocytes. As a result, profound clinical responses are observed in 40-60% of metastatic melanoma patients. Despite the pivotal role of T effector cells for triggering anti-tumor immunity, mounting evidence indicates that ICI efficacy may also be attributable to other cell types than T effector cells. In particular, emerging research has shown that ICI also impacts innate immune cells, such as myeloid cells, natural killer cells and innate lymphoid cells, which may amplify tumoricidal functions beyond triggering T effector cells, and thus improves clinical efficacy. Effects of ICI on non-T cells may additionally explain, in part, the character and extent of adverse effects associated with treatment. Deeper knowledge of these effects is required to further develop ICI treatment in terms of responsiveness of patients to treatment, to overcome resistance to ICI and to alleviate adverse effects. In this review we give an overview into the currently known immunomodulatory effects of ICI treatment in immune cell types other than the T cell compartment.
Collapse
Affiliation(s)
| | | | | | | | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.K.); (M.H.); (T.J.); (S.G.)
| |
Collapse
|
56
|
Rafael TS, Rotman J, Brouwer OR, van der Poel HG, Mom CH, Kenter GG, de Gruijl TD, Jordanova ES. Immunotherapeutic Approaches for the Treatment of HPV-Associated (Pre-)Cancer of the Cervix, Vulva and Penis. J Clin Med 2022; 11:1101. [PMID: 35207374 PMCID: PMC8876514 DOI: 10.3390/jcm11041101] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023] Open
Abstract
Human papillomavirus (HPV) infection drives tumorigenesis in almost all cervical cancers and a fraction of vulvar and penile cancers. Due to increasing incidence and low vaccination rates, many will still have to face HPV-related morbidity and mortality in the upcoming years. Current treatment options (i.e., surgery and/or chemoradiation) for urogenital (pre-)malignancies can have profound psychosocial and psychosexual effects on patients. Moreover, in the setting of advanced disease, responses to current therapies remain poor and nondurable, highlighting the unmet need for novel therapies that prevent recurrent disease and improve clinical outcome. Immunotherapy can be a useful addition to the current therapeutic strategies in various settings of disease, offering relatively fewer adverse effects and potential improvement in survival. This review discusses immune evasion mechanisms accompanying HPV infection and HPV-related tumorigenesis and summarizes current immunotherapeutic approaches for the treatment of HPV-related (pre-)malignant lesions of the uterine cervix, vulva, and penis.
Collapse
Affiliation(s)
- Tynisha S. Rafael
- Department of Urology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (T.S.R.); (O.R.B.); (H.G.v.d.P.)
| | - Jossie Rotman
- Department of Obstetrics and Gynecology, Center for Gynecological Oncology Amsterdam (CGOA), Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (J.R.); (C.H.M.); (G.G.K.)
| | - Oscar R. Brouwer
- Department of Urology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (T.S.R.); (O.R.B.); (H.G.v.d.P.)
| | - Henk G. van der Poel
- Department of Urology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (T.S.R.); (O.R.B.); (H.G.v.d.P.)
| | - Constantijne H. Mom
- Department of Obstetrics and Gynecology, Center for Gynecological Oncology Amsterdam (CGOA), Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (J.R.); (C.H.M.); (G.G.K.)
| | - Gemma G. Kenter
- Department of Obstetrics and Gynecology, Center for Gynecological Oncology Amsterdam (CGOA), Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (J.R.); (C.H.M.); (G.G.K.)
| | - Tanja D. de Gruijl
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
| | - Ekaterina S. Jordanova
- Department of Urology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (T.S.R.); (O.R.B.); (H.G.v.d.P.)
- Department of Obstetrics and Gynecology, Center for Gynecological Oncology Amsterdam (CGOA), Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (J.R.); (C.H.M.); (G.G.K.)
| |
Collapse
|
57
|
Wang S, Ding B, Cui M, Yan W, Xia Q, Meng D, Shen S, Xie S, Jin H, Zhang X. Fanconi Anemia Pathway Genes Advance Cervical Cancer via Immune Regulation and Cell Adhesion. Front Cell Dev Biol 2021; 9:734794. [PMID: 34869316 PMCID: PMC8634638 DOI: 10.3389/fcell.2021.734794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/22/2021] [Indexed: 12/19/2022] Open
Abstract
Fanconi anemia (FA) pathway is a typical and multienzyme-regulated DNA damage repairer that influences the occurrence and development of disease including cancers. Few comprehensive analyses were reported about the role of FA-related genes (FARGs) and their prognostic values in cancers. In this study, a comprehensive pan-cancer analysis on 79 FARGs was performed. According to the correlation analyses between HPV integration sites and FARGs, we found that FARGs played specific and critical roles in HPV-related cancers, especially in cervical cancer (CC). Based on this, a FARGs-associated prognostic risk score (FPS) model was constructed, and subsequently a nomogram model containing the FPS was developed with a good accuracy for CC overall survival (OS) and recurrence-free survival (RFS) outcome prediction. We also used the similar expression pattern of FARGs by consensus clustering analysis to separate the patients into three subgroups that exhibited significant differential OS but not RFS. Moreover, differential expressed genes (DEGs) between the two risk groups or three clusters were identified and immune pathways as well as cell adhesion processes were determined by functional enrichment analysis. Results indicated that FARGs might promote occurrence and development of CC by regulating the immune cells' infiltration and cell adhesion. In addition, through the machine learning models containing decision tree, random forest, naïve bayes, and support vector machine models, screening of important variables on CC prognosis, we finally determined that ZBTB32 and CENPS were the main elements affecting CC OS, while PALB2 and BRCA2 were for RFS. Kaplan-Meier analysis revealed that bivariate prediction of CC outcome was reliable. Our study systematically analyzed the prognostic prediction values of FARGs and demonstrated their potential mechanism in CC aggressiveness. Results provided perspective in FA pathway-associated modification and theoretical basis for CC clinical treatments.
Collapse
Affiliation(s)
- Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Bo Ding
- Department of Gynecology and Obstetrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Mengjing Cui
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Wenjing Yan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Qianqian Xia
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Dan Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Siyuan Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Shuqian Xie
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Hua Jin
- Clinical Laboratory, Affiliated Tumor Hospital of Nantong University (Nantong Tumor Hospital), Nantong, China
| | - Xing Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.,Department of Gynecology and Obstetrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.,Clinical Laboratory, Affiliated Tumor Hospital of Nantong University (Nantong Tumor Hospital), Nantong, China
| |
Collapse
|