51
|
Elsadek NE, Hondo E, Shimizu T, Takata H, Abu Lila AS, Emam SE, Ando H, Ishima Y, Ishida T. Impact of Pre-Existing or Induced Anti-PEG IgM on the Pharmacokinetics of Peginterferon Alfa-2a (Pegasys) in Mice. Mol Pharm 2020; 17:2964-2970. [DOI: 10.1021/acs.molpharmaceut.0c00366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Nehal E. Elsadek
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505 Japan
| | - Eri Hondo
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505 Japan
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505 Japan
| | - Haruka Takata
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505 Japan
| | - Amr S. Abu Lila
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519 Egypt
- Department of Pharmaceutics, College of Pharmacy, Hail University, Hail 81442 Saudi Arabia
| | - Sherif E. Emam
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505 Japan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519 Egypt
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505 Japan
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505 Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505 Japan
| |
Collapse
|
52
|
Abstract
PEGylation is a common modulator of pharmacokinetics for therapeutic agents in vivo. In this issue of Cell Chemical Biology, Moreno et al. (2019) show anti-PEG antibodies may directly inhibit the activity of a PEGylated aptamer, RB006, both in vitro and in vivo, and the issues surrounding anti-PEG antibodies are discussed.
Collapse
Affiliation(s)
| | | | - Matthew Levy
- Vitrisa Therapeutics, Inc., Durham, NC 27701, USA.
| |
Collapse
|
53
|
Hoang Thi TT, Pilkington EH, Nguyen DH, Lee JS, Park KD, Truong NP. The Importance of Poly(ethylene glycol) Alternatives for Overcoming PEG Immunogenicity in Drug Delivery and Bioconjugation. Polymers (Basel) 2020; 12:E298. [PMID: 32024289 PMCID: PMC7077443 DOI: 10.3390/polym12020298] [Citation(s) in RCA: 386] [Impact Index Per Article: 77.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
Poly(ethylene glycol) (PEG) is widely used as a gold standard in bioconjugation and nanomedicine to prolong blood circulation time and improve drug efficacy. The conjugation of PEG to proteins, peptides, oligonucleotides (DNA, small interfering RNA (siRNA), microRNA (miRNA)) and nanoparticles is a well-established technique known as PEGylation, with PEGylated products have been using in clinics for the last few decades. However, it is increasingly recognized that treating patients with PEGylated drugs can lead to the formation of antibodies that specifically recognize and bind to PEG (i.e., anti-PEG antibodies). Anti-PEG antibodies are also found in patients who have never been treated with PEGylated drugs but have consumed products containing PEG. Consequently, treating patients who have acquired anti-PEG antibodies with PEGylated drugs results in accelerated blood clearance, low drug efficacy, hypersensitivity, and, in some cases, life-threatening side effects. In this succinct review, we collate recent literature to draw the attention of polymer chemists to the issue of PEG immunogenicity in drug delivery and bioconjugation, thereby highlighting the importance of developing alternative polymers to replace PEG. Several promising yet imperfect alternatives to PEG are also discussed. To achieve asatisfactory alternative, further joint efforts of polymer chemists and scientists in related fields are urgently needed to design, synthesize and evaluate new alternatives to PEG.
Collapse
Affiliation(s)
- Thai Thanh Hoang Thi
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam;
| | - Emily H. Pilkington
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia;
| | - Dai Hai Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam;
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 01 TL29 District 12, Ho Chi Minh City 70000, Vietnam
| | - Jung Seok Lee
- Biomedical Engineering, Malone Engineering Center 402A, Yale University, 55 Prospect St. New Haven, CT 06511, USA;
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea;
| | - Nghia P. Truong
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia;
| |
Collapse
|
54
|
Hong L, Wang Z, Wei X, Shi J, Li C. Antibodies against polyethylene glycol in human blood: A literature review. J Pharmacol Toxicol Methods 2020; 102:106678. [PMID: 31981619 DOI: 10.1016/j.vascn.2020.106678] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/06/2020] [Accepted: 01/21/2020] [Indexed: 02/01/2023]
Abstract
Polyethylene glycol (PEG) conjugation, i.e. PEGylation, is a successful strategy to improve the pharmacokinetics and pharmacodynamics of biopharmaceuticals. In the past few decades, PEGylation technology has developed tremendously, and >15 PEGylated therapeutics have been brought to market, with more in development. However, the widely accepted assumption that PEG would have no antigenicity or immunogenicity is increasingly challenged with popularization of PEGylation technique. Although PEGylation indeed reduces the immunogenicities of the modified molecules, and even appears to completely eliminate their immunogenicities, yet emerging clinical evidence of anti-PEG antibodies (including both pre-existing and PEGylated therapeutics-treatment induced anti-PEG antibodies) have been attracted more and more attention. Anti-PEG antibodies were detected in not only patients treated with PEGylated therapeutics but also PEGylated drugs treatment-naïve individuals with a prevalence from <1% to 72%. In patients, the existing anti-PEG antibodies may attenuate therapeutic efficacy of PEGylated drugs and increase adverse effects. Although there is no golden standard avenue, several types of methods, including passive hemagglutination, Western Blot, enzyme linked immunosorbent assay, flow cytometry, Meso Scale Discovery technology, Acoustic Membrane Microparticle assay, and surface plasmon resonace technique, were established and used to screen, confirm and quantitatively detect anti-PEG antibodies. Herein, we focused on reviewing the prevalence of anti-PEG antibodies in healthy and PEGylated therapeutics-treated patients, and highlighting the detection methods for pre-screening and quantitative detection of anti-PEG antibodies.
Collapse
Affiliation(s)
- Lu Hong
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 611137, China
| | - Zongkui Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China.
| | - Xin Wei
- Chengdu Kanghua Biological Products Co., Ltd., Chengdu 610000, China.
| | - Jianyou Shi
- Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611137, China.
| | - Changqing Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China.
| |
Collapse
|
55
|
Chang TC, Chen BM, Lin WW, Yu PH, Chiu YW, Chen YT, Wu JY, Cheng TL, Hwang DY, Roffler S. Both IgM and IgG Antibodies Against Polyethylene Glycol Can Alter the Biological Activity of Methoxy Polyethylene Glycol-Epoetin Beta in Mice. Pharmaceutics 2019; 12:E15. [PMID: 31877813 PMCID: PMC7022322 DOI: 10.3390/pharmaceutics12010015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023] Open
Abstract
Pre-existing antibodies that bind polyethylene glycol are present in about 40% of healthy individuals. It is currently unknown if pre-existing anti-polyethylene glycol (PEG) antibodies can alter the bioactivity of pegylated drugs with a single long PEG chain, which represents the majority of newly developed pegylated medicines. Methoxy polyethylene glycol-epoetin beta (PEG-EPO) contains a single 30 kDa PEG chain and is used to treat patients suffering from anemia. We find that the pre-existing human anti-PEG IgM and IgG antibodies from normal donors can bind to PEG-EPO. The prevalence and concentrations of anti-PEG IgM and IgG antibodies were also higher in patients that responded poorly to PEG-EPO. Monoclonal anti-PEG IgM and IgG antibodies at concentrations found in normal donors blocked the biological activity of PEG-EPO to stimulate the production of new erythrocytes in mice and accelerated the clearance of 125I-PEG-EPO, resulting in PEG-EPO accumulation primarily in the liver and spleen. Accelerated clearance by the anti-PEG IgG antibody was mediated by the Fc portion of the antibody. Importantly, infusing higher doses of PEG-EPO could compensate for the inhibitory effects of anti-PEG antibodies, suggesting that pre-existing anti-PEG antibodies can be "dosed through." Our study indicates that the bioactivity and therapeutic activity of PEG-EPO may be reduced in patients with elevated levels of pre-existing anti-PEG antibodies. New pegylated medicines with a single long PEG chain may also be affected in patients with high levels of anti-PEG antibodies.
Collapse
Affiliation(s)
- Tien-Ching Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; (T.-C.C.)
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei 11529, Taiwan
| | - Bing-Mae Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; (T.-C.C.)
| | - Wen-Wei Lin
- Department of Laboratory Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Pei-Hua Yu
- Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Yi-Wen Chiu
- Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Yuan-Tsong Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; (T.-C.C.)
| | - Jer-Yuarn Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; (T.-C.C.)
- School of Chinese Medicine, China Medical University, Taichung 40447, Taiwan
| | - Tian-Lu Cheng
- Department of Biomedical Science and Environmental Biology, Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Daw-Yang Hwang
- Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 70456, Taiwan
| | - Steve Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; (T.-C.C.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
56
|
Liu Y, Khan AR, Du X, Zhai Y, Tan H, Zhai G. Progress in the polymer-paclitaxel conjugate. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
57
|
Aptamers: A Review of Their Chemical Properties and Modifications for Therapeutic Application. Molecules 2019; 24:molecules24234229. [PMID: 31766318 PMCID: PMC6930564 DOI: 10.3390/molecules24234229] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 12/29/2022] Open
Abstract
Aptamers are short, single-stranded oligonucleotides that bind to specific target molecules. The shape-forming feature of single-stranded oligonucleotides provides high affinity and excellent specificity toward targets. Hence, aptamers can be used as analogs of antibodies. In December 2004, the US Food and Drug Administration approved the first aptamer-based therapeutic, pegaptanib (Macugen), targeting vascular endothelial growth factor, for the treatment of age-related macular degeneration. Since then, however, no aptamer medication for public health has appeared. During these relatively silent years, many trials and improvements of aptamer therapeutics have been performed, opening multiple novel directions for the therapeutic application of aptamers. This review summarizes the basic characteristics of aptamers and the chemical modifications available for aptamer therapeutics.
Collapse
|
58
|
Alaneed R, Hauenschild T, Mäder K, Pietzsch M, Kressler J. Conjugation of Amine-Functionalized Polyesters With Dimethylcasein Using Microbial Transglutaminase. J Pharm Sci 2019; 109:981-991. [PMID: 31682828 DOI: 10.1016/j.xphs.2019.10.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 10/25/2022]
Abstract
Protein-polymer conjugates have been used as therapeutics because they exhibit frequently higher stability, prolonged in vivo half-life, and lower immunogenicity compared with native proteins. The first part of this report describes the enzymatic synthesis of poly(glycerol adipate) (PGA(M)) by transesterification between glycerol and dimethyl adipate using lipase B from Candida antarctica. PGA(M) is a hydrophilic, biodegradable but water insoluble polyester. By acylation, PGA(M) is modified with 6-(Fmoc-amino)hexanoic acid and with hydrophilic poly(ethylene glycol) side chains (mPEG12) rendering the polymer highly water soluble. This is followed by the removal of protecting groups, fluorenylmethyloxycarbonyl, to generate polyester with primary amine groups, namely PGA(M)-g-NH2-g-mPEG12. 1H NMR spectroscopy, FTIR spectroscopy, and gel permeation chromatography have been used to determine the chemical structure and polydispersity index of PGA(M) before and after modification. In the second part, we discuss the microbial transglutaminase-mediated conjugation of the model protein dimethylcasein with PGA(M)-g-NH2-g-mPEG12 under mild reaction conditions. SDS-PAGE proves the protein-polyester conjugation.
Collapse
Affiliation(s)
- Razan Alaneed
- Department of Physical Chemistry, Institute of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle/Saale, Germany; Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120 Halle/Saale, Germany
| | - Till Hauenschild
- Department of Physical Chemistry, Institute of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle/Saale, Germany
| | - Karsten Mäder
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120 Halle/Saale, Germany
| | - Markus Pietzsch
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120 Halle/Saale, Germany.
| | - Jörg Kressler
- Department of Physical Chemistry, Institute of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle/Saale, Germany.
| |
Collapse
|
59
|
Ponce AT, Hong KL. A Mini-Review: Clinical Development and Potential of Aptamers for Thrombotic Events Treatment and Monitoring. Biomedicines 2019; 7:biomedicines7030055. [PMID: 31357413 PMCID: PMC6784064 DOI: 10.3390/biomedicines7030055] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 01/01/2023] Open
Abstract
The unique opportunity for aptamer uses in thrombotic events has sparked a considerable amount of research in the area. The short half-lives of unmodified aptamers in vivo remain one of the major challenges in therapeutic aptamers. Much of the incremental successful therapeutic aptamer stories were due to modifications in the aptamer bases. This mini-review briefly summarizes the successes and challenges in the clinical development of aptamers for thrombotic events, and highlights some of the most recent developments in using aptamers for anticoagulation monitoring.
Collapse
Affiliation(s)
- Alex T Ponce
- Department of Pharmaceutical Sciences, Nesbitt School of Pharmacy, Wilkes University, 84 W. South Street, Wilkes-Barre, PA 18766, USA
| | - Ka Lok Hong
- Department of Pharmaceutical Sciences, Nesbitt School of Pharmacy, Wilkes University, 84 W. South Street, Wilkes-Barre, PA 18766, USA.
| |
Collapse
|
60
|
Mohammadpour R, Dobrovolskaia MA, Cheney DL, Greish KF, Ghandehari H. Subchronic and chronic toxicity evaluation of inorganic nanoparticles for delivery applications. Adv Drug Deliv Rev 2019; 144:112-132. [PMID: 31295521 PMCID: PMC6745262 DOI: 10.1016/j.addr.2019.07.006] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/31/2022]
Abstract
Inorganic nanoparticles provide the opportunity to localize bioactive agents to the target sites and protect them from degradation. In many cases, acute toxicities of inorganic nanoparticles used for delivery applications have been investigated. However, little information is available regarding the long-term toxicity of such materials. This review focuses on the importance of subchronic and chronic toxicity assessment of inorganic nanoparticles investigated for delivery applications. We have attempted to provide a comprehensive review of the available literature for chronic toxicity assessment of inorganic nanoparticles. Where possible correlations are made between particle composition, physiochemical properties, duration, frequency and route of administration, as well as the sex of animals, with tissue and blood toxicity, immunotoxicity and genotoxicity. A critical gap analysis is provided and important factors that need to be considered for long-term toxicology of inorganic nanoparticles are discussed.
Collapse
Affiliation(s)
- Raziye Mohammadpour
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah, USA
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| | - Darwin L Cheney
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah, USA
| | - Khaled F Greish
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain; Nanomedicine Research Unit, Princess Al-Jawhara Centre for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama 329, Bahrain
| | - Hamidreza Ghandehari
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, USA; Department of Bioengineering, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|