51
|
Kiran BR, Kopperi H, Venkata Mohan S. Micro/nano-plastics occurrence, identification, risk analysis and mitigation: challenges and perspectives. RE/VIEWS IN ENVIRONMENTAL SCIENCE AND BIO/TECHNOLOGY 2022; 21:169-203. [PMID: 35103051 PMCID: PMC8792138 DOI: 10.1007/s11157-021-09609-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/29/2021] [Indexed: 04/14/2023]
Abstract
Micro/nanoplastics (MP/NPs) are emerging global pollutants that garnered enormous attention due to their potential threat to the ecosystem in virtue of their persistence and accumulation. Notably, United Nations Environment Programme (UNEP) yearbook in 2014 proposed MPs as one among ten emergent issues that the Earth is facing today. MP/NPs can be found in most regularly used products (primary microplastics) or formed by the fragmentation of bigger plastics (secondary microplastics) and are inextricably discharged into the environment by terrestrial and land-based sources, particularly runoff. They are non-degradable, biologically incompatible, and their presence in the air, soil, water, and food can induce ecotoxicological issues and also a menace to the environment. Due to micro size and diverse chemical nature, MP/NPs easily infiltrate wastewater treatment processes. This communication reviews the current understanding of MP/NPs occurrence, mobility, aggregation behavior, and degradation/assimilation in terrestrial, aquatic (fresh & marine), atmospheric depositions, wetlands and trophic food chain. This communication provide current perspectives and understanding on MP/NPs concerning (1) Source, occurrence, distribution, and properties (2) Impact on the ecosystem and its services, (3) Techniques in detection and identification and (4) Strategies to manage and mitigation.
Collapse
Affiliation(s)
- Boda Ravi Kiran
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007 India
| | - Harishankar Kopperi
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - S. Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
52
|
Lee WS, Kim H, Sim Y, Kang T, Jeong J. Fluorescent Polypropylene Nanoplastics for Studying Uptake, Biodistribution, and Excretion in Zebrafish Embryos. ACS OMEGA 2022; 7:2467-2473. [PMID: 35071934 PMCID: PMC8771955 DOI: 10.1021/acsomega.1c06779] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/23/2021] [Indexed: 05/17/2023]
Abstract
Nanoplastics (NPs) are emerging environmental pollutants and are a significant concern for human health. The small size of NPs allows them to accumulate within and adversely affect various tissues by penetrating the gastrointestinal barrier. However, most toxicity studies on NPs have been based on commercial polystyrene nanoparticles. Among plastics, polypropylene (PP) is one of the most widely used, and it is continuously micronized in the environment. Although PP has high potential for forming NPs by weathering, little is known about the biological effects of polypropylene nanoplastics (PPNPs) due to a lack of particle models. Here, we present a simple and high-yield method for PPNP production by nonsolvent-induced phase separation. The synthesized PPNPs were spherical in shape, with an average diameter of 562.15 ± 118.47 nm and a high yield of over 84%. These PPNPs were fluorescently labeled by the combined swelling-diffusion method to study their biodistribution after exposure to developing zebrafish embryos (ZFEs). We found that the fluorescent PPNPs were internalized by ingestion, distributed in the intestine of developing ZFEs, and eventually excreted. This study will aid evaluations of the potential risks of environmentally relevant plastics at the nanoscale.
Collapse
Affiliation(s)
- Wang Sik Lee
- Environmental
Disease Research Center, Korea Research
Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyunjung Kim
- Environmental
Disease Research Center, Korea Research
Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yugyeong Sim
- Environmental
Disease Research Center, Korea Research
Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department
of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic
of Korea
| | - Taejoon Kang
- Bionanotechnology
Research Center, Korea Research Institute
of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic
of Korea
| | - Jinyoung Jeong
- Environmental
Disease Research Center, Korea Research
Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department
of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic
of Korea
| |
Collapse
|
53
|
Saha D, Kumar S, Ray D, Mata JP, Whitten AE, Aswal VK. Tuning of silica nanoparticle-lysozyme protein complexes in the presence of the SDS surfactant. SOFT MATTER 2022; 18:434-445. [PMID: 34908081 DOI: 10.1039/d1sm01340h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The structures of the complexes of anionic silica nanoparticle (size ∼ 16 nm)-lysozyme (cationic) protein, tuned by the addition of the anionic surfactant sodium dodecyl sulfate (SDS), have been investigated by dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The unique advantage of contrast variation SANS has been used to probe the role of individual components in binary and ternary systems. The cationic lysozyme protein (at pH ∼ 7) adsorbs on the anionic silica nanoparticles and forms mass fractal aggregates due to the strong attractive interaction, whereas similarly charged SDS does not interact physically with silica nanoparticles. The presence of SDS, however, remarkably affects the nanoparticle-protein interactions via binding with the oppositely charged segments of lysozyme. In general, the SDS-lysozyme complexes possess a variety of structures (e.g., insoluble complexes of Ly(DS)8, crystalline structure, or micelle-like structure) depending on the surfactant-to-protein molar ratio (S/P). In the ternary system (HS40-lysozyme-SDS), lysozyme preferentially binds with SDS, instead of directly to nanoparticles. At low S/Ps (0 ≤ S/P ≤ 10), the SDS concentration is not enough to fully neutralize the charge of lysozyme, leading to the formation of cationic SDS-lysozyme complex-mediated nanoparticle aggregation. The morphology of the nanoparticle-(lysozyme-SDS) complexes is also found to be mass fractal kind where the fractal dimension increases with increasing SDS concentration. At S/P > 10, there is sufficient SDS to fully neutralize the lysozyme in the absence of competing charges from the particle but it is at S/P = 50 before all lysozyme desorbs from the particle and binds completely to the overwhelming amount of SDS, creating an oppositely charged lysozyme-SDS complex, which is repelled from the particle.
Collapse
Affiliation(s)
- Debasish Saha
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | - Sugam Kumar
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | - Debes Ray
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | - Jitendra P Mata
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization, Lucas Heights, NSW 2234, Australia
| | - Andrew E Whitten
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization, Lucas Heights, NSW 2234, Australia
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
- Homi Bhabha National Institute, Mumbai 400 094, India
| |
Collapse
|
54
|
Kihara S, Chan A, In E, Taleb N, Tollemache C, Yick S, McGillivray DJ. Detecting polystyrene nanoplastics using filter paper-based surface-enhanced Raman spectroscopy. RSC Adv 2022; 12:20519-20522. [PMID: 35919172 PMCID: PMC9286027 DOI: 10.1039/d2ra03395j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022] Open
Abstract
This work presents a novel filter paper-based method using surface-enhanced Raman spectroscopy (SERS), for detecting polystyrene nanoplastics (PSNPs).
Collapse
Affiliation(s)
- Shinji Kihara
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Andrew Chan
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Eugene In
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Nargiss Taleb
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Cherie Tollemache
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Samuel Yick
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Duncan J. McGillivray
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
55
|
Gonçalves JM, Sousa VS, Teixeira MR, Bebianno MJ. Chronic toxicity of polystyrene nanoparticles in the marine mussel Mytilus galloprovincialis. CHEMOSPHERE 2022; 287:132356. [PMID: 34600009 DOI: 10.1016/j.chemosphere.2021.132356] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 05/24/2023]
Abstract
Nanoplastics (NP) (1-100 nm) are a growing global concern, and their adverse effects in marine organisms are still scarce. This study evaluated the effects of polystyrene nanoplastics (10 μg/L; 50 nm nPS) in the marine mussel Mytilus galloprovincialis after a 21 - day exposure. The hydrodynamic diameter and zeta potential of nPS were analysed, over time, in seawater and ultrapure water. A multibiomarker approach (genotoxicity (the comet assay) was assessed in mussel haemocytes, and the antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx)), biotransformation enzyme (glutathione - S - transferase (GST)), and oxidative damage (LPO)) was assessed in gills and digestive glands to evaluate the toxicity of nPS towards mussels. In seawater, aggregation of nPS is favoured and consequently the hydrodynamic diameter increases. Genotoxicity was highly noticeable in mussels exposed to nPS, presenting a higher % tail DNA when compared to controls. Antioxidant enzymes are overwhelmed after nPS exposure, leading to oxidative damage in both tissues. Results showed that mussel tissues are incapable of dealing with the effects that this emerging stressor pursues towards the organism. The Integrated Biomarker Response index, used to summarise the biomarkers analysed into one index, shows that nPS toxicity towards mussels are both tissue and time dependent, being that gills are the tissue most compromised.
Collapse
Affiliation(s)
- Joanna M Gonçalves
- CIMA - Centre for Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal
| | - Vânia Serrão Sousa
- CENSE, Centre for Environmental and Sustainability Research, University of Algarve, Faculty of Sciences and Technology, Bldg 7, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Margarida Ribau Teixeira
- CENSE, Centre for Environmental and Sustainability Research, University of Algarve, Faculty of Sciences and Technology, Bldg 7, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Maria João Bebianno
- CIMA - Centre for Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal.
| |
Collapse
|
56
|
Brandts I, Solà R, Martins MA, Tvarijonaviciute A, Barreto A, Teles M, Oliveira M. A baseline study on the impact of nanoplastics on the portals of entry of xenobiotics in fish. MARINE POLLUTION BULLETIN 2021; 173:113018. [PMID: 34653883 DOI: 10.1016/j.marpolbul.2021.113018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Mediterranean waters are particularly vulnerable to plastic pollution, with plastic particles concentrations comparable to those found in oceanic gyres. This work aimed to assess the impact of polymethylmethacrylate nanoplastics (PMMA-NPs) on the most important mucosal barriers of the gilthead seabream (Sparus aurata), a highly consumed fish species in the Mediterranean area. Fish were waterborne exposed to NPs (0.001-10 mg/L) for 24 and 96 h, and biochemical parameters associated with oxidative status (total oxidative status and total antioxidant capacity) and immune function (adenosine deaminase, ADA, acetylcholinesterase activity, AChE, and esterase activity, EA) were assessed in gills, intestine, and skin. In intestine, PMMA-NPs led to oxidative status alterations and decreased ADA and EA. In gills, PMMA-NPs induced EA decrease and AChE activity increase. Total protein values were significantly increased in skin. Overall, more alterations were observed in intestine, suggesting it may be one of the most affected tissues by exposure to NPs.
Collapse
Affiliation(s)
- I Brandts
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - R Solà
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - M A Martins
- Department of Physics & CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| | - A Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis INTERLAB-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, Murcia 30100, Spain
| | - A Barreto
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - M Teles
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| | - M Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
57
|
Searching Nanoplastics: From Sampling to Sample Processing. Polymers (Basel) 2021; 13:polym13213658. [PMID: 34771215 PMCID: PMC8588424 DOI: 10.3390/polym13213658] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/05/2021] [Accepted: 10/20/2021] [Indexed: 12/02/2022] Open
Abstract
Nanoplastics (NPs) are considered emerging pollutants, namely unregulated contaminants whose toxic effect on humans and the environment has been demonstrated or suspected. They are the result of the physical fragmentation of the plastics that over time reach smaller dimensions (<100 nm). The issues related to the characterization and quantification of NPs in the environmental matrices are mainly related to the infinitepsimal size, to the fact that they are found in bulk, and to the different physico-chemical forms in which the same polymer can evolve over time by degradation. To deal with the study of a new class of pollutants it is necessary to assess the entire analytical method, carefully considering every single step (sampling, cleanup, qualitative, and quantitative analysis) starting from the validation method in the laboratory. This paper reviews the analytical method steps, focusing on the first ones, which the current literature often underestimates: laboratory tests, sampling, and sample processing; in fact, most errors and the quality of the analyses often depend on them. In addition, all newly introduced sample processing methods were examined.
Collapse
|
58
|
Sanchez-Hernandez JC. A toxicological perspective of plastic biodegradation by insect larvae. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109117. [PMID: 34186180 DOI: 10.1016/j.cbpc.2021.109117] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022]
Abstract
Larvae of some insect species (Coleoptera and Lepidoptera) can consume and biodegrade synthetic polymers, including polyethylene, polystyrene, polyvinyl chloride, and polypropylene. Multiple chemical (polymer mass loss and shift of the molecular weight, alterations in chemical functionality, formation of biodegraded intermediates, CO2 production), physical (surface hydrophobicity, thermal analysis), and biological approaches (antibiotic treatment, gut dysbiosis, isolation of plastic microbial degraders) have provided evidence for polymer biodegradation in the larva digestive tract. However, the extent and rate of biodegradation largely depend on the physicochemical structure of the polymer as well as the presence of additives. Additionally, toxicology associated with plastic biodegradation has not been investigated. This knowledge gap is critical to understand the gut symbiont-host interaction in the biodegradation process, its viability in the long term, the effects of plastic additives and their metabolites, and the phenotypic traits linked to a plastic-rich diet might be transferred in successive generations. Likewise, plastic-eating larvae represent a unique case study for elucidating the mechanisms of toxic action by micro- and nanoplastics because of the high concentration of plastics these organisms may be intentionally exposed to. This perspective review graphically summarizes the current knowledge on plastic biodegradation by insect larvae and describes the physiological processes (digestive and immune systems) that may be disrupted by micro- and nanoplastics. It also provides an outlook to advance current knowledge on the toxicity assessment of plastic-rich diets and the environmental risks of plastic-containing by-products (e.g., insect manure used as fertilizer).
Collapse
Affiliation(s)
- Juan C Sanchez-Hernandez
- Laboratory of Ecotoxicology, Faculty of Environmental Science and Biochemistry, University of Castilla-La Mancha, 45071 Toledo, Spain.
| |
Collapse
|
59
|
3D and 4D printing: From innovation to evolution. Adv Colloid Interface Sci 2021; 294:102482. [PMID: 34274721 DOI: 10.1016/j.cis.2021.102482] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/20/2022]
Abstract
The world and science are moving forward nonstop. Every day, we see novel technologies that are coming to improve life quality. One of them is 3D printing or additive manufacturing. This technology covers the shortage of the current manufacturing technologies, and it has been enhanced by introducing smart materials like smart polymers as feed. The following product can adapt to circumstance conditions such as temperature changes, compression alteration, etc. These responses resulted in an advanced 3D printing technology called 4D printing. 3D and 4D printing technologies found their applications in all areas and industry sizes, from home-scale to large-scale industries. Regardless of all advantages of these technologies, there are still some shortages like low printing speed. But this never stops their progression and promotion. In this review, we aimed to cover general knowledge about 3D and 4D printing and their recent applications in various fields.
Collapse
|
60
|
Cellular interactions with polystyrene nanoplastics-The role of particle size and protein corona. Biointerphases 2021; 16:041001. [PMID: 34241329 DOI: 10.1116/6.0001124] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Plastic waste is ubiquitously spread across the world and its smaller analogs-microplastics and nanoplastics-raise particular health concerns. While biological impacts of microplastics and nanoplastics have been actively studied, the chemical and biological bases for the adverse effects are sought after. This work explores contributory factors by combining results from in vitro and model mammalian membrane experimentation to assess the outcome of cell/nanoplastic interactions in molecular detail, inspecting the individual contribution of nanoplastics and different types of protein coronae. The in vitro study showed mild cytotoxicity and cellular uptake of polystyrene (PS) nanoplastics, with no clear trend based on nanoplastic size (20 and 200 nm) or surface charge. In contrast, a nanoplastic size-dependency on bilayer disruption was observed in the model system. This suggests that membrane disruption resulting from direct interaction with PS nanoplastics has little correlation with cytotoxicity. Furthermore, the level of bilayer disruption was found to be limited to the hydrophilic headgroup, indicating that transmembrane diffusion was an unlikely pathway for cellular uptake-endocytosis is the viable mechanism. In rare cases, small PS nanoplastics (20 nm) were found in the vicinity of chromosomes without a nuclear membrane surrounding them; however, this was not observed for larger PS nanoplastics (200 nm). We hypothesize that the nanoplastics can interact with chromosomes prior to nuclear membrane formation. Overall, precoating PS particles with protein coronae reduced the cytotoxicity, irrespective of the corona type. When comparing the two types, the extent of reduction was more apparent with soft than hard corona.
Collapse
|
61
|
Castelvetro V, Corti A, La Nasa J, Modugno F, Ceccarini A, Giannarelli S, Vinciguerra V, Bertoldo M. Polymer Identification and Specific Analysis (PISA) of Microplastic Total Mass in Sediments of the Protected Marine Area of the Meloria Shoals. Polymers (Basel) 2021; 13:796. [PMID: 33807658 PMCID: PMC7961433 DOI: 10.3390/polym13050796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/01/2023] Open
Abstract
Microplastics (MPs) quantification in benthic marine sediments is typically performed by time-consuming and moderately accurate mechanical separation and microscopy detection. In this paper, we describe the results of our innovative Polymer Identification and Specific Analysis (PISA) of microplastic total mass, previously tested on either less complex sandy beach sediment or less demanding (because of the high MPs content) wastewater treatment plant sludges, applied to the analysis of benthic sediments from a sublittoral area north-west of Leghorn (Tuscany, Italy). Samples were collected from two shallow sites characterized by coarse debris in a mixed seabed of Posidonia oceanica, and by a very fine silty-organogenic sediment, respectively. After sieving at <2 mm the sediment was sequentially extracted with selective organic solvents and the two polymer classes polystyrene (PS) and polyolefins (PE and PP) were quantified by pyrolysis-gas chromatography-mass spectrometry (Pyr-GC/MS). A contamination in the 8-65 ppm range by PS could be accurately detected. Acid hydrolysis on the extracted residue to achieve total depolymerization of all natural and synthetic polyamides, tagging of all aminated species in the hydrolysate with a fluorophore, and reversed-phase high performance liquid chromatography (HPLC) (RP-HPLC) analysis, allowed the quantification within the 137-1523 ppm range of the individual mass of contaminating nylon 6 and nylon 6,6, based on the detected amounts of the respective monomeric amines 6-aminohexanoic acid (AHA) and hexamethylenediamine (HMDA). Finally, alkaline hydrolysis of the residue from acid hydrolysis followed by RP-HPLC analysis of the purified hydrolysate showed contamination by polyethylene terephthalate (PET) in the 12.1-2.7 ppm range, based on the content of its comonomer, terephthalic acid.
Collapse
Affiliation(s)
- Valter Castelvetro
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy; (A.C.); (J.L.N.); (F.M.); (A.C.); (S.G.); (V.V.)
- CISUP—Center for the Integration of Scientific Instruments of the University of Pisa, University of Pisa, 56124 Pisa, Italy
| | - Andrea Corti
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy; (A.C.); (J.L.N.); (F.M.); (A.C.); (S.G.); (V.V.)
- CISUP—Center for the Integration of Scientific Instruments of the University of Pisa, University of Pisa, 56124 Pisa, Italy
| | - Jacopo La Nasa
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy; (A.C.); (J.L.N.); (F.M.); (A.C.); (S.G.); (V.V.)
| | - Francesca Modugno
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy; (A.C.); (J.L.N.); (F.M.); (A.C.); (S.G.); (V.V.)
- CISUP—Center for the Integration of Scientific Instruments of the University of Pisa, University of Pisa, 56124 Pisa, Italy
| | - Alessio Ceccarini
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy; (A.C.); (J.L.N.); (F.M.); (A.C.); (S.G.); (V.V.)
| | - Stefania Giannarelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy; (A.C.); (J.L.N.); (F.M.); (A.C.); (S.G.); (V.V.)
| | - Virginia Vinciguerra
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy; (A.C.); (J.L.N.); (F.M.); (A.C.); (S.G.); (V.V.)
- CISUP—Center for the Integration of Scientific Instruments of the University of Pisa, University of Pisa, 56124 Pisa, Italy
| | - Monica Bertoldo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari, 45121 Ferrara, Italy;
- Institute of Organic Synthesis and Photoreactivity, National Research Council of Italy (ISOF-CNR), via P. Gobetti 101, 40129 Bologna, Italy
| |
Collapse
|