51
|
Adnan M, Siddiqui AJ, Noumi E, Hannachi S, Ashraf SA, Awadelkareem AM, Snoussi M, Badraoui R, Bardakci F, Sachidanandan M, Patel M, Patel M. Integrating Network Pharmacology Approaches to Decipher the Multi-Target Pharmacological Mechanism of Microbial Biosurfactants as Novel Green Antimicrobials against Listeriosis. Antibiotics (Basel) 2022; 12:5. [PMID: 36671206 PMCID: PMC9854906 DOI: 10.3390/antibiotics12010005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Listeria monocytogenes (L. monocytogenes) is a serious food-borne pathogen that can cause listeriosis, an illness caused by eating food contaminated with this pathogen. Currently, the treatment or prevention of listeriosis is a global challenge due to the resistance of bacteria against multiple commonly used antibiotics, thus necessitating the development of novel green antimicrobials. Scientists are increasingly interested in microbial surfactants, commonly known as "biosurfactants", due to their antimicrobial properties and eco-friendly nature, which make them an ideal candidate to combat a variety of bacterial infections. Therefore, the present study was designed to use a network pharmacology approach to uncover the active biosurfactants and their potential targets, as well as the signaling pathway(s) involved in listeriosis treatment. In the framework of this study, 15 biosurfactants were screened out for subsequent studies. Among 546 putative targets of biosurfactants and 244 targets of disease, 37 targets were identified as potential targets for treatment of L. monocytogenes infection, and these 37 targets were significantly enriched in a Gene Ontology (GO) analysis, which aims to identify those biological processes, cellular locations, and molecular functions that are impacted in the condition studied. The obtained results revealed several important biological processes, such as positive regulation of MAP kinase activity, protein kinase B signaling, ERK1 and ERK2 cascade, ERBB signaling pathway, positive regulation of protein serine/threonine kinase activity, and regulation of caveolin-mediated endocytosis. Several important KEGG pathways, such as the ERBBB signaling pathway, TH17 cell differentiation, HIF-1 signaling pathway, Yersinia infection, Shigellosis, and C-type lectin receptor signaling pathways, were identified. The protein-protein interaction analysis yielded 10 core targets (IL2, MAPK1, EGFR, PTPRC, TNF, ITGB1, IL1B, ERBB2, SRC, and mTOR). Molecular docking was used in the latter part of the study to verify the effectiveness of the active biosurfactants against the potential targets. Lastly, we found that a few highly active biosurfactants, namely lichenysin, iturin, surfactin, rhamnolipid, subtilisin, and polymyxin, had high binding affinities towards IL2, MAPK1, EGFR, PTPRC, TNF, ITGB1, IL1B, ERBB2, SRC, and mTOR, which may act as potential therapeutic targets for listeriosis. Overall, based on the integrated network pharmacology and docking analysis, we found that biosurfactants possess promising anti-listeriosis properties and explored the pharmacological mechanisms behind their effect, laying the groundwork for further research and development.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Emira Noumi
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Sami Hannachi
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, La Rabta 1007, Tunis, Tunisia
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Manojkumar Sachidanandan
- Department of Oral Radiology, College of Dentistry, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Mirav Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, India
| | - Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, India
| |
Collapse
|
52
|
Karamchandani BM, Pawar AA, Pawar SS, Syed S, Mone NS, Dalvi SG, Rahman PKSM, Banat IM, Satpute SK. Biosurfactants' multifarious functional potential for sustainable agricultural practices. Front Bioeng Biotechnol 2022; 10:1047279. [PMID: 36578512 PMCID: PMC9792099 DOI: 10.3389/fbioe.2022.1047279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Increasing food demand by the ever-growing population imposes an extra burden on the agricultural and food industries. Chemical-based pesticides, fungicides, fertilizers, and high-breeding crop varieties are typically employed to enhance crop productivity. Overexploitation of chemicals and their persistence in the environment, however, has detrimental effects on soil, water, and air which consequently disturb the food chain and the ecosystem. The lower aqueous solubility and higher hydrophobicity of agrochemicals, pesticides, metals, and hydrocarbons allow them to adhere to soil particles and, therefore, continue in the environment. Chemical pesticides, viz., organophosphate, organochlorine, and carbamate, are used regularly to protect agriculture produce. Hydrophobic pollutants strongly adhered to soil particles can be solubilized or desorbed through the usage of biosurfactant/s (BSs) or BS-producing and pesticide-degrading microorganisms. Among different types of BSs, rhamnolipids (RL), surfactin, mannosylerythritol lipids (MELs), and sophorolipids (SL) have been explored extensively due to their broad-spectrum antimicrobial activities against several phytopathogens. Different isoforms of lipopeptide, viz., iturin, fengycin, and surfactin, have also been reported against phytopathogens. The key role of BSs in designing and developing biopesticide formulations is to protect crops and our environment. Various functional properties such as wetting, spreading, penetration ability, and retention period are improved in surfactant-based formulations. This review emphasizes the use of diverse types of BSs and their source microorganisms to challenge phytopathogens. Extensive efforts seem to be focused on discovering the innovative antimicrobial potential of BSs to combat phytopathogens. We discussed the effectiveness of BSs in solubilizing pesticides to reduce their toxicity and contamination effects in the soil environment. Thus, we have shed some light on the use of BSs as an alternative to chemical pesticides and other agrochemicals as sparse literature discusses their interactions with pesticides. Life cycle assessment (LCA) and life cycle sustainability analysis (LCSA) quantifying their impact on human activities/interventions are also included. Nanoencapsulation of pesticide formulations is an innovative approach in minimizing pesticide doses and ultimately reducing their direct exposures to humans and animals. Some of the established big players and new entrants in the global BS market are providing promising solutions for agricultural practices. In conclusion, a better understanding of the role of BSs in pesticide solubilization and/or degradation by microorganisms represents a valuable approach to reducing their negative impact and maintaining sustainable agricultural practices.
Collapse
Affiliation(s)
| | - Ameya A. Pawar
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sujit S. Pawar
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sahil Syed
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Nishigandha S. Mone
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sunil G. Dalvi
- Tissue Culture Section, Vasantdada Sugar Institute, Pune, India
| | - Pattanathu K. S. M. Rahman
- Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Ibrahim M. Banat
- School of Biomedical Sciences, Faculty of Life and Health Sciences, University of Ulster, Coleraine, United Kingdom,*Correspondence: Surekha K. Satpute, ; Ibrahim M. Banat,
| | - Surekha K. Satpute
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India,*Correspondence: Surekha K. Satpute, ; Ibrahim M. Banat,
| |
Collapse
|
53
|
A Systematic Review on Biosurfactants Contribution to the Transition to a Circular Economy. Processes (Basel) 2022. [DOI: 10.3390/pr10122647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Since they are more environmentally acceptable than their chemically synthesized counterparts, biosurfactants are used in a wide range of environmental applications. However, less research has been done on biosurfactants within the context of the circular economy, despite their theoretical potential to fulfill a number of circular economy ambitions, including closing the consumption loop, regenerating natural systems, and maintaining resource value within the system. Hence, the main objective of this review is to identify and analyze the contributions of biosurfactants to the implementation of the circular economy. A final sample of 30 papers from the Web of Science database was examined. We identified five broad categories of contributions: waste stream-derived production, combating food waste, strengthening soil health, and improving the efficiency of water resources. We concluded that, while manufacturing biosurfactants from waste streams can reduce production costs, optimizing yield remains a contentious issue that complicates the adoption of biosurfactants into the circular economy framework.
Collapse
|
54
|
Khan AA, Shahid MK. Identification of radiation processing of different plant foods of Pakistan origin using the rapid technique of Electron Spin Resonance (ESR) spectrometry. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
55
|
Luo J, Liu S, Lu H, Chen Q, Shi Y. A comprehensive review of microorganism-derived cyclic peptides: Bioactive functions and food safety applications. Compr Rev Food Sci Food Saf 2022; 21:5272-5290. [PMID: 36161470 DOI: 10.1111/1541-4337.13038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/09/2022] [Accepted: 08/21/2022] [Indexed: 01/28/2023]
Abstract
Cyclic peptides possess advanced structural characteristics of stability and play a vital role in medical treatment and agriculture. However, the biological functions of microorganism-derived cyclic peptides (MDCPs) and their applications in food industry were relatively absent. MDCPs are derived from extensive fermented food or soil. In this review, the synthesis approaches and structural characteristics are overviewed, while the interrelationship between bioactivities and functions is emphasized. This review summarizes the bioactivities of MDCPs from in vitro to in vivo, including antimicrobial activities, immune regulation, and antiviral cell activation. Their multiple functions as well as applications during food product processing, packaging, and storage are also comprehensively reviewed. Remarkably, some potential risks and cytotoxicity of MDCPs are also critically discussed. Moreover, future applications of MDCPs in the development of novel food additives and bioengineering materials are organized. Based on this review of native MDCPs, it is noteworthy that expected improvements of synthetic cyclic peptides in bioactive properties present potential valuable applications in future food, including artificial meat.
Collapse
Affiliation(s)
- Jiaqi Luo
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Siyu Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Hongyun Lu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Ying Shi
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
56
|
Shahid MK, Choi Y. CO 2 as an Alternative to Traditional Antiscalants in Pressure-Driven Membrane Processes: An Experimental Study of Lab-Scale Operation and Cleaning Strategies. MEMBRANES 2022; 12:membranes12100918. [PMID: 36295676 PMCID: PMC9610738 DOI: 10.3390/membranes12100918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 05/26/2023]
Abstract
Scaling, or inorganic fouling, is a major factor limiting the performance of membrane-based water treatment processes in long-term operation. Over the past few decades, extensive studies have been conducted to control the scale growth found in membrane processes and to develop sustainable and greener processes. This study details the role of CO2 in scale inhibition in membrane processes. The core concept of CO2 utilization is to reduce the influent pH and to minimize the risk of scale formation from magnesium or calcium salts. Three reverse osmosis (RO) units were operated with a control (U1), CO2 (U2), and a commercial antiscalant, MDC-220 (U3). The performances of all the units were compared in terms of change in transmembrane pressure (TMP). The overall efficiency trend was found as U1 > U3 > U2. The membrane surfaces were analyzed using Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) for the morphological and elemental compositions, respectively. The surface analysis signified a significant increase in surface smoothness after scale deposition. The noticeable reduction in surface roughness can be described as a result of ionic deposition in the valley region. A sludge-like scale layer was found on the surface of the control membrane (U1) which could not be removed, even after an hour of chemical cleaning. After 20−30 min of cleaning, the U2 membrane was successfully restored to its original state. In brief, this study highlights the sustainable membrane process developed via CO2 utilization for scale inhibition, and the appropriate cleaning approaches.
Collapse
Affiliation(s)
- Muhammad Kashif Shahid
- Research Institute of Environment & Biosystem, Chungnam National University, Daejeon 34134, Korea
| | - Younggyun Choi
- Department of Environmental & IT Engineering, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
57
|
Zhao F, Wang Y, Hu X, Huang X. How to simply and efficiently screen microbial strains capable of anaerobic biosynthesis of biosurfactants: Method establishment, influencing factors and application example evaluation. Front Microbiol 2022; 13:989998. [PMID: 36171744 PMCID: PMC9511215 DOI: 10.3389/fmicb.2022.989998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
Microbial resources capable of anaerobic biosynthesis of biosurfactants are increasingly interested for their application in oxygen-deficient environments, such as in-situ microbial enhanced oil recovery and anaerobic bioremediation. How to simply and efficiently screen microbial strains capable of anaerobic biosynthesis of biosurfactants need be further studied in depth. In this study, an efficient and simple screening method was established based on the oil displacement characteristic of biosurfactants combined with the anaerobic culture technology using microplate assays. Strains whose anaerobic culture in microwells can form oil displacement circles with diameters larger than 10 mm were screened for scale-up culture in anaerobic tubes. The screened strains which can reduce the surface tension of anaerobic culture to lower than 45 mN/m were verified as positive strains. Using this screening method, eight positive strains and thirteen positive strains were screened from oil reservoir produced water and oily sludge, respectively. Through phylogenetic analysis, some screened strains were identified as Pseudomonas sp., Bacillus sp., and Enterobacter sp. This study also found that more microbial strains might be isolated after enrichment culture of environmental samples, whereas more microbial species would be isolated without enrichment. Suspension of environmental samples prepared with distilled water or normal saline had no significant effect. The established screening method is highly targeted and efficient for microbial strains capable of anaerobic biosynthesis of biosurfactants. The diameter of oil displacement circle is a reliable screening indicator. This study will contribute to explore more microbial resources which can anaerobically biosynthesize biosurfactants.
Collapse
|