51
|
Steinmetz M, Schmitter C, Radecke T, Stundl A, Nickenig G, Schaefer C, Schahab N, Vasa-Nicotera M, Sinning JM. Brief report - Telomere length is a poor biomarker to predict 1-year mortality or cardiovascular comorbidity in patients with transcatheter aortic valve replacement. PLoS One 2019; 14:e0213250. [PMID: 30861019 PMCID: PMC6413932 DOI: 10.1371/journal.pone.0213250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 02/19/2019] [Indexed: 11/25/2022] Open
Abstract
Background Transcatheter aortic valve replacement (TAVR) is a therapeutic option for patients with aortic valve stenosis at increased surgical risk. Telomeres are an established marker for cellular senescence and have served to evaluate cardiovascular diseases including severe aortic valve stenosis. In our study, we hypothesized that telomere length may be a predictor for outcome and associated with comorbidities in patients with TAVR. Methods and results We analyzed leucocyte telomere length from 155 patients who underwent TAVR and correlated the results with 1-year mortality and severe comorbidities. The cohort was subdivided into 3 groups according to telomere length. Although a trend for a positive correlation of telomere length with a lower EuroSCORE could be found, telomere length was not associated with survival, aortic valve opening area or cardiovascular comorbidities (peripheral, coronary or cerebrovascular disease). Interestingly, long telomeres were significantly correlated to a reduced left ventricular ejection fraction (LVEF). Conclusion In elderly patients with severe aortic valve stenosis, leucocyte telomere length did not predict post-procedural survival. The correlation between long telomere length and reduced LVEF in these patients deserves further attention.
Collapse
Affiliation(s)
- Martin Steinmetz
- Universitätsklinikum Essen, Klinik für Kardiologie und Angiologie, Essen, Germany
- Universitätsklinkum Bonn, Medizinische Klinik und Poliklinik II, Bonn, Germany
- * E-mail:
| | - Charlotte Schmitter
- Universitätsklinkum Bonn, Medizinische Klinik und Poliklinik II, Bonn, Germany
| | - Tobias Radecke
- Universitätsklinikum Essen, Klinik für Kardiologie und Angiologie, Essen, Germany
| | - Anja Stundl
- Universitätsklinkum Bonn, Medizinische Klinik und Poliklinik II, Bonn, Germany
| | - Georg Nickenig
- Universitätsklinkum Bonn, Medizinische Klinik und Poliklinik II, Bonn, Germany
| | - Christian Schaefer
- Universitätsklinkum Bonn, Medizinische Klinik und Poliklinik II, Bonn, Germany
| | - Nadjib Schahab
- Universitätsklinkum Bonn, Medizinische Klinik und Poliklinik II, Bonn, Germany
| | - Mariuca Vasa-Nicotera
- Universitätsklinkum Bonn, Medizinische Klinik und Poliklinik II, Bonn, Germany
- Universitätsklinikum Frankfurt, Klinik für Kardiologie, Frankfurt, Germany
| | - Jan-Malte Sinning
- Universitätsklinkum Bonn, Medizinische Klinik und Poliklinik II, Bonn, Germany
| |
Collapse
|
52
|
Mathieu P, Boulanger MC. Autotaxin and Lipoprotein Metabolism in Calcific Aortic Valve Disease. Front Cardiovasc Med 2019; 6:18. [PMID: 30881959 PMCID: PMC6405425 DOI: 10.3389/fcvm.2019.00018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/12/2019] [Indexed: 02/06/2023] Open
Abstract
Calcific aortic valve disease (CAVD) is a complex trait disorder characterized by calcific remodeling of leaflets. Genome-wide association (GWA) study and Mendelian randomization (MR) have highlighted that LPA, which encodes for apolipoprotein(a) [apo(a)], is causally associated with CAVD. Apo(a) is the protein component of Lp(a), a LDL-like particle, which transports oxidized phospholipids (OxPLs). Autotaxin (ATX), which is encoded by ENPP2, is a member of the ecto-nucleotidase family of enzymes, which is, however, a lysophospholipase. As such, ATX converts phospholipids into lysophosphatidic acid (LysoPA), a metabolite with potent and diverse biological properties. Studies have recently underlined that ATX is enriched in the Lp(a) lipid fraction. Functional experiments and data obtained in mouse models suggest that ATX mediates inflammation and mineralization of the aortic valve. Recent findings also indicate that epigenetically-driven processes lower the expression of phospholipid phosphatase 3 (PLPP3) and increased LysoPA signaling and inflammation in the aortic valve during CAVD. These recent data thus provide novel insights about how lipoproteins mediate the development of CAVD. Herein, we review the implication of lipoproteins in CAVD and examine the role of ATX in promoting the osteogenic transition of valve interstitial cells (VICs).
Collapse
Affiliation(s)
- Patrick Mathieu
- Laboratory of Cardiovascular Pathobiology, Department of Surgery, Research Center, Quebec Heart and Lung Institute, Laval University, Quebec, QC, Canada
| | - Marie-Chloé Boulanger
- Laboratory of Cardiovascular Pathobiology, Department of Surgery, Research Center, Quebec Heart and Lung Institute, Laval University, Quebec, QC, Canada
| |
Collapse
|
53
|
Song J, Zheng Q, Ma X, Zhang Q, Xu Z, Zou C, Wang Z. Predictive Roles of Neutrophil-to-Lymphocyte Ratio and C-Reactive Protein in Patients with Calcific Aortic Valve Disease. Int Heart J 2019; 60:345-351. [PMID: 30745535 DOI: 10.1536/ihj.18-196] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The neutrophil-to-lymphocyte ratio (NLR) and C-reactive protein (CRP) are emerging indirect blood markers to roughly reflect the inflammation level in our body while some pathological changes occurring in aortic valve tissue. Few recent studies demonstrated that NLR is related to calcific aortic valve disease (CAVD). However, the extent of the relationship between them and the impact of CRP on CAVD are not clear. This study aimed to investigate the diagnostic influence and surgical predictive effect of NLR and CRP on CAVD.A total of 278 consecutive patients with CAVD (123 patients with bicuspid aortic valve and others with tricuspid aortic valve) and 108 healthy individuals who were included in the control group were enrolled in the study. The NLR was calculated from the complete blood count, and the CRP was measured from peripheral blood samples. Echocardiography was used to evaluate the severity of aortic stenosis. Intraoperation/postoperation indicators were collected in 166 patients from the total consecutive patients who underwent aortic valve replacement (AVR) alone.Significantly higher NLR was measured in both the BAV group (1.96 ± 0.78 versus 0.97 ± 0.15, P < 0.001) and the TAV group (2.51 ± 2.03 versus 0.97 ± 0.15, P < 0.001) compared with the control group. Moreover, the NLR level was significantly higher (P < 0.001) and the CRP level was significantly lower (P = 0.007) of the TAV group than that of the BAV group; a significant positive correlation between the NLR and the maximum gradient of aortic valve was detected. Furthermore, there was a moderate correlation between the NLR and the postoperative mechanical ventilation time.Our results indicated that the NLR and CRP were novel and useful predictive factors in patients with CAVD, and these two potential factors have guiding significance for the prediction of different pathological typing (BAV or TAV). Higher NLR level will not extend the cardiopulmonary bypass time (CPB); however, it will prolong the operation time and the postoperative mechanical ventilation time.
Collapse
Affiliation(s)
- Jian Song
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University
| | - Qiang Zheng
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University
| | - Xiaochun Ma
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University
| | - Qian Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University
| | - Zhenqiang Xu
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University
| | - Chengwei Zou
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University
| | - Zhengjun Wang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University
| |
Collapse
|
54
|
Recent Advances on Relationship Between Inorganic Phosphate and Pathologic Calcification: Is Calcification After Breast Augmentation with Fat Grafting Correlated with Locally Increased Concentration of Inorganic Phosphate? Aesthetic Plast Surg 2019; 43:243-252. [PMID: 30552471 DOI: 10.1007/s00266-018-1285-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/24/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Pathologic calcification has frequently occurred after breast augmentation with fat grafting as well as other conditions such as breast cancer, trauma, myocardial infarction, arteriosclerosis and even after reduction mammoplasty. Inorganic phosphate, correlated with fat metabolism, is an important factor that induces pathologic calcification such as vascular calcification. METHODS A literature search was conducted using PubMed with the keywords: calcification, inorganic phosphate, fat. Studies related to the process of pathologic calcification, correlation between inorganic phosphate and pathologic calcification, between inorganic phosphate and fat metabolism in pathologic calcification were collected. RESULTS Various mechanisms were referred to in pathologic calcification among which inorganic phosphate played an important role. Inorganic phosphate could be liberated, under the effect of various enzymes, in the process of fat metabolism. The authors hypothesized that a large-scale necrotizing zone, which could occur in fat grafting with large amounts per cannula, might provide a high-phosphate environment which might contribute to differentiation of surrounding cells such as stem cells or regenerated vessel cells into osteoblast-like cells that induce pathologic calcification. CONCLUSION Inorganic phosphate, which was correlated with fat metabolism, played a significant role in pathologic calcification. We firstly hypothesize that calcification after fat grafting may be related to locally increasing concentrations of phosphate in a necrotizing zone. Further research should be conducted to verify this hypothesis. LEVEL OF EVIDENCE V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
55
|
Gomel MA, Lee R, Grande-Allen KJ. Comparing the Role of Mechanical Forces in Vascular and Valvular Calcification Progression. Front Cardiovasc Med 2019; 5:197. [PMID: 30687719 PMCID: PMC6335252 DOI: 10.3389/fcvm.2018.00197] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/20/2018] [Indexed: 01/07/2023] Open
Abstract
Calcification is a prevalent disease in most fully developed countries and is predominantly observed in heart valves and nearby vasculature. Calcification of either tissue leads to deterioration and, ultimately, failure causing poor quality of life and decreased overall life expectancy in patients. In valves, calcification presents as Calcific Aortic Valve Disease (CAVD), in which the aortic valve becomes stenotic when calcific nodules form within the leaflets. The initiation and progression of these calcific nodules is strongly influenced by the varied mechanical forces on the valve. In turn, the addition of calcific nodules creates localized disturbances in the tissue biomechanics, which affects extracellular matrix (ECM) production and cellular activation. In vasculature, atherosclerosis is the most common occurrence of calcification. Atherosclerosis exhibits as calcific plaque formation that forms in juxtaposition to areas of low blood shear stresses. Research in these two manifestations of calcification remain separated, although many similarities persist. Both diseases show that the endothelial layer and its regulation of nitric oxide is crucial to calcification progression. Further, there are similarities between vascular smooth muscle cells and valvular interstitial cells in terms of their roles in ECM overproduction. This review summarizes valvular and vascular tissue in terms of their basic anatomy, their cellular and ECM components and mechanical forces. Calcification is then examined in both tissues in terms of disease prediction, progression, and treatment. Highlighting the similarities and differences between these areas will help target further research toward disease treatment.
Collapse
|
56
|
Treatment with XAV-939 prevents in vitro calcification of human valvular interstitial cells. PLoS One 2018; 13:e0208774. [PMID: 30532256 PMCID: PMC6286025 DOI: 10.1371/journal.pone.0208774] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/21/2018] [Indexed: 01/11/2023] Open
Abstract
The development of a substance or inhibitor-based treatment strategy for the prevention of aortic valve stenosis is a challenge and a main focus of medical research in this area. One strategy may be to use the tankyrase inhibitor XAV-939, which leads to Axin stabilisation and subsequent destruction of the β-catenin complex and dephosphorylation of β-catenin. The dephosphorylated active form of β-catenin (non-phospho-β-catenin) then promotes nuclear transcription that leads to osteogenesis. The aims of the present study were to develop an experimental system for inducing in vitro calcification of human aortic valvular interstitial cells (VICs) to investigate the potential anti-calcific effect of XAV-939 and to analyse expression of the Wnt signalling proteins and Sox9, a chondrogenesis regulator, in this model. Calcification of human VIC cultures was induced by cultivation in an osteogenic medium and the effect of co-incubation with 1μM XAV-939 was monitored. Calcification was quantified when mineral deposits were visible in culture and was histologically verified by von Kossa or Alizarin red staining and by IR-spectroscopy. Protein expression of alkaline phosphatase, Axin, β-catenin and Sox9 were quantified by western blotting. In 58% of the VIC preparations, calcification was induced in an osteogenic culture medium and was accompanied by upregulation of alkaline phosphatase. The calcification induction was prevented by the XAV-939 co-treatment and the alkaline phosphatase upregulation was suppressed. As expected, Axin was upregulated, but the levels of active non-phospho-β-catenin were also enhanced. Sox9 was induced during XAV-939 treatment but apparently not as a result of downregulation of β-catenin signalling. XAV-939 was therefore able to prevent calcification of human VIC cultures, and XAV-939 treatment was accompanied by upregulation of active non-phospho-β-catenin. Although XAV-939 does not downregulate active β-catenin, treatment with XAV-939 results in Sox9 upregulation that may prevent the calcification process.
Collapse
|
57
|
Fu Z, Li F, Jia L, Su S, Wang Y, Cai Z, Xiang M. Histone deacetylase 6 reduction promotes aortic valve calcification via an endoplasmic reticulum stress-mediated osteogenic pathway. J Thorac Cardiovasc Surg 2018; 158:408-417.e2. [PMID: 30579537 DOI: 10.1016/j.jtcvs.2018.10.136] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/09/2018] [Accepted: 10/12/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Aortic valve (AoV) calcification occurs via a pathophysiologic process that includes osteoblastic differentiation of valvular interstitial cells (VICs). Histone deacetylases (HDACs) have been shown to be involved in the pathogenesis of vascular diseases. Here, we investigated the role of HDAC6 in AoV calcification. METHODS AoV cusps from patients with aortic stenosis (n = 7) and normal controls (n = 7) were subjected to determination of calcified nodules and HDAC6 expression. Human VICs were cultured in osteogenic media and treated with 10 uM tubacin or HDAC6 small interfering RNA silencing to inhibit HDAC6. Treatment with 100 uM tauroursodeoxycholic acid was used to suppress endoplasmic reticulum stress. Activating transcription factor 4 (ATF4) small interfering RNA was used to knock down ATF4. Alizarin red staining was used to evaluate calcified nodules formation of VICs cultured with osteogenic media for 14 days. RESULTS HDAC6 expression was significantly reduced in AoV tissue of patients with aortic stenosis compared with controls. Tubacin treatment or HDAC6 silencing markedly promoted osteoblastic differentiation accompanied by endoplasmic reticulum stress activation in VICs. The HDAC6 inhibition-induced osteogenic pathway was mediated by endoplasmic reticulum stress/ATF4 pathway as indicated by tauroursodeoxycholic acid pretreatment or ATF4 silencing. Finally, alizarin red staining showed that HDAC6 inhibition promoted osteoblastic differentiation of VICs, which could be suppressed by tauroursodeoxycholic acid. CONCLUSIONS HDAC6 inhibition promotes AoV calcification via an endoplasmic reticulum stress/ATF4-mediated osteogenic pathway. HDAC6 may be a novel target for AoV calcification prevention and treatment.
Collapse
Affiliation(s)
- Zurong Fu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Key Lab of Cardiovascular Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Fei Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liangliang Jia
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Key Lab of Cardiovascular Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shengan Su
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Key Lab of Cardiovascular Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yaping Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Key Lab of Cardiovascular Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhejun Cai
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Key Lab of Cardiovascular Disease of Zhejiang Province, Hangzhou, Zhejiang, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Key Lab of Cardiovascular Disease of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
58
|
Li J, Li A, Wang J, Zhang Y, Zhou Y. Early Left Ventricular Dysfunction Detected by Speckle Tracking in Long-Term Hemodialysis Patients with Valvular Calcification. Cardiorenal Med 2018; 9:22-30. [DOI: 10.1159/000491679] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/30/2018] [Indexed: 11/19/2022] Open
Abstract
Purpose: Cardiac valve calcification (VC) is very common in patients on hemodialysis. However, the definite effect of VC on left ventricular (LV) geometry and function in this population is unknown, especially when LV ejection fraction (LVEF) is normal. The aim of this study was to determine the effect of VC on LV geometry and function in long-term hemodialysis patients by conventional echocardiography and two-dimensional speckle tracking echocardiography (2D-STE). Methods: A total of 47 hemodialysis patients (2–3 times weekly for 5 years or more) were enrolled in this study. Cardiac VC was defined as bright echoes of more than 1 mm on one or more cusps of the aortic valve or mitral valve or mitral annulus using echocardiography as the screening method. LV longitudinal global strain (GLS) was assessed on the apical four-chamber view and calculated as the mean strain of 6 segments. LV global circumferential strain was acquired on the LV short axis view at the level of papillary muscles. Results: Twenty-five patients with VC had higher mean values of interventricular septum thickness, LV posterior wall thickness, LV mass index, relative wall thickness, and LV mass/end-diastolic volume than 22 patients without VC (p < 0.05, respectively), indicating more obvious LV hypertrophy (LVH). VC patients had higher mitral annular E/E′ values, especially at the septal side representing increased LV filling pressure compatible with diastolic dysfunction, while only the E/E′ ratio of the septal side was significantly different between the 2 groups (16.7 ± 4.1 vs. 12.3 ± 4.4, p < 0.01). When assessed by GLS, LV longitudinal systolic function was also lower in in patients with VC compared with those without VC (–0.18 ± 0.03 vs. –0.25 ± 0.04; p < 0.01). Conclusions: Cardiac VC diagnosed by echocardiography when it occurs in long-term hemodialysis patients may indicate more severe LVH, myocardial damage, and worse heart function in comparison to those without VC. Tissue Doppler imaging and 2D-STE can detect the subtle change of heart function in this population in the early stage of LV dysfunction when LVEF is normal.
Collapse
|
59
|
Identification of Tracheobronchial Tree Calcifications Using Molecular Imaging Probes. Clin Nucl Med 2018; 43:e278-e279. [DOI: 10.1097/rlu.0000000000002164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
60
|
Nsaibia MJ, Boulanger MC, Bouchareb R, Mkannez G, Le Quang K, Hadji F, Argaud D, Dahou A, Bossé Y, Koschinsky ML, Pibarot P, Arsenault BJ, Marette A, Mathieu P. OxLDL-derived lysophosphatidic acid promotes the progression of aortic valve stenosis through a LPAR1-RhoA-NF-κB pathway. Cardiovasc Res 2018; 113:1351-1363. [PMID: 28472283 DOI: 10.1093/cvr/cvx089] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 05/03/2017] [Indexed: 01/15/2023] Open
Abstract
Aims Oxidatively modified lipoproteins may promote the development/progression of calcific aortic valve stenosis (CAVS). Oxidative transformation of low-density lipoprotein (OxLDL) generates lysophosphatidic acid (LPA), a lipid mediator that accumulates in mineralized aortic valves. LPA activates at least six different G protein-coupled receptors, which may play a role in the pathophysiology of CAVS. We hypothesized that LPA derived from OxLDL may promote a NF-κB signature that drives osteogenesis in the aortic valve. Methods and results The role of OxLDL-LPA was examined in isolated valve interstitial cells (VICs) and the molecular pathway was validated in human explanted aortic valves and in a mouse model of CAVS. We found that OxLDL-LPA promoted the mineralization and osteogenic transition of VICs through LPAR1 and the activation of a RhoA-NF-κB pathway. Specifically, we identified that RhoA/ROCK activated IκB kinase alpha, which promoted the phosphorylation of p65 on serine 536 (p65 pS536). p65 pS536 was recruited to the BMP2 promoter and directed an osteogenic program not responsive to the control exerted by the inhibitor of kappa B. In LDLR-/-/ApoB100/100/IGFII transgenic mice (IGFII), which develop CAVS under a high-fat and high-sucrose diet the administration of Ki16425, a Lpar1 blocker, reduced by three-fold the progression rate of CAVS and also decreased the osteogenic activity as measured with a near-infrared fluorescent probe that recognizes hydroxyapatite of calcium. Conclusions OxLDL-LPA promotes an osteogenic program in the aortic valve through a LPAR1-RhoA/ROCK-p65 pS536 pathway. LPAR1 may represent a suitable target to prevent the progression of CAVS.
Collapse
Affiliation(s)
- Mohamed Jalloul Nsaibia
- Laboratory of Cardiovascular Pathobiology, Institut Universitaire de Cardiologie et de Pneumologie de Québec/Quebec Heart and Lung Institute, Research Center, Department of Surgery, Laval University, 2725 Chemin Ste-Foy, Quebec, Quebec G1V-4G5, Canada
| | - Marie-Chloé Boulanger
- Laboratory of Cardiovascular Pathobiology, Institut Universitaire de Cardiologie et de Pneumologie de Québec/Quebec Heart and Lung Institute, Research Center, Department of Surgery, Laval University, 2725 Chemin Ste-Foy, Quebec, Quebec G1V-4G5, Canada
| | - Rihab Bouchareb
- Laboratory of Cardiovascular Pathobiology, Institut Universitaire de Cardiologie et de Pneumologie de Québec/Quebec Heart and Lung Institute, Research Center, Department of Surgery, Laval University, 2725 Chemin Ste-Foy, Quebec, Quebec G1V-4G5, Canada
| | - Ghada Mkannez
- Laboratory of Cardiovascular Pathobiology, Institut Universitaire de Cardiologie et de Pneumologie de Québec/Quebec Heart and Lung Institute, Research Center, Department of Surgery, Laval University, 2725 Chemin Ste-Foy, Quebec, Quebec G1V-4G5, Canada
| | - Khai Le Quang
- Laboratory of Cardiovascular Pathobiology, Institut Universitaire de Cardiologie et de Pneumologie de Québec/Quebec Heart and Lung Institute, Research Center, Department of Surgery, Laval University, 2725 Chemin Ste-Foy, Quebec, Quebec G1V-4G5, Canada
| | - Fayez Hadji
- Laboratory of Cardiovascular Pathobiology, Institut Universitaire de Cardiologie et de Pneumologie de Québec/Quebec Heart and Lung Institute, Research Center, Department of Surgery, Laval University, 2725 Chemin Ste-Foy, Quebec, Quebec G1V-4G5, Canada
| | - Deborah Argaud
- Laboratory of Cardiovascular Pathobiology, Institut Universitaire de Cardiologie et de Pneumologie de Québec/Quebec Heart and Lung Institute, Research Center, Department of Surgery, Laval University, 2725 Chemin Ste-Foy, Quebec, Quebec G1V-4G5, Canada
| | - Abdellaziz Dahou
- Institut Universitaire de Cardiologie et de Pneumologie de Québec/Quebec Heart and Lung Institute, Research Center, Laval University, Quebec, Canada
| | - Yohan Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec/Quebec Heart and Lung Institute, Research Center, Laval University, Quebec, Canada
| | | | - Philippe Pibarot
- Institut Universitaire de Cardiologie et de Pneumologie de Québec/Quebec Heart and Lung Institute, Research Center, Laval University, Quebec, Canada
| | - Benoit J Arsenault
- Institut Universitaire de Cardiologie et de Pneumologie de Québec/Quebec Heart and Lung Institute, Research Center, Laval University, Quebec, Canada
| | - André Marette
- Institut Universitaire de Cardiologie et de Pneumologie de Québec/Quebec Heart and Lung Institute, Research Center, Laval University, Quebec, Canada
| | - Patrick Mathieu
- Laboratory of Cardiovascular Pathobiology, Institut Universitaire de Cardiologie et de Pneumologie de Québec/Quebec Heart and Lung Institute, Research Center, Department of Surgery, Laval University, 2725 Chemin Ste-Foy, Quebec, Quebec G1V-4G5, Canada
| |
Collapse
|
61
|
Chadha DS, Malani SK, Bharadwaj P, Karthikeyan G, Hasija PK. Risk factors for degenerative aortic valve disease in India: A case control study. Med J Armed Forces India 2018; 74:33-37. [PMID: 29386729 DOI: 10.1016/j.mjafi.2017.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 03/09/2017] [Indexed: 02/03/2023] Open
Abstract
Background Degenerative aortic valve disease often co-exists with coronary artery disease (CAD) and studies done in western populations have shown that it shares the same risk factors which cause CAD. However little is known in this context among Asian Indians. The current study looks into the risk factors of degenerative aortic valve disease in Asian Indian population. Methods Ninety-one consecutive patients with severe aortic stenosis (AS) reporting for left heart catheterization prior to valve replacement surgery at a tertiary care centre were recruited for the study. They were compared with age and sex matched controls selected from a database of 3200 patients referred for elective diagnostic left heart catheterization for suspected CAD. Following traditional cardiovascular risk factors were assessed in all patients: age, gender, family history of CAD, smoking history, presence of diabetes, hypertension and dyslipidemia. Results The mean age of the study population was 57.8 ± 8.2 years (range, 40-80 years). Smoking, family history of CAD and hypercholesterolemia were significantly more prevalent in patients with degenerative AS compared to those with normal valves. No significant difference was noted in the presence of diabetes mellitus. On multivariate logistic regression, family history of premature CAD (OR 3.68; CI 1.38-9.78) smoking history (OR, 2.56; CI, 1.21-5.39), and raised LDL levels (OR, 5.55; CI, 2.63-11.69) were independently associated with the aortic stenosis patient cohort. Conclusions The study showed a significant association of cardiovascular risk factors with aortic stenosis independent of age and gender in Asian Indian patients.
Collapse
Affiliation(s)
- D S Chadha
- Senior Advisor (Medicine & Cardiology), Command Hospital (Air Force), Bangalore, India
| | - S K Malani
- Consultant (Medicine & Cardiology), Command Hospital (Central Command), Lucknow, UP, India
| | - P Bharadwaj
- Consultant (Medicine & Cardiology), Military Hospital (Cardio Thoracic Centre), Pune 411040, India
| | | | | |
Collapse
|
62
|
Hervault M, Clavel MA. Sex-related Differences in Calcific Aortic Valve Stenosis: Pathophysiology, Epidemiology, Etiology, Diagnosis, Presentation, and Outcomes. STRUCTURAL HEART-THE JOURNAL OF THE HEART TEAM 2018. [DOI: 10.1080/24748706.2017.1420273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Maxime Hervault
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Marie-Annick Clavel
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| |
Collapse
|
63
|
Myocardial blood flow reserve is impaired in patients with aortic valve calcification and unobstructed epicardial coronary arteries. Int J Cardiol 2017; 248:427-432. [DOI: 10.1016/j.ijcard.2017.06.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 05/13/2017] [Accepted: 06/07/2017] [Indexed: 11/20/2022]
|
64
|
Different Notch signaling in cells from calcified bicuspid and tricuspid aortic valves. J Mol Cell Cardiol 2017; 114:211-219. [PMID: 29158034 DOI: 10.1016/j.yjmcc.2017.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022]
Abstract
AIMS Calcific aortic valve disease is the most common heart valve disease in the Western world. Bicuspid and tricuspid aortic valve calcifications are traditionally considered together although the dynamics of the disease progression is different between the two groups of patients. Notch signaling is critical for bicuspid valve development and NOTCH1 mutations are associated with bicuspid valve and calcification. We hypothesized that Notch-dependent mechanisms of valve mineralization might be different in the two groups. METHODS AND RESULTS We used aortic valve interstitial cells and valve endothelial cells from patients with calcific aortic stenosis with bicuspid or tricuspid aortic valve. Expression of Notch-related genes in valve interstitial cells by qPCR was different between bicuspid and tricuspid groups. Discriminant analysis of gene expression pattern in the interstitial cells revealed that the cells from calcified bicuspid valves formed a separate group from calcified tricuspid and control cells. Interstitial cells from bicuspid calcified valves demonstrated significantly higher sensitivity to stimuli at early stages of induced proosteogenic differentiation and were significantly more sensitive to the activation of proosteogenic OPN, ALP and POSTIN expression by Notch activation. Notch-activated endothelial-to-mesenchymal transition and the corresponding expression of HEY1 and SLUG were also more prominent in bicuspid valve derived endothelial cells compared to the cells from calcified tricuspid and healthy valves. CONCLUSION Early signaling events including Notch-dependent mechanisms that are responsible for the initiation of aortic valve calcification are different between the patients with bicuspid and tricuspid aortic valves.
Collapse
|
65
|
Do Oxidized Lipoproteins Cause Atherosclerotic Cardiovascular Diseases? Can J Cardiol 2017; 33:1513-1516. [PMID: 29100654 DOI: 10.1016/j.cjca.2017.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/31/2022] Open
|
66
|
Xue Y, St. Hilaire C, Hortells L, Phillippi JA, Sant V, Sant S. Shape-Specific Nanoceria Mitigate Oxidative Stress-Induced Calcification in Primary Human Valvular Interstitial Cell Culture. Cell Mol Bioeng 2017; 10:483-500. [PMID: 30319717 PMCID: PMC6178984 DOI: 10.1007/s12195-017-0495-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/12/2017] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Lack of effective pharmacological treatment makes valvular calcification a significant clinical problem in patients with valvular disease and bioprosthetic/mechanical valve replacement therapies. Elevated levels of reactive oxygen species (ROS) in valve tissue have been identified as a prominent hallmark and driving factor for valvular calcification. However, the therapeutic value of ROS-modulating agents for valvular calcification remains elusive. We hypothesized that ROS-modulating shape-specific cerium oxide nanoparticles (CNPs) will inhibit oxidative stress-induced valvular calcification. CNPs are a class of self-regenerative ROS-modulating agents, which can switch between Ce3+ and Ce4+ in response to oxidative microen-vironment. In this work, we developed oxidative stress-induced valve calcification model using two patient-derived stenotic valve interstitial cells (hVICs) and investigated the therapeutic effect of shape-specific CNPs to inhibit hVIC calcification. METHODS Human valvular interstitial cells (hVICs) were obtained from a normal healthy donor and two patients with calcified aortic valves. hVICs were characterized for their phenotypic (mesenchymal, myofibroblast and osteoblast) marker expression by qRT-PCR and antioxidant enzymes activity before and after exposure to hydrogen peroxide (H2O2)-induced oxidative stress. Four shape-specific CNPs (sphere, short rod, long rod, and cube) were synthesized via hydrothermal or ultra-sonication method and characterized for their biocompatibility in hVICs by alamarBlue® assay, and ROS scavenging ability by DCFH-DA assay. H2O2 and inorganic phosphate (Pi) were co-administrated to induce hVIC calcification in vitro as demonstrated by Alizarin Red S staining and calcium quantification. The effect of CNPs on inhibiting H2O2-induced hVIC calcification was evaluated. RESULTS hVICs isolated from calcified valves exhibited elevated osteoblast marker expression and decreased antioxidant enzyme activities compared to the normal hVICs. Due to the impaired antioxidant enzyme activities, acute H2O2-induced oxidative stress resulted in higher ROS levels and osteoblast marker expression in both diseased hVICs when compared to the normal hVICs. Shape-specific CNPs exhibited shape-dependent abiotic ROS scavenging ability, and excellent cytocompatibility. Rod and sphere CNPs scavenged H2O2-induced oxidative stress in hVICs in a shape- and dose-dependent manner by lowering intracellular ROS levels and osteoblast marker expression. Further, CNPs also enhanced activity of antioxidant enzymes in hVICs to combat oxidative stress. Cube CNPs were not effective ROS scavengers. The addition of H2O2 in the Pi-induced calcification model further increased calcium deposition in vitro in a time-dependent manner. Co-administration of rod CNPs with Pi and H2O2 mitigated calcification in the diseased hVICs. CONCLUSIONS We demonstrated that hVICs derived from calcified valves exhibited impaired antioxidant defense mechanisms and were more susceptible to oxidative stress than normal hVICs. CNPs scavenged H2O2-induced oxidative stress in hVICs in a shape-dependent manner. The intrinsic ROS scavenging ability of CNPs and their ability to induce cellular antioxidant enzyme activities may confer protection from oxidative stress-exacerbated calcification. CNPs represent promising antioxidant therapy for treating valvular calcification and deserve further investigation.
Collapse
Affiliation(s)
- Yingfei Xue
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261 USA
| | - Cynthia St. Hilaire
- Department of Medicine, Division of Cardiology & Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15219 USA
| | - Luis Hortells
- Department of Medicine, Division of Cardiology & Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15219 USA
| | - Julie A. Phillippi
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15261 USA
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA 15219 USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219 USA
| | - Vinayak Sant
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261 USA
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261 USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15261 USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219 USA
- 808A Salk Hall, 3501 Terrace Street, Pittsburgh, PA 15261 USA
| |
Collapse
|
67
|
Mathieu P, Arsenault BJ, Boulanger MC, Bossé Y, Koschinsky ML. Pathobiology of Lp(a) in calcific aortic valve disease. Expert Rev Cardiovasc Ther 2017; 15:797-807. [DOI: 10.1080/14779072.2017.1367286] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Patrick Mathieu
- Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Quebec, QC, Canada
| | - Benoit J. Arsenault
- Quebec Heart and Lung Institute/Department of Medicine, Laval University, Quebec, QC, Canada
| | - Marie-Chloé Boulanger
- Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Quebec, QC, Canada
| | - Yohan Bossé
- Quebec Heart and Lung Institute/Department of Molecular Medicine, Laval University, Quebec, QC, Canada
| | | |
Collapse
|
68
|
Barannyk O, Fraser R, Oshkai P. A correlation between long-term in vitro dynamic calcification and abnormal flow patterns past bioprosthetic heart valves. J Biol Phys 2017; 43:279-296. [PMID: 28555360 DOI: 10.1007/s10867-017-9452-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/13/2017] [Indexed: 11/30/2022] Open
Abstract
In this paper, a long-term in vitro dynamic calcification of three porcine aortic heart valves was investigated using a combined approach that involved accelerated wear testing of the valves in the rapid calcification solution, hydrodynamic assessment of the progressive change of effective orifice area (EOA) along with the transaortic pressure gradient, and quantitative visualization of the flow. The motivation for this study was developing a standardized, economical, and feasible in vitro testing methodology for bioprosthetic heart valve calcification, which would address both the hydrodynamic performance of the valves as well as the subsequent changes in the flow field. The results revealed the failure of the test valves at 40 million cycles mark, associated with the critical decrease in the EOA, followed by the increase in the maximum value of viscous shear stress of up to 52%, compared to the values measured at the beginning of the study. The decrease in the EOA was subsequently followed by the rapid increase in the maximum streamwise velocity of the central orifice jet up to the value of about 2.8 m/s, compared to the initial value of 2 m/s, and to the value of 2.2 m/s in the case of a control valve along with progressive narrowing of the velocity profile for two test valves. The significance of the current work is in demonstrating a correlation between calcification of the aortic valve and spatial as well as the temporal development of abnormal flow features.
Collapse
Affiliation(s)
- Oleksandr Barannyk
- Department of Mechanical Engineering, University of Victoria, PO Box 1700 Stn. CSC, Victoria, BC, V8W 2Y2, Canada.
| | - Robert Fraser
- ViVitro Labs Inc., 455 Boleskine Rd, Victoria, BC, V8Z 1E7, Canada
| | - Peter Oshkai
- Department of Mechanical Engineering, University of Victoria, PO Box 1700 Stn. CSC, Victoria, BC, V8W 2Y2, Canada
| |
Collapse
|
69
|
LncRNA MALAT1 sponges miR-204 to promote osteoblast differentiation of human aortic valve interstitial cells through up-regulating Smad4. Int J Cardiol 2017; 243:404-412. [PMID: 28522163 DOI: 10.1016/j.ijcard.2017.05.037] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/08/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Emerging evidences have indicated that long non-coding RNAs (lncRNAs) play vital roles in cardiovascular physiology and pathology. The lncRNA MALAT1, a highly abundant and conserved imprinted gene, has been implicated in many cardiovascular diseases. However, the function of MALAT1 in calcific aortic valve disease (CAVD) remains unknown. This study sought to document the function and underlying mechanism of MALAT1 in regulating CAVD. METHODS Protein level was determined by immunoblotting and immunofluorescence staining. MALAT1, miR-204 and mRNA expressions were detected by qRT-PCR. Mineralized bone matrix formation was assessed by Alizarin Red staining. The interaction between MALAT1 and miR-204 was studied using luciferase reporter assay, RNA pull-down assay and RNA-binding protein immunoprecipitation assay. RESULTS Ectopic expression of MALAT1 was observed in calcific valves and after osteogenic induction in human aortic valve interstitial cells (VICs). In vitro experiments revealed that MALAT1 acted as a positive regulator of osteogenic differentiation by repressing miR-204 expression and activity and thereby promoting expression of osteoblast-specific markers, including alkaline phosphatase, mineralized bone matrix formation and osteocalcin. Mechanistically, we identified Smad4 as a direct target of miR-204. Importantly, MALAT1 could directly interact with miR-204 and overexpression of miR-204 efficiently reversed the upregulation of Smad4 induced by MALAT1. Thus, MALAT1 positively regulated the expression of Smad4 through sponging miR-204, and promoted osteogenic differentiation of VICs. CONCLUSIONS Our study provides novel mechanistic insights into a critical role for lncRNA MALAT1 as a miRNA sponge in CAVD and sheds new light on lncRNA-directed diagnostics and therapeutics in CAVD.
Collapse
|
70
|
Sritharen Y, Enriquez-Sarano M, Schaff HV, Casaclang-Verzosa G, Miller JD. Pathophysiology of Aortic Valve Stenosis: Is It Both Fibrocalcific and Sex Specific? Physiology (Bethesda) 2017; 32:182-196. [PMID: 28404735 PMCID: PMC6148342 DOI: 10.1152/physiol.00025.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 12/24/2022] Open
Abstract
Our understanding of the fundamental biology and identification of efficacious therapeutic targets in aortic valve stenosis has lagged far behind the fields of atherosclerosis and heart failure. In this review, we highlight the most clinically relevant problems facing men and women with fibrocalcific aortic valve stenosis, discuss the fundamental biology underlying valve calcification and fibrosis, and identify key molecular points of intersection with sex hormone signaling.
Collapse
Affiliation(s)
- Yoginee Sritharen
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, Minnesota
| | | | - Hartzell V Schaff
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, Minnesota
| | - Grace Casaclang-Verzosa
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, Minnesota
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Jordan D Miller
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, Minnesota;
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Department of Surgery, Mayo Clinic, Rochester, Minnesota; and the
- Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
71
|
Kolasa-Trela R, Konieczynska M, Bazanek M, Undas A. Specific changes in circulating cytokines and growth factors induced by exercise stress testing in asymptomatic aortic valve stenosis. PLoS One 2017; 12:e0173787. [PMID: 28291817 PMCID: PMC5349660 DOI: 10.1371/journal.pone.0173787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/27/2017] [Indexed: 01/05/2023] Open
Abstract
Background We evaluated exercise-induced changes in the profile of circulating cytokines and growth factors in patients with AS. Methods We studied 32 consecutive asymptomatic moderate-to-severe AS patients and 32 age and sex-matched controls. Plasma levels of interleukin (IL)-6, IL-10, hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), and transforming growth factor (TGF)-β were measured at 4 time points, i.e. at rest, at peak bicycle exercise, one hour and 24 hours after a symptom-limited exercise. Results Exercise increased all the 5 markers in both groups (all p<0.0001). The maximum levels of all tested cytokines were higher in the AS group (all p<0.05) compared with controls. In AS patients the highest levels of VEGF, IL-6, and IL-10 were observed one hour after exercise, while in the control group at peak exercise. In both groups maximum TGF- β levels were observed one hour after exercise. HGF levels were higher at peak and one hour after test in the AS group (p = 0.0001), however the maximum value in AS was observed at peak while in controls after test. In both groups TGF-β was the only marker that remained increased 24 hours after exercise compared with the value at rest (p = 0.0001). The cytokines and growth factors showed no association with heart rate and the workload. Conclusion In asymptomatic patients with moderate-to-severe AS, exercise produces a different pattern of changes in circulating cytokines and growth factors, and maximum levels of all tested cytokines were significantly higher in AS patients compared with the control group.
Collapse
Affiliation(s)
| | | | - Marta Bazanek
- Department of Diagnostic Medicine, John Paul II Hospital, Krakow, Poland
| | - Anetta Undas
- Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- * E-mail:
| |
Collapse
|
72
|
Li G, Qiao W, Zhang W, Li F, Shi J, Dong N. The shift of macrophages toward M1 phenotype promotes aortic valvular calcification. J Thorac Cardiovasc Surg 2017; 153:1318-1327.e1. [PMID: 28283241 DOI: 10.1016/j.jtcvs.2017.01.052] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 12/31/2016] [Accepted: 01/25/2017] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The purpose of the present study was to comprehensively compare the phenotype profile of infiltrated macrophages in human noncalcified and calcific aortic valves, and to determine whether the shift of macrophage polarization modulates valvular calcification in vitro. METHODS Cell surface markers of macrophages and inflammatory cytokines expression in 90 cases of human noncalcified and calcific aortic valve leaflets were analyzed. The normal aortic valve interstitial cells were isolated and cultured in vitro. After incubation with nonconditioned medium and conditioned medium from unstimulated or lipopolysaccharide-stimulated U937 monocytes, valve interstitial cells were evaluated by osteogenic differentiation markers. RESULTS Infiltration of macrophages was enhanced in the calcific aortic valves, and M1 phenotype was the predominant macrophage subsets. In addition, both proinflammatory and anti-inflammatory cytokines were significantly upregulated in the calcific aortic valves. Furthermore, lipopolysaccharide-stimulated monocytes presented with increased expression of inducible nitric oxide synthase and high proportional CD11c-positive (M1) macrophages. Conditioned medium from unstimulated monocytes promoted the osteogenic differentiation of valve interstitial cells in vitro, as evidenced by increased markers such as bone morphogenetic protein 2, osteopontin, and alkaline phosphatase. Conditioned medium from M1 macrophages further enhanced valve interstitial cells calcification. Enzyme-linked immunosorbent assay showed that M1 phenotype macrophages secreted tumor necrosis factors α and interleukin 6, and neutralizing antibodies to these 2 proinflammatory cytokines attenuated induction of osteogenic differentiation and calcification by the conditioned media. CONCLUSIONS Both total numbers and polarization of macrophage influence the process of calcification in human aortic valve. The shift toward M1 phenotype might promote valve interstitial cell calcification.
Collapse
Affiliation(s)
- Geng Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wenjing Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Fei Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
73
|
Nsaibia MJ, Mahmut A, Boulanger MC, Arsenault BJ, Bouchareb R, Simard S, Witztum JL, Clavel MA, Pibarot P, Bossé Y, Tsimikas S, Mathieu P. Autotaxin interacts with lipoprotein(a) and oxidized phospholipids in predicting the risk of calcific aortic valve stenosis in patients with coronary artery disease. J Intern Med 2016; 280:509-517. [PMID: 27237700 DOI: 10.1111/joim.12519] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Studies have shown that lipoprotein(a) [Lp(a)], an important carrier of oxidized phospholipids, is causally related to calcific aortic valve stenosis (CAVS). Recently, we found that Lp(a) mediates the development of CAVS through autotaxin (ATX). OBJECTIVE To determine the predictive value of circulating ATX mass and activity for CAVS. METHODS We performed a case-control study in 300 patients with coronary artery disease (CAD). Patients with CAVS plus CAD (cases, n = 150) were age- and gender-matched (1 : 1) to patients with CAD without aortic valve disease (controls, n = 150). ATX mass and enzymatic activity and levels of Lp(a) and oxidized phospholipids on apolipoprotein B-100 (OxPL-apoB) were determined in fasting plasma samples. RESULTS Compared to patients with CAD alone, ATX mass (P < 0.0001), ATX activity (P = 0.05), Lp(a) (P = 0.003) and OxPL-apoB (P < 0.0001) levels were elevated in those with CAVS. After adjustment, we found that ATX mass (OR 1.06, 95% CI 1.03-1.10 per 10 ng mL-1 , P = 0.001) and ATX activity (OR 1.57, 95% CI 1.14-2.17 per 10 RFU min-1 , P = 0.005) were independently associated with CAVS. ATX activity interacted with Lp(a) (P = 0.004) and OxPL-apoB (P = 0.001) on CAVS risk. After adjustment, compared to patients with low ATX activity (dichotomized at the median value) and low Lp(a) (<50 mg dL-1 ) or OxPL-apoB (<2.02 nmol L-1 , median) levels (referent), patients with both higher ATX activity (≥84 RFU min-1 ) and Lp(a) (≥50 mg dL-1 ) (OR 3.46, 95% CI 1.40-8.58, P = 0.007) or OxPL-apoB (≥2.02 nmol L-1 , median) (OR 5.48, 95% CI 2.45-12.27, P < 0.0001) had an elevated risk of CAVS. CONCLUSION Autotaxin is a novel and independent predictor of CAVS in patients with CAD.
Collapse
Affiliation(s)
- M J Nsaibia
- Laboratory of Cardiovascular Pathobiology Quebec Heart and Lung Institute/Research Center, Department of Surgery, Quebec, Canada
| | - A Mahmut
- Laboratory of Cardiovascular Pathobiology Quebec Heart and Lung Institute/Research Center, Department of Surgery, Quebec, Canada
| | - M-C Boulanger
- Laboratory of Cardiovascular Pathobiology Quebec Heart and Lung Institute/Research Center, Department of Surgery, Quebec, Canada
| | - B J Arsenault
- Department of Medicine, Laval University, Quebec, Canada
| | - R Bouchareb
- Laboratory of Cardiovascular Pathobiology Quebec Heart and Lung Institute/Research Center, Department of Surgery, Quebec, Canada
| | - S Simard
- Statistical Consulting Service Unit at the Quebec Heart and Lung Institute/Research Center, Laval University, Quebec, Canada
| | - J L Witztum
- University of California San Diego, La Jolla, CA, USA
| | - M-A Clavel
- Department of Medicine, Laval University, Quebec, Canada
| | - P Pibarot
- Department of Medicine, Laval University, Quebec, Canada
| | - Y Bossé
- Department of Molecular Medicine, Laval University, Quebec, Canada
| | - S Tsimikas
- University of California San Diego, La Jolla, CA, USA
| | - P Mathieu
- Laboratory of Cardiovascular Pathobiology Quebec Heart and Lung Institute/Research Center, Department of Surgery, Quebec, Canada.
| |
Collapse
|
74
|
Liu X, Xu Z. Osteogenesis in calcified aortic valve disease: From histopathological observation towards molecular understanding. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:156-161. [DOI: 10.1016/j.pbiomolbio.2016.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 12/14/2022]
|
75
|
Hadji F, Boulanger MC, Guay SP, Gaudreault N, Amellah S, Mkannez G, Bouchareb R, Marchand JT, Nsaibia MJ, Guauque-Olarte S, Pibarot P, Bouchard L, Bossé Y, Mathieu P. Altered DNA Methylation of Long Noncoding RNA H19 in Calcific Aortic Valve Disease Promotes Mineralization by Silencing NOTCH1. Circulation 2016; 134:1848-1862. [PMID: 27789555 DOI: 10.1161/circulationaha.116.023116] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/20/2016] [Indexed: 01/15/2023]
Abstract
BACKGROUND Calcific aortic valve disease is characterized by an abnormal mineralization of the aortic valve. Osteogenic activity in the aortic valve is under the control of NOTCH1, which regulates the expression of key pro-osteogenic genes such as RUNX2 and BMP2. Long noncoding RNAs (lncRNAs) may reprogram cells by altering the gene expression pattern. METHODS Multidimensional genomic profiling was performed in human aortic valves to document the expression of lncRNAs and the DNA methylation pattern in calcific aortic valve disease. In-depth functional assays were carried out to document the impact of lncRNA on the mineralization of the aortic valve. RESULTS We documented that lncRNA H19 (H19) was increased in calcific aortic valve disease. Hypomethylation of the promoter region was observed in mineralized aortic valves and was inversely associated with H19 expression. Knockdown and overexpression experiments showed that H19 induces a strong osteogenic phenotype by altering the NOTCH1 pathway. Gene promoter analyses showed that H19 silenced NOTCH1 by preventing the recruitment of p53 to its promoter. A knockdown of H19 in valve interstitial cells (VICs) increased the expression of NOTCH1 and decreased the level of RUNX2 and BMP2, 2 downstream targets repressed by NOTCH1. In rescue experiments, the transfection of a vector encoding for the active Notch intracellular domain prevented H19-induced mineralization of valve interstitial cells. CONCLUSIONS These findings indicate that a dysregulation of DNA methylation in the promoter of H19 during calcific aortic valve disease is associated with a higher expression of this lncRNA, which promotes an osteogenic program by interfering with the expression of NOTCH1.
Collapse
MESH Headings
- Aged
- Aortic Valve/cytology
- Aortic Valve/metabolism
- Aortic Valve/pathology
- Aortic Valve Stenosis/genetics
- Aortic Valve Stenosis/pathology
- Bone Morphogenetic Protein 2/analysis
- Calcinosis/genetics
- Calcinosis/pathology
- Cells, Cultured
- Core Binding Factor Alpha 1 Subunit/metabolism
- DNA Methylation
- Female
- Genes, Reporter
- HEK293 Cells
- Humans
- Male
- Middle Aged
- Promoter Regions, Genetic
- RNA Interference
- RNA, Long Noncoding/antagonists & inhibitors
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Small Interfering/metabolism
- Receptor, Notch1/antagonists & inhibitors
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Tumor Suppressor Protein p53/analysis
Collapse
Affiliation(s)
- Fayez Hadji
- From Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery (F.H., M.-C.B, N.G., S.A., G.M., R.B., M.J.N., P.M.), Department of Molecular Medicine (J.T.M., S.G.-O., Y.B.), and Department of Medicine (P.P.), Laval University, Quebec, QC, Canada; Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada (S.-P.G., L.B.); and ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada (S.-P.G., L.B.)
| | - Marie-Chloé Boulanger
- From Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery (F.H., M.-C.B, N.G., S.A., G.M., R.B., M.J.N., P.M.), Department of Molecular Medicine (J.T.M., S.G.-O., Y.B.), and Department of Medicine (P.P.), Laval University, Quebec, QC, Canada; Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada (S.-P.G., L.B.); and ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada (S.-P.G., L.B.)
| | - Simon-Pierre Guay
- From Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery (F.H., M.-C.B, N.G., S.A., G.M., R.B., M.J.N., P.M.), Department of Molecular Medicine (J.T.M., S.G.-O., Y.B.), and Department of Medicine (P.P.), Laval University, Quebec, QC, Canada; Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada (S.-P.G., L.B.); and ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada (S.-P.G., L.B.)
| | - Nathalie Gaudreault
- From Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery (F.H., M.-C.B, N.G., S.A., G.M., R.B., M.J.N., P.M.), Department of Molecular Medicine (J.T.M., S.G.-O., Y.B.), and Department of Medicine (P.P.), Laval University, Quebec, QC, Canada; Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada (S.-P.G., L.B.); and ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada (S.-P.G., L.B.)
| | - Soumiya Amellah
- From Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery (F.H., M.-C.B, N.G., S.A., G.M., R.B., M.J.N., P.M.), Department of Molecular Medicine (J.T.M., S.G.-O., Y.B.), and Department of Medicine (P.P.), Laval University, Quebec, QC, Canada; Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada (S.-P.G., L.B.); and ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada (S.-P.G., L.B.)
| | - Guada Mkannez
- From Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery (F.H., M.-C.B, N.G., S.A., G.M., R.B., M.J.N., P.M.), Department of Molecular Medicine (J.T.M., S.G.-O., Y.B.), and Department of Medicine (P.P.), Laval University, Quebec, QC, Canada; Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada (S.-P.G., L.B.); and ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada (S.-P.G., L.B.)
| | - Rihab Bouchareb
- From Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery (F.H., M.-C.B, N.G., S.A., G.M., R.B., M.J.N., P.M.), Department of Molecular Medicine (J.T.M., S.G.-O., Y.B.), and Department of Medicine (P.P.), Laval University, Quebec, QC, Canada; Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada (S.-P.G., L.B.); and ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada (S.-P.G., L.B.)
| | - Joël Tremblay Marchand
- From Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery (F.H., M.-C.B, N.G., S.A., G.M., R.B., M.J.N., P.M.), Department of Molecular Medicine (J.T.M., S.G.-O., Y.B.), and Department of Medicine (P.P.), Laval University, Quebec, QC, Canada; Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada (S.-P.G., L.B.); and ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada (S.-P.G., L.B.)
| | - Mohamed Jalloul Nsaibia
- From Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery (F.H., M.-C.B, N.G., S.A., G.M., R.B., M.J.N., P.M.), Department of Molecular Medicine (J.T.M., S.G.-O., Y.B.), and Department of Medicine (P.P.), Laval University, Quebec, QC, Canada; Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada (S.-P.G., L.B.); and ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada (S.-P.G., L.B.)
| | - Sandra Guauque-Olarte
- From Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery (F.H., M.-C.B, N.G., S.A., G.M., R.B., M.J.N., P.M.), Department of Molecular Medicine (J.T.M., S.G.-O., Y.B.), and Department of Medicine (P.P.), Laval University, Quebec, QC, Canada; Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada (S.-P.G., L.B.); and ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada (S.-P.G., L.B.)
| | - Philippe Pibarot
- From Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery (F.H., M.-C.B, N.G., S.A., G.M., R.B., M.J.N., P.M.), Department of Molecular Medicine (J.T.M., S.G.-O., Y.B.), and Department of Medicine (P.P.), Laval University, Quebec, QC, Canada; Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada (S.-P.G., L.B.); and ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada (S.-P.G., L.B.)
| | - Luigi Bouchard
- From Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery (F.H., M.-C.B, N.G., S.A., G.M., R.B., M.J.N., P.M.), Department of Molecular Medicine (J.T.M., S.G.-O., Y.B.), and Department of Medicine (P.P.), Laval University, Quebec, QC, Canada; Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada (S.-P.G., L.B.); and ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada (S.-P.G., L.B.)
| | - Yohan Bossé
- From Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery (F.H., M.-C.B, N.G., S.A., G.M., R.B., M.J.N., P.M.), Department of Molecular Medicine (J.T.M., S.G.-O., Y.B.), and Department of Medicine (P.P.), Laval University, Quebec, QC, Canada; Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada (S.-P.G., L.B.); and ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada (S.-P.G., L.B.)
| | - Patrick Mathieu
- From Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery (F.H., M.-C.B, N.G., S.A., G.M., R.B., M.J.N., P.M.), Department of Molecular Medicine (J.T.M., S.G.-O., Y.B.), and Department of Medicine (P.P.), Laval University, Quebec, QC, Canada; Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada (S.-P.G., L.B.); and ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada (S.-P.G., L.B.).
| |
Collapse
|
76
|
Kennamer A, Sierad L, Pascal R, Rierson N, Albers C, Harpa M, Cotoi O, Harceaga L, Olah P, Terezia P, Simionescu A, Simionescu D. Bioreactor Conditioning of Valve Scaffolds Seeded Internally with Adult Stem Cells. Tissue Eng Regen Med 2016; 13:507-515. [PMID: 30337944 DOI: 10.1007/s13770-016-9114-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The goal of this study was to test the hypothesis that stem cells, as a response to valve-specific extracellular matrix "niches" and mechanical stimuli, would differentiate into valvular interstitial cells (VICs). Porcine aortic root scaffolds were prepared by decellularization. After verifying that roots exhibited adequate hemodynamics in vitro, we seeded human adipose-derived stem cells (hADSCs) within the interstitium of the cusps and subjected the valves to in vitro pulsatile bioreactor testing in pulmonary pressures and flow conditions. As controls we incubated cell-seeded valves in a rotator device which allowed fluid to flow through the valves ensuring gas and nutrient exchange without subjecting the cusps to significant stress. After 24 days of conditioning, valves were analyzed for cell phenotype using immunohistochemistry for vimentin, alpha-smooth muscle cell actin (SMA) and prolyl-hydroxylase (PHA). Fresh native valves were used as immunohistochemistry controls. Analysis of bioreactor-conditioned valves showed that almost all seeded cells had died and large islands of cell debris were found within each cusp. Remnants of cells were positive for vimentin. Cell seeded controls, which were only rotated slowly to ensure gas and nutrient exchange, maintained about 50% of cells alive; these cells were positive for vimentin and negative for alpha-SMA and PHA, similar to native VICs. These results highlight for the first time the extreme vulnerability of hADSCs to valve-specific mechanical forces and also suggest that careful, progressive mechanical adaptation to valve-specific forces might encourage stem cell differentiation towards the VIC phenotype.
Collapse
Affiliation(s)
- Allison Kennamer
- Biocompatibility and Tissue Regeneration Laboratories, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Leslie Sierad
- Biocompatibility and Tissue Regeneration Laboratories, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Richard Pascal
- Biocompatibility and Tissue Regeneration Laboratories, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Nicholas Rierson
- Biocompatibility and Tissue Regeneration Laboratories, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Christopher Albers
- Biocompatibility and Tissue Regeneration Laboratories, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Marius Harpa
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy, Targu Mures, Romania
| | - Ovidiu Cotoi
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy, Targu Mures, Romania
| | - Lucian Harceaga
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy, Targu Mures, Romania
| | - Peter Olah
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy, Targu Mures, Romania
| | - Preda Terezia
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy, Targu Mures, Romania
| | - Agneta Simionescu
- Cardiovascular Tissue Engineering and Regenerative Medicine Laboratory, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Dan Simionescu
- Biocompatibility and Tissue Regeneration Laboratories, Department of Bioengineering, Clemson University, Clemson, SC, USA.,Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy, Targu Mures, Romania
| |
Collapse
|
77
|
Aortic valve stenosis: treatments options in elderly high-risk patients. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2016; 13:473-4. [PMID: 27582760 PMCID: PMC4987414 DOI: 10.11909/j.issn.1671-5411.2016.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
78
|
Sierad LN, Shaw EL, Bina A, Brazile B, Rierson N, Patnaik SS, Kennamer A, Odum R, Cotoi O, Terezia P, Branzaniuc K, Smallwood H, Deac R, Egyed I, Pavai Z, Szanto A, Harceaga L, Suciu H, Raicea V, Olah P, Simionescu A, Liao J, Movileanu I, Harpa M, Simionescu DT. Functional Heart Valve Scaffolds Obtained by Complete Decellularization of Porcine Aortic Roots in a Novel Differential Pressure Gradient Perfusion System. Tissue Eng Part C Methods 2016; 21:1284-96. [PMID: 26467108 DOI: 10.1089/ten.tec.2015.0170] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is a great need for living valve replacements for patients of all ages. Such constructs could be built by tissue engineering, with perspective of the unique structure and biology of the aortic root. The aortic valve root is composed of several different tissues, and careful structural and functional consideration has to be given to each segment and component. Previous work has shown that immersion techniques are inadequate for whole-root decellularization, with the aortic wall segment being particularly resistant to decellularization. The aim of this study was to develop a differential pressure gradient perfusion system capable of being rigorous enough to decellularize the aortic root wall while gentle enough to preserve the integrity of the cusps. Fresh porcine aortic roots have been subjected to various regimens of perfusion decellularization using detergents and enzymes and results compared to immersion decellularized roots. Success criteria for evaluation of each root segment (cusp, muscle, sinus, wall) for decellularization completeness, tissue integrity, and valve functionality were defined using complementary methods of cell analysis (histology with nuclear and matrix stains and DNA analysis), biomechanics (biaxial and bending tests), and physiologic heart valve bioreactor testing (with advanced image analysis of open-close cycles and geometric orifice area measurement). Fully acellular porcine roots treated with the optimized method exhibited preserved macroscopic structures and microscopic matrix components, which translated into conserved anisotropic mechanical properties, including bending and excellent valve functionality when tested in aortic flow and pressure conditions. This study highlighted the importance of (1) adapting decellularization methods to specific target tissues, (2) combining several methods of cell analysis compared to relying solely on histology, (3) developing relevant valve-specific mechanical tests, and (4) in vitro testing of valve functionality.
Collapse
Affiliation(s)
- Leslie Neil Sierad
- 1 Biocompatibility and Tissue Regeneration Laboratories, Department of Bioengineering, Clemson University , Clemson, South Carolina
| | - Eliza Laine Shaw
- 1 Biocompatibility and Tissue Regeneration Laboratories, Department of Bioengineering, Clemson University , Clemson, South Carolina
| | - Alexander Bina
- 1 Biocompatibility and Tissue Regeneration Laboratories, Department of Bioengineering, Clemson University , Clemson, South Carolina
| | - Bryn Brazile
- 2 Tissue Bioengineering Laboratory, Department of Agricultural and Biological Engineering, Mississippi State University , Starkville, Mississippi
| | - Nicholas Rierson
- 1 Biocompatibility and Tissue Regeneration Laboratories, Department of Bioengineering, Clemson University , Clemson, South Carolina
| | - Sourav S Patnaik
- 2 Tissue Bioengineering Laboratory, Department of Agricultural and Biological Engineering, Mississippi State University , Starkville, Mississippi
| | - Allison Kennamer
- 1 Biocompatibility and Tissue Regeneration Laboratories, Department of Bioengineering, Clemson University , Clemson, South Carolina
| | - Rebekah Odum
- 1 Biocompatibility and Tissue Regeneration Laboratories, Department of Bioengineering, Clemson University , Clemson, South Carolina
| | - Ovidiu Cotoi
- 3 Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy , Targu Mures, Romania
| | - Preda Terezia
- 3 Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy , Targu Mures, Romania
| | - Klara Branzaniuc
- 3 Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy , Targu Mures, Romania
| | - Harrison Smallwood
- 1 Biocompatibility and Tissue Regeneration Laboratories, Department of Bioengineering, Clemson University , Clemson, South Carolina
| | - Radu Deac
- 3 Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy , Targu Mures, Romania
| | - Imre Egyed
- 3 Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy , Targu Mures, Romania
| | - Zoltan Pavai
- 3 Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy , Targu Mures, Romania
| | - Annamaria Szanto
- 3 Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy , Targu Mures, Romania
| | - Lucian Harceaga
- 3 Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy , Targu Mures, Romania
| | - Horatiu Suciu
- 3 Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy , Targu Mures, Romania
| | - Victor Raicea
- 3 Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy , Targu Mures, Romania
| | - Peter Olah
- 3 Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy , Targu Mures, Romania
| | - Agneta Simionescu
- 4 Cardiovascular Tissue Engineering and Regenerative Medicine Laboratory, Department of Bioengineering, Clemson University , Clemson, South Carolina
| | - Jun Liao
- 2 Tissue Bioengineering Laboratory, Department of Agricultural and Biological Engineering, Mississippi State University , Starkville, Mississippi
| | - Ionela Movileanu
- 3 Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy , Targu Mures, Romania
| | - Marius Harpa
- 3 Tissue Engineering and Regenerative Medicine Laboratory, Department of Anatomy, University of Medicine and Pharmacy , Targu Mures, Romania
| | - Dan Teodor Simionescu
- 1 Biocompatibility and Tissue Regeneration Laboratories, Department of Bioengineering, Clemson University , Clemson, South Carolina
| |
Collapse
|
79
|
Aortic stenosis: insights on pathogenesis and clinical implications. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2016; 13:489-98. [PMID: 27582763 PMCID: PMC4987417 DOI: 10.11909/j.issn.1671-5411.2016.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aortic stenosis (AS) is a common valvular heart disease in the Western populations, with an estimated overall prevalence of 3% in adults over 75 years. To understand its patho-biological processes represents a priority. In elderly patients, AS usually involves trileaflet valves and is referred to as degenerative calcific processes. Scientific evidence suggests the involvement of an active "atherosclerosis-like" pathogenesis in the initiation phase of degenerative AS. To the contrary, the progression could be driven by different forces (such as mechanical stress, genetic factors and interaction between inflammation and calcification). The improved understanding presents potentially new therapeutic targets for preventing and inhibiting the development and progression of the disease. Furthermore, in clinical practice the management of AS patients implies the evaluation of generalized atherosclerotic manifestations (i.e., in the coronary and carotid arteries) even for prognostic reasons. In counselling elderly patients, the risk stratification should address individual frailty beyond the generic risk scores. In these regard, the co-morbidities, and in particular those linked to the global atherosclerotic burden, should be carefully investigated in order to define the risk/benefit ratio for invasive treatment strategies. We present a detailed overview of insights in pathogenesis of AS with possible practical implications.
Collapse
|
80
|
Abstract
Calcific aortic valve disease (CAVD) is a common cardiovascular disease in the elderly individuals associated with major morbidity and mortality. The process is characterized by multiple steps: lipid infiltration, inflammation, fibrosis, and calcification. Inhibitors of proprotein convertase subtilisin/kexin type 9 (PCSK9) represent a new therapeutic category of drugs for the treatment of dyslipidemia and atherosclerotic cardiovascular disease. Monoclonal antibodies of PCSK9 can result in substantial reductions in atherogenic lipoprotein cholesterol-carrying particles, especially lipoprotein(a), and thereby hold the potential for further reducing events associated with atherosclerotic cardiovascular disease. In this article, we reviewed the clinical and experimental studies in order to find the evidence of the involvement of PCSK9 in CAVD and the potential benefits of PCSK9 monoclonal antibodies in clinical therapeutics.
Collapse
Affiliation(s)
- Wenguang Wang
- Graduate School, Tianjin Medical University, Tianjin, China
- Department of Cardiology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Chao Liu
- Department of Cardiology, Tianjin Chest Hospital, Tianjin Medical University, Tianjin, China
| | - Hongliang Cong
- Department of Cardiology, Tianjin Chest Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
81
|
Arima J, Huang C, Rosner B, Akaishi S, Ogawa R. Hypertension: a systemic key to understanding local keloid severity. Wound Repair Regen 2016; 23:213-21. [PMID: 25728259 DOI: 10.1111/wrr.12277] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 02/25/2015] [Indexed: 12/16/2022]
Abstract
This study assessed whether hypertension, a circulating factor, influences local keloid severity. This retrospective cross-sectional study involved 304 consecutive patients (13-78 years old) with keloids who were surgically treated in our hospital between January 2011 and August 2013. Their blood pressure (BP), age and gender, and the size and number of their keloids before surgery were recorded. Ordinal logistic regression analyses showed that BP associated significantly with both keloid size and number (all p < 0.0001). Age also associated with keloid size (p < 0.0001). However, a Goodness-of-fit chi-square test showed that the prevalence of hypertension was not higher among keloid patients than in the general Japanese population. This study provides epidemiological evidence for the possibility that primary hypertension may aggravate keloids. We propose that the skin, along with the heart and liver, is a target organ of hypertension. The observations of this study, which require validation with large-scale prospective interventional trials, suggest that keloid patients should be screened for hypertension and that antihypertensive treatments may be of prophylactic and therapeutic value for skin fibrosis.
Collapse
Affiliation(s)
- Juri Arima
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | - Chenyu Huang
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan.,Department of Plastic and Reconstructive Surgery, Beijing Tsinghua Changgung Hospital; Medical Center, Tsinghua University, Beijing, China
| | - Bernard Rosner
- Channing Laboratory, Harvard Medical School, Boston, Massachusetts
| | - Satoshi Akaishi
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | - Rei Ogawa
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
82
|
Abstract
Calcific aortic stenosis (AS) is the most prevalent heart valve disorder in developed countries. It is characterized by progressive fibro-calcific remodelling and thickening of the aortic valve leaflets that, over years, evolve to cause severe obstruction to cardiac outflow. In developed countries, AS is the third-most frequent cardiovascular disease after coronary artery disease and systemic arterial hypertension, with a prevalence of 0.4% in the general population and 1.7% in the population >65 years old. Congenital abnormality (bicuspid valve) and older age are powerful risk factors for calcific AS. Metabolic syndrome and an elevated plasma level of lipoprotein(a) have also been associated with increased risk of calcific AS. The pathobiology of calcific AS is complex and involves genetic factors, lipoprotein deposition and oxidation, chronic inflammation, osteoblastic transition of cardiac valve interstitial cells and active leaflet calcification. Although no pharmacotherapy has proved to be effective in reducing the progression of AS, promising therapeutic targets include lipoprotein(a), the renin-angiotensin system, receptor activator of NF-κB ligand (RANKL; also known as TNFSF11) and ectonucleotidases. Currently, aortic valve replacement (AVR) remains the only effective treatment for severe AS. The diagnosis and staging of AS are based on the assessment of stenosis severity and left ventricular systolic function by Doppler echocardiography, and the presence of symptoms. The introduction of transcatheter AVR in the past decade has been a transformative therapeutic innovation for patients at high or prohibitive risk for surgical valve replacement, and this new technology might extend to lower-risk patients in the near future.
Collapse
Affiliation(s)
- Brian R Lindman
- Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Marie-Annick Clavel
- Québec Heart and Lung Institute, Department of Medicine, Laval University, 2725 Chemin Sainte-Foy, Québec City, Québec G1V 4G5, Canada
| | - Patrick Mathieu
- Québec Heart and Lung Institute, Department of Medicine, Laval University, 2725 Chemin Sainte-Foy, Québec City, Québec G1V 4G5, Canada
| | - Bernard Iung
- Cardiology Department, AP-HP, Bichat Hospital, Paris, France
- Paris-Diderot University, DHU Fire, Paris, France
| | - Patrizio Lancellotti
- University of Liège Hospital, GIGA Cardiovascular Sciences, Department of Cardiology, Heart Valve Clinic and CHU Sart Tilman, Liège, Belgium
- Grupo Villa Maria Care and Research, Anthea Hospital, Bari, Italy
| | - Catherine M Otto
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, USA
| | - Philippe Pibarot
- Québec Heart and Lung Institute, Department of Medicine, Laval University, 2725 Chemin Sainte-Foy, Québec City, Québec G1V 4G5, Canada
| |
Collapse
|
83
|
Mahmut A, Mahjoub H, Boulanger MC, Dahou A, Bouchareb R, Capoulade R, Arsenault BJ, Larose E, Bossé Y, Pibarot P, Mathieu P. Circulating Lp-PLA2 is associated with high valvuloarterial impedance and low arterial compliance in patients with aortic valve bioprostheses. Clin Chim Acta 2016; 455:20-5. [PMID: 26797670 DOI: 10.1016/j.cca.2016.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/18/2015] [Accepted: 01/16/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND We previously reported that plasma Lp-PLA2 was associated with aortic valve disease progression and degeneration of bioprostheses. Low systemic arterial compliance and high valvuloarterial impedance (Z(va)) are predictors of poor survival in patients with aortic valve disease. However, the prevalence of high Z(va) after AVR is largely unknown and whether Lp-PLA2 could predict Z(va) has not been documented. We investigated the relationships between plasma lipoprotein-associated phospholipase A2 (Lp-PLA2) mass and activity and valvuloarterial impedance (Z(va)), an index of global LV hemodynamic load, in patients that underwent aortic valve replacement (AVR). METHODS A total of 195 patients with aortic bioprostheses underwent echocardiographic assessment of the prosthetic aortic valve function 8±3.4 years after AVR. Lp-PLA2 mass and activity were measured. RESULTS In this group of patients, the mean Z(va) was elevated (5.73±1.21 mm Hg·ml(-1)·m(2)). In univariate analyses, Lp-PLA2 mass (p=0.003) and Lp-PLA2 activity (p=0.046) were associated with Z(va). After adjustment for covariates including age, gender, clinical risk factors, anti-hypertensive medications, body mass index and prosthesis size, Lp-PLA2 mass was associated with high Z(va) (≥4.5 mm Hg·ml(-1)·m(2)) (OR: 1.29, 95%CI: 1.10-1.53; p=0.005) and was inversely related with the systemic arterial compliance (β=-0.01, SEM=0.003; p=0.003). CONCLUSIONS An increased Z(va), an index of excessive hemodynamic load, was highly prevalent 8-year post-AVR and was independently related to circulating Lp-PLA2.
Collapse
Affiliation(s)
- Ablajan Mahmut
- Laboratoire d'Études Moléculaires des Valvulopathies (LEMV), Groupe de Recherche en Valvulopathies (GRV), Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Quebec, Canada
| | - Haïfa Mahjoub
- Department of Medicine, Laval University, Québec, Canada
| | - Marie-Chloé Boulanger
- Laboratoire d'Études Moléculaires des Valvulopathies (LEMV), Groupe de Recherche en Valvulopathies (GRV), Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Quebec, Canada
| | | | - Rihab Bouchareb
- Laboratoire d'Études Moléculaires des Valvulopathies (LEMV), Groupe de Recherche en Valvulopathies (GRV), Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Quebec, Canada
| | | | | | - Eric Larose
- Department of Medicine, Laval University, Québec, Canada
| | - Yohan Bossé
- Department of Molecular Medicine, Laval University, Québec, Canada
| | | | - Patrick Mathieu
- Laboratoire d'Études Moléculaires des Valvulopathies (LEMV), Groupe de Recherche en Valvulopathies (GRV), Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Quebec, Canada.
| |
Collapse
|
84
|
Sun F, Shi J, Chen S, Deng C, Hu X, Li H, Li G, Liu Y, Dong N. Lazaroid U-74389G inhibits the osteoblastic differentiation of IL-1β-indcued aortic valve interstitial cells through glucocorticoid receptor and inhibition of NF-κB pathway. J Steroid Biochem Mol Biol 2015; 152:114-23. [PMID: 25957738 DOI: 10.1016/j.jsbmb.2015.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/07/2015] [Accepted: 05/01/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND Aortic valve calcification is characterized as the active process of aortic valve interstitial cells (AVICs), and considered as an inflammatory disease. As an antioxidant, the anti-inflammatory activity of Lazaroid has been exhibited in various models. We hypothesized that Lazaroid U-74389G would inhibit the osteoblastic differentiation of AVICs induced by IL-1β. METHODS Normal tricuspid aortic valve leaflets were collected from patients with acute aortic dissection (Type A) undergoing the Bentall procedure. AVICs were isolated and stimulated with IL-1β in presence or absence of U-74389G in culture. Cell lysates were analyzed for osteogenic markers and nuclear factor-κB using real-time PCR and Immunoblotting. Culture media was analyzed for IL-6 and IL-8 with enzyme-linked immunosorbent assay. Alizarin Red Staining was adopted to demonstrate the calcium deposition. RESULTS The expression of alkaline phosphatase and bone morphogenetic protein, accompanied by the production of IL-6 and IL-8, was up-regulated in response to IL-1β and was inhibited by the addition of U-74389G. The NF-κB pathway was activated by IL-1β and involved in the suppression of U-74389G on osteoblastic differentiation in AVICs. The negative effects of U-74389G on ostengenic gene expression and mineralization of AVICs were blocked by glucocorticoid receptor antagonist mifepristone and the NF-κB inhibitor Bay 11-7082. CONCLUSIONS U-74389G inhibits the pro-osteogenic response to IL-1β stimulation in AVICs. The osteoblastic differentiation and mineralization of AVICs were inhabited by U-74389G though the modulation of NF-κB activation, and this pathway could be potential therapeutic targets for medical treatment of calcified aortic valve disease.
Collapse
Affiliation(s)
- Fuqiang Sun
- Department of Cardiovascular surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Cardiovascular surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Jiawei Shi
- Department of Cardiovascular surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Si Chen
- Department of Cardiovascular surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Cheng Deng
- Department of Cardiovascular surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xingjian Hu
- Department of Cardiovascular surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Huadong Li
- Department of Cardiovascular surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Geng Li
- Department of Cardiovascular surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yi Liu
- Department of Cardiovascular surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Nianguo Dong
- Department of Cardiovascular surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
85
|
MicroRNA-204 Targets Runx2 to Attenuate BMP-2-induced Osteoblast Differentiation of Human Aortic Valve Interstitial Cells. J Cardiovasc Pharmacol 2015; 66:63-71. [DOI: 10.1097/fjc.0000000000000244] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
86
|
Chen D, Shen YL, Hu WL, Chen ZP, Li YS. Effects of oxidized low density lipoprotein on transformation of valvular myofibroblasts to osteoblast-like phenotype. ACTA ACUST UNITED AC 2015; 35:362-367. [PMID: 26072074 DOI: 10.1007/s11596-015-1438-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/12/2015] [Indexed: 11/24/2022]
Abstract
In order to investigate the roles of Wnt signal pathway in transformation of cardiac valvular myofibroblasts to the osteoblast-like phenotype, the primary cultured porcine aortic valve myofibroblasts were incubated with oxidized low density lipoprotein (ox-LDL, 50 mg/L), and divided into four groups according to the ox-LDL treatment time: control group, ox-LDL 24-h group, ox-LDL 48-h group, and ox-LDL 72-h group. Wnt signal pathway blocker Dickkopf-1 (DDK-1, 100 μg/L) was added in ox-LDL 72-h group. The expression of a-smooth muscle actin (α-SMA), bone morphogenetic protein 2 (BMP2), alkaline phosphatase (ALP), and osteogenic transcription factor Cbfa-1 was detected by Western blotting, and that of β-catenin, a key mediator of Wnt signal pathway by immunocytochemical staining method. The Wnt/β-catenin was observed and the transformation of myofibroblasts to the osteoblast-like phenotype was examined. The expression of α-SMA, BMP2, ALP and Cbfa-1 proteins in the control group was weaker than in the ox-LDL-treated groups. In ox-LDL-treated groups, the protein expression of a-SMA, BMP2, ALP, and Cbfa-1 was significantly increased in a time-dependent manner as compared with the control group, and there was significant difference among the three ox-LDL-treated groups (P<0.05 for all); β-catenin protein was also up-regulated in the ox-LDL-treated groups in a time-dependent manner as compared with the control group (P<0.05), and its transfer from cytoplasm to nucleus and accumulation in the nucleus were increased in the same fashion (P<0.05). After addition of DKK-1, the expression of α-SMA, bone-related proteins and β-catenin protein was significantly reduced as compared with ox-LDL 72-h group (P<0.05). The Wnt/ β-catenin signaling pathway may play an important role in transformation of valvular myofibroblasts to the osteoblast-like phenotype.
Collapse
Affiliation(s)
- Di Chen
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying-Lian Shen
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei-Lin Hu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zheng-Ping Chen
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yong-Sheng Li
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
87
|
Mathieu P, Boulanger MC, Després JP. Ectopic visceral fat: a clinical and molecular perspective on the cardiometabolic risk. Rev Endocr Metab Disord 2014; 15:289-98. [PMID: 25326657 DOI: 10.1007/s11154-014-9299-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Worldwide, cardiovascular diseases (CVDs) are a leading cause of mortality. While in many westernized societies there has been a decrease prevalence of smoking and that a special emphasis has been put on the urgency to control the, so called, classical risk factors, it is more and more recognized that there remains a residual risk, which contributes to the development of CVDs. Imaging studies conducted over two decades have highlighted that the accumulation of ectopic visceral fat is associated with a plethora of metabolic dysfunctions, which have complex and intertwined interactions and participate to the development/progression/events of many cardiovascular disorders. The contribution of visceral ectopic fat to the development of coronary artery disease (CAD) is now well established, while in the last several years emerging evidence has pointed out that accumulation of harmful ectopic fat is associated with other cardiovascular disorders such as calcific aortic valve disease (CAVD), atrial fibrillation and left ventricular dysfunction. We review herein the key molecular processes linking the accumulation of ectopic fat to the development of CVDs. We have attempted, whenever possible, to use a translational approach whereby the pathobiology processes are linked to clinical observations.
Collapse
Affiliation(s)
- Patrick Mathieu
- Institut de Cardiologie et de Pneumologie de Québec/Quebec Heart and Lung Institute, 2725 Chemin Ste-Foy, Québec, QC, G1V-4G5, Canada,
| | | | | |
Collapse
|