51
|
Hesami G, Darvishi S, Zarei M, Hadidi M. Fabrication of chitosan nanoparticles incorporated with
Pistacia
atlantica
subsp. kurdica hulls’ essential oil as a potential antifungal preservative against strawberry grey mould. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15110] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Golnaz Hesami
- Department of Food Science and Technology Sanandaj Branch, Islamic Azad University Pasdaran St, PO Box 618 Sanandaj Iran
| | - Sholeh Darvishi
- Department of Food Science and Technology Sanandaj Branch, Islamic Azad University Pasdaran St, PO Box 618 Sanandaj Iran
| | - Mohammad Zarei
- Department of Food Science and Technology Sanandaj Branch, Islamic Azad University Pasdaran St, PO Box 618 Sanandaj Iran
- Department of Food Science and Technology, School of industrial technology, Faculty of applied Sciences Universiti Teknologi MARA shah Alam Selangor 40450 Malaysia
| | - Milad Hadidi
- Department of Food Technology University of Lleida Av. Alcalde Rovira Roure, 191, 25198 Lleida Spain
| |
Collapse
|
52
|
Khezerlou A, Zolfaghari H, Banihashemi SA, Forghani S, Ehsani A. Plant gums as the functional compounds for edible films and coatings in the food industry: A review. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5293] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Arezou Khezerlou
- Students Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Hajar Zolfaghari
- Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Seyed Alireza Banihashemi
- Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Samira Forghani
- Department of Food Science and Technology, Faculty of Agriculture Urmia University Urmia Iran
| | - Ali Ehsani
- Nutrition Research Center, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
53
|
Effect of Tannic Acid Concentration on the Physicochemical, Thermal, and Antioxidant Properties of Gelatin/Gum Arabic–Walled Microcapsules Containing Origanum onites L. Essential Oil. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02633-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
54
|
Malviya R, Raj S, Fuloria S, Subramaniyan V, Sathasivam K, Kumari U, Unnikrishnan Meenakshi D, Porwal O, Hari Kumar D, Singh A, Chakravarthi S, Kumar Fuloria N. Evaluation of Antitumor Efficacy of Chitosan-Tamarind Gum Polysaccharide Polyelectrolyte Complex Stabilized Nanoparticles of Simvastatin. Int J Nanomedicine 2021; 16:2533-2553. [PMID: 33824590 PMCID: PMC8018389 DOI: 10.2147/ijn.s300991] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE The present study was intended to fabricate chitosan (Ch)-tamarind gum polysaccharide (TGP) polyelectrolyte complex stabilized cubic nanoparticles of simvastatin and evaluate their potential against human breast cancer cell lines. MATERIALS AND METHODS The antisolvent precipitation method was used for formulation of nanoparticles. Factorial design (32) was utilized as a tool to analyze the effect of Ch and TGP concentration on particle size and entrapment efficiency of nanoparticles. RESULTS Formulated nanoparticles showed high entrapment efficiency (67.19±0.42-83.36±0.23%) and small size (53.3-383.1 nm). The present investigation involved utilization of two biological membranes (egg and tomato) as biological barriers for drug release. The study revealed that drug release from tomato membranes was retarded (as compared to egg membranes) but the release pattern matched that of egg membranes. All formulations followed the Baker-Lansdale model of drug release irrespective of the two different biological barriers. Stability studies were carried out for 45 days and exhibited less variation in particle size as well as a reduction in entrapment efficiency. Simvastatin loaded PEC stabilized nanoparticles exhibited better control on growth of human breast cancer cell lines than simple simvastatin. An unusual anticancer effect of simvastatin nanoparticles is also supported by several other research studies. CONCLUSION The present study involves first-time synthesis of Ch-TGP polyelectrolyte complex stabilized nanoparticles of simvastatin against MCF-7 cells. It recommends that, in future, theoretical modeling and IVIVC should be carried out for perfect designing of delivery systems.
Collapse
Affiliation(s)
- Rishabha Malviya
- Department of Pharmacy, SMAS, Galgotias University, Greater Noida, U.P., India
| | - Shakshi Raj
- Department of Pharmacy, SMAS, Galgotias University, Greater Noida, U.P., India
| | - Shivkanya Fuloria
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, AIMST University, Kedah, 08100, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Pharmacology, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur, 42610, Malaysia
| | - Kathiresan Sathasivam
- Department of Biotechnology, Faculty of Applied Science, AIMST University, Kedah, 08100, Malaysia
| | - Usha Kumari
- Department of Physiology, Faculty of Medicine, AIMST University, Kedah, 08100, Malaysia
| | | | - Omji Porwal
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil, 44001, KRG, Iraq
| | - Darnal Hari Kumar
- Department of Pathology, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Johor Bahru, 80200, Malaysia
| | - Amit Singh
- Department of Pharmacy, SMAS, Galgotias University, Greater Noida, U.P., India
| | - Srikumar Chakravarthi
- Department of Pathology, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur, 42610, Malaysia
| | - Neeraj Kumar Fuloria
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, AIMST University, Kedah, 08100, Malaysia
| |
Collapse
|
55
|
Mehryar L, Esmaiili M, Zeynali F, Imani M, Sadeghi R. Fabrication and characterization of sunflower protein isolate nanoparticles, and their potential for encapsulation and sustainable release of curcumin. Food Chem 2021; 355:129572. [PMID: 33799269 DOI: 10.1016/j.foodchem.2021.129572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/20/2021] [Accepted: 03/07/2021] [Indexed: 11/19/2022]
Abstract
In this research, first, the effects of two desolvating agents (ethanol and methanol) at three temperature values (4, 25, and 50 °C) on the fabrication of sunflower protein isolate (SnPI) nanoparticles were studied using a desolvation method. Second, the ability of the nanoparticles to encapsulate curcumin was investigated. Results showed that ethanol led to smaller nanoparticles compared to methanol as the desolvating agent at 4 and 50 °C. However, at 25 °C, ethanol formed the most uniform nanoparticles with the lowest polydispersity index (0.188 ± 0.091) and particle size of 174.64 ± 30.61 nm. The encapsulation efficiency was in the range of 39.1 to 95.4% according to the fabrication condition and curcumin-to-protein mass ratio. A biphasic trend of curcumin release from nanoparticles was observed; in which, over 50% of curcumin was released from the curcumin-loaded nanoparticles in the first 2 h, which is attributed to the burst effect of the protein matrix.
Collapse
Affiliation(s)
- Laleh Mehryar
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Mohsen Esmaiili
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Fariba Zeynali
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Mehdi Imani
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Rohollah Sadeghi
- Bi-School of Food Science [currently Department of Animal, Veterinary and Food Science], College of Agricultural and Life Sciences, University of Idaho, Moscow, ID 83844, USA.
| |
Collapse
|
56
|
Lodhi APS, Kumar D. Natural ingredients based environmental friendly metalworking fluid with superior lubricity. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
57
|
Homayounpour P, Shariatifar N, Alizadeh‐Sani M. Development of nanochitosan-based active packaging films containing free and nanoliposome caraway ( Carum carvi. L) seed extract. Food Sci Nutr 2021; 9:553-563. [PMID: 33473316 PMCID: PMC7802560 DOI: 10.1002/fsn3.2025] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/29/2020] [Accepted: 11/09/2020] [Indexed: 12/22/2022] Open
Abstract
The biocompatible active films were prepared based on nanochitosan (NCh) containing free and nanoliposome caraway seed extract (NLCE). The produced films were characterized by physico-mechanical, barrier, structural, color, antimicrobial, and antioxidant properties. The average particle size of NLCE was 78-122 nm, and the encapsulation efficiency (EE%) was obtained 49.87%-73.07%. Nanoliposomes with the lowest size and the highest encapsulation efficiency were merged with the film samples. NCh/CE3% and NCh/NLCE3% films had higher stability compared to other films and showed the highest antimicrobial activity (3.68 mm inhibition) and radical quenching capacity (51%), respectively. Likewise, biodegradable active films containing nanoliposomes had lower antimicrobial potential and higher antioxidant capacity than films containing free extract with similar concentration. The Fourier-transform infrared spectroscopy (FTIR) results revealed new interactions between NCh and nanoliposomes. Scanning electron microscopy (SEM) investigation also exhibited a homogenous structure and nearly smooth surface morphology with a good dispersion for NCh/NLCE films. Despite an increase in yellowness (b value) and a decrease in whiteness (L value) index, the incorporation of nanoliposomes within the NCh films improved the mechanical flexibility (from 10.2% to 15.05%) and reduced water vapor permeability (WVP) (from 14.2 × 10-12 g/m·s·Pa to 11.9 × 10-12 g/m·s·Pa). Today, due to the growing trend toward natural ingredients, the use of nanoparticles derived from plant derivatives has expanded in the food industry owing to their antimicrobial and antioxidant properties.
Collapse
Affiliation(s)
- Parisa Homayounpour
- Department of Food Science and TechnologyIslamic Azad UniversityDamghan BranchDamghanIran
| | - Nabi Shariatifar
- Food Safety and Hygiene DivisionDepartment of Environmental HealthSchool of Public HealthTehran University of Medical SciencesTehranIran
- Halal Research Center of Islamic Republic of IranTehranIran
| | - Mahmood Alizadeh‐Sani
- Food Safety and Hygiene DivisionDepartment of Environmental HealthSchool of Public HealthTehran University of Medical SciencesTehranIran
| |
Collapse
|
58
|
Khoshnoudi-Nia S, Forghani Z, Jafari SM. A systematic review and meta-analysis of fish oil encapsulation within different micro/nanocarriers. Crit Rev Food Sci Nutr 2020; 62:2061-2082. [PMID: 33207958 DOI: 10.1080/10408398.2020.1848793] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fish oil is one of the most important sources of omega 3 polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid and docosahexaenoic acid which are the most important PUFAs with several health benefits. However, PUFAs are prone to oxidation and have a poor water solubility which limits the use of fish oils into food formulations. Encapsulation techniques can be applied to overcome these challenges. There is a large number of published micro/nanoencapsulation papers, where each of them contains a limited number of wall materials, feed formulation, encapsulation technique, and storage conditions. Therefore, without systematic evaluation of the data extracted from available studies, the design of functional foods containing fish oil would not be very successful. The objective of this systematic review is a meta-analysis of published researches on the nano/microencapsulation of fish oil. A comprehensive literature search was performed between 1 October and 31 December 2019 with encapsulation, fish oil, and oxidative stability keywords. Overall, 39 qualified articles were selected for the statistical analysis. Based on the technique used for encapsulation, the fish oil-loaded carriers were classified into four main groups: (a) spray-dried particles; (b) freeze-dried particles; (c) electrospun fibers and electrosprayed capsules; and (d) other carriers prepared by supercritical antisolvent, gelation, liposomes, spray-freeze drying, and transglutaminase catalyzed cross-linking. The three most frequent methods applied for fish oil encapsulation were spray drying (42.86%), freeze drying (21.43%), and electrohydrodynamic (19.04%) methods, respectively. Averagely, the best encapsulation efficiency was obtained for electrohydrodynamic processes. Also, the combination of polysaccharide-protein based wall materials provided the best performance in terms of fish oil encapsulation efficiency.
Collapse
Affiliation(s)
- Sara Khoshnoudi-Nia
- Seafood Processing Research Group, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Zahra Forghani
- Department Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
59
|
Garavand F, Cacciotti I, Vahedikia N, Rehman A, Tarhan Ö, Akbari-Alavijeh S, Shaddel R, Rashidinejad A, Nejatian M, Jafarzadeh S, Azizi-Lalabadi M, Khoshnoudi-Nia S, Jafari SM. A comprehensive review on the nanocomposites loaded with chitosan nanoparticles for food packaging. Crit Rev Food Sci Nutr 2020; 62:1383-1416. [DOI: 10.1080/10408398.2020.1843133] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Cork, Ireland
| | - Ilaria Cacciotti
- Department of Engineering, INSTM RU, University of Rome “Niccolò Cusano”, Roma, Italy
| | - Nooshin Vahedikia
- Department of Food Technology, Institute of Chemical Technologies, Iranian Research Organization for Science & Technology (IROST), Tehran, Iran
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Özgür Tarhan
- Department of Food Engineering, Engineering Faculty, Uşak University, Uşak, Turkey
| | - Safoura Akbari-Alavijeh
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Rezvan Shaddel
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Ali Rashidinejad
- Riddet Institute Centre of Research Excellence, Massey University, Palmerston North, New Zealand
| | - Mohammad Nejatian
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Research Center for Environmental Determinants of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Jafarzadeh
- School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Maryam Azizi-Lalabadi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Research Center for Environmental Determinants of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Khoshnoudi-Nia
- Seafood Processing Research Group, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
60
|
Alizadeh-Sani M, Mohammadian E, Rhim JW, Jafari SM. pH-sensitive (halochromic) smart packaging films based on natural food colorants for the monitoring of food quality and safety. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.08.014] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
61
|
Rajabi H, Jafari SM, Feizy J, Ghorbani M, Mohajeri SA. Preparation and characterization of 3D graphene oxide nanostructures embedded with nanocomplexes of chitosan- gum Arabic biopolymers. Int J Biol Macromol 2020; 162:163-174. [DOI: 10.1016/j.ijbiomac.2020.06.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022]
|
62
|
Giaconia MA, Ramos SDP, Pereira CF, Lemes AC, De Rosso VV, Braga ARC. Overcoming restrictions of bioactive compounds biological effects in food using nanometer-sized structures. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105939] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
63
|
|
64
|
Detsi A, Kavetsou E, Kostopoulou I, Pitterou I, Pontillo ARN, Tzani A, Christodoulou P, Siliachli A, Zoumpoulakis P. Nanosystems for the Encapsulation of Natural Products: The Case of Chitosan Biopolymer as a Matrix. Pharmaceutics 2020; 12:E669. [PMID: 32708823 PMCID: PMC7407519 DOI: 10.3390/pharmaceutics12070669] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022] Open
Abstract
Chitosan is a cationic natural polysaccharide, which has emerged as an increasingly interesting biomaterialover the past few years. It constitutes a novel perspective in drug delivery systems and nanocarriers' formulations due to its beneficial properties, including biocompatibility, biodegradability and low toxicity. The potentiality of chemical or enzymatic modifications of the biopolymer, as well as its complementary use with other polymers, further attract the scientific community, offering improved and combined properties in the final materials. As a result, chitosan has been extensively used as a matrix for the encapsulation of several valuable compounds. In this review article, the advantageous character of chitosan as a matrix for nanosystemsis presented, focusing on the encapsulation of natural products. A five-year literature review is attempted covering the use of chitosan and modified chitosan as matrices and coatings for the encapsulation of natural extracts, essential oils or pure naturally occurring bioactive compounds are discussed.
Collapse
Affiliation(s)
- Anastasia Detsi
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Eleni Kavetsou
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Ioanna Kostopoulou
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Ioanna Pitterou
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Antonella Rozaria Nefeli Pontillo
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Andromachi Tzani
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Paris Christodoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, Vassileos Constantinou Ave. 48, 116 35 Athens, Greece; (P.C.); (A.S.)
| | - Aristeia Siliachli
- Institute of Chemical Biology, National Hellenic Research Foundation, Vassileos Constantinou Ave. 48, 116 35 Athens, Greece; (P.C.); (A.S.)
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, 41500 Larissa, Greece
| | - Panagiotis Zoumpoulakis
- Institute of Chemical Biology, National Hellenic Research Foundation, Vassileos Constantinou Ave. 48, 116 35 Athens, Greece; (P.C.); (A.S.)
- Department of Food Science and Technology, Universisty of West Attica, Ag. Spyridonos Str., Egaleo, 12243 Athens, Greece
| |
Collapse
|
65
|
Mohammadi M, Jafari SM, Hamishehkar H, Ghanbarzadeh B. Phytosterols as the core or stabilizing agent in different nanocarriers. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
66
|
Sharif N, Khoshnoudi-Nia S, Jafari SM. Nano/microencapsulation of anthocyanins; a systematic review and meta-analysis. Food Res Int 2020; 132:109077. [DOI: 10.1016/j.foodres.2020.109077] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/11/2020] [Accepted: 02/04/2020] [Indexed: 12/30/2022]
|
67
|
Dima C, Assadpour E, Dima S, Jafari SM. Bioavailability of nutraceuticals: Role of the food matrix, processing conditions, the gastrointestinal tract, and nanodelivery systems. Compr Rev Food Sci Food Saf 2020; 19:954-994. [DOI: 10.1111/1541-4337.12547] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/07/2020] [Accepted: 01/24/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Cristian Dima
- Faculty of Food Science and Engineering“Dunarea de Jos” University of Galati Galati Romania
| | - Elham Assadpour
- Department of Food Materials and Process Design EngineeringGorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| | - Stefan Dima
- Faculty of Science and Environment“Dunarea de Jos” University of Galati Galati Romania
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design EngineeringGorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| |
Collapse
|
68
|
Chitosan nanoparticles loaded with clove essential oil: Characterization, antioxidant and antibacterial activities. Carbohydr Polym 2020; 236:116075. [PMID: 32172888 DOI: 10.1016/j.carbpol.2020.116075] [Citation(s) in RCA: 277] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/10/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022]
Abstract
One of the recent trends in the food industry is application of natural antioxidant/antimicrobial agents. In this study, essential oil of clove buds was extracted and encapsulated in chitosan nanoparticles using a two-step technique of emulsion-ionic gelation. A good retention rate (55.8-73.4 %) of clove essential oil (CEO) loaded in chitosan nanoparticles was confirmed. Also, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analyses revealed the success of CEO encapsulation. Scanning electron microscopy (SEM) images illustrated regular distribution and spherical shape of nanoparticles with a size range of 223-444 nm. The antioxidant activity of CEO-loaded chitosan nanoparticles was higher than free CEO. Similarly, CEO-loaded chitosan nanoparticles had a high antibacterial activity against L. monocytogenes and S. aureus (inhibition halo diameter of 4.80-4.78 cm). This technique could improve the efficiency of CEO in food products and a delivery system for novel applications such as active packaging.
Collapse
|
69
|
Antioxidant and anti-cancer activity of Dunaliella salina extract and oral drug delivery potential via nano-based formulations of gum Arabic coated magnetite nanoparticles. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101278] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|