51
|
Abstract
Seeing begins in the photoreceptors, where light is absorbed and signaled to the nervous system. Throughout the animal kingdom, photoreceptors are diverse in design and purpose. Nonetheless, phototransduction-the mechanism by which absorbed photons are converted into an electrical response-is highly conserved and based almost exclusively on a single class of photoproteins, the opsins. In this Review, we survey the G protein-coupled signaling cascades downstream from opsins in photoreceptors across vertebrate and invertebrate species, noting their similarities as well as differences.
Collapse
Affiliation(s)
- King-Wai Yau
- Solomon H. Snyder Department of Neuroscience and Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
52
|
Abstract
Circadian rhythms in mammals are adjusted daily to the environmental day/night cycle by photic input via the retinohypothalamic tract (RHT). Retinal ganglion cells (RGCs) of the RHT constitute a separate light-detecting system in the mammalian retina used for irradiance detection and for transmission to the circadian system and other non-imaging forming processes in the brain. The RGCs of the RHT are intrinsically photosensitive due to the expression of melanopsin, an opsin-like photopigment. This notion is based on anatomical and functional data and on studies of mice lacking melanopsin. Furthermore, heterologous expression of melanopsin in non-neuronal mammalian cell lines was found sufficient to render these cells photosensitive. Even though solid evidence regarding the function of melanopsin exists, little is known about the regulation of melanopsin gene expression. Studies in albino Wistar rats showed that the expression of melanopsin is diurnal at both the mRNA and protein levels. The diurnal changes in melanopsin expression seem, however, to be overridden by prolonged exposure to light or darkness. Significant increase in melanopsin expression was observed from the first day in constant darkness and the expression continued to increase during prolonged exposure in constant darkness. Prolonged exposure to constant light, on the other hand, decreased melanopsin expression to an almost undetectable level after 5 days of constant light. The induction of melanopsin by darkness was even more pronounced if darkness was preceded by light suppression for 5 days. These observations show that dual mechanisms regulate melanopsin gene expression and that the intrinsic light-responsive RGCs in the albino Wistar rat adapt their expression of melanopsin to environmental light and darkness.
Collapse
Affiliation(s)
- Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
53
|
Abstract
The circadian clock in the suprachiasmatic nuclei (SCN) is composed of thousands of oscillator neurons, each dependent on the cell-autonomous action of a defined set of circadian clock genes. A major question is still how these individual oscillators are organized into a biological clock that produces a coherent output capable of timing all the different daily changes in behavior and physiology. We investigated which anatomical connections and neurotransmitters are used by the biological clock to control the daily release pattern of a number of hormones. The picture that emerged shows projections contacting target neurons in the medial hypothalamus surrounding the SCN. The activity of these pre-autonomic and neuro-endocrine target neurons is controlled by differentially timed waves of vasopressin, GABA, and glutamate release from SCN terminals, among other factors. Together our data indicate that, with regard to the timing of their main release period within the LD cycle, at least four subpopulations of SCN neurons should be discernible. The different subgroups do not necessarily follow the phenotypic differences among SCN neurons. Thus, different subgroups can be found within neuron populations containing the same neurotransmitter. Remarkably, a similar distinction of four differentially timed subpopulations of SCN neurons was recently also discovered in experiments determining the temporal patterns of rhythmicity in individual SCN neurons by way of the electrophysiology or clock gene expression. Moreover, the specialization of the SCN may go as far as a single body structure, i.e., the SCN seems to contain neurons that specifically target the liver, pineal gland, and adrenal gland.
Collapse
Affiliation(s)
- A Kalsbeek
- Netherlands Institute for Brain Research, Hypothalamic Integration Mechanisms, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
54
|
Abstract
The circadian clock in the suprachiasmatic nuclei (SCN) is composed of thousands of oscillator neurons, each of which is dependent on the cell-autonomous action of a defined set of circadian clock genes. A major question is still how these individual oscillators are organized into a biological clock producing a coherent output that is able to time all the different daily changes in behavior and physiology. We investigated which anatomical connections and neurotransmitters are used by the biological clock to control the daily release pattern of a number of hormones. The picture that emerged shows projections contacting target neurons in the medial hypothalamus surrounding the SCN. The activity of these pre-autonomic and neuro-endocrine target neurons is controlled by differentially timed waves of, among others, vasopressin, GABA, and glutamate release from SCN terminals. Together our data indicate that, with regard to the timing of their main release period within the light-dark (LD) cycle, at least 4 subpopulations of SCN neurons should be discerned. The different subgroups do not necessarily follow the phenotypic differences among SCN neurons. Thus, different subgroups can be found within neuron populations containing the same neurotransmitter. Remarkably, a similar distinction of 4 differentially timed subpopulations of SCN neurons was recently also discovered in experiments determining the temporal patterns of rhythmicity in individual SCN neurons by way of the electrophysiology or clock gene expression. Moreover, the specialization of the SCN may go as far as a single body structure; i.e., the SCN seems to contain neurons that specifically target the liver, pineal, and adrenal.
Collapse
Affiliation(s)
- A Kalsbeek
- Netherlands Institute for Brain Research, Hypothalamic Integration Mechanisms, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
55
|
González-Menéndez I, Contreras F, Cernuda-Cernuda R, García-Fernández JM. Daily rhythm of melanopsin-expressing cells in the mouse retina. Front Cell Neurosci 2009; 3:3. [PMID: 19562086 PMCID: PMC2701677 DOI: 10.3389/neuro.03.003.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 06/05/2009] [Indexed: 11/13/2022] Open
Abstract
In addition to some other functions, melanopsin-expressing retinal ganglion cells (RGCs) constitute the principal mediators of the circadian photoentrainment, a process by which the suprachiasmatic nucleus (the central clock of mammals), adjusts daily to the external day/night cycle. In the present study these RGCs were immunohistochemically labelled using a specific polyclonal antiserum raised against mouse melanopsin. A daily oscillation in the number of immunostained cells was detected in mice kept under a light / dark (LD) cycle. One hour before the lights were on (i.e., the end of the night period) the highest number of immunopositive cells was detected while the lowest was seen 4 h later (i.e., within the first hours of the light period). This finding suggests that some of the melanopsin-expressing RGCs “turn on” and “off” during the day/night cycle. We have also detected that these daily variations already occur in the early postnatal development, when the rod/cone photoreceptor system is not yet functional. Two main melanopsin-expressing cell subpopulations could be found within the retina: M1 cells showed robust dendritic arborization within the OFF sublamina of the inner plexiform layer (IPL), whilst M2 cells had fine dendritic processes within the ON sublamina of the IPL. These two cell subpopulations also showed different daily oscillations throughout the LD cycle. In order to find out whether or not the melanopsin rhythm was endogenous, other mice were maintained in constant darkness for 6 days. Under these conditions, no defined rhythm was detected, which suggests that the daily oscillation detected either is light-dependent or is gradually lost under constant conditions. This is the first study to analyze immunohistochemically the daily oscillation of the number of melanopsin-expressing cells in the mouse retina.
Collapse
|
56
|
The Pupils. Ophthalmology 2009. [DOI: 10.1016/b978-0-323-04332-8.00174-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
57
|
Hannibal J, Brabet P, Fahrenkrug J. Mice lacking the PACAP type I receptor have impaired photic entrainment and negative masking. Am J Physiol Regul Integr Comp Physiol 2008; 295:R2050-8. [DOI: 10.1152/ajpregu.90563.2008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The retinohypothalamic tract (RHT) is a retinofugal neuronal pathway which, in mammals, mediates nonimage-forming vision to various areas in the brain involved in circadian timing, masking behavior, and regulation of the pupillary light reflex. The RHT costores the two neurotransmitters glutamate and pituitary adenylate cyclase activating peptide (PACAP), which in a rather complex interplay are mediators of photic adjustment of the circadian system. To further characterize the role of PACAP/PACAP receptor type 1 (PAC1) receptor signaling in light entrainment of the clock and in negative masking behavior, we extended previous studies in mice lacking the PAC1 receptor (PAC1 KO) by examining their phase response to single light pulses using Aschoff type II regime, their ability to entrain to non-24-h light-dark (LD) cycles and large phase shifts of the LD cycle (jet lag), as well as their negative masking response during different light intensities. A prominent finding in PAC1 KO mice was a significantly decreased phase delay of the endogenous rhythm at early night. In accordance, PAC1 KO mice had a reduced ability to entrain to T cycles longer than 26 h and needed more time to reentrain to large phase delays, which was prominent at low light intensities. The data obtained at late night indicated that PACAP/PAC1 receptor signaling is less important during the phase-advancing part of the phase-response curve. Finally, the PAC1 KO mice showed impaired negative masking behavior at low light intensities. Our findings substantiate a role for PACAP/PAC1 receptor signaling in nonimage-forming vision and indicate that the system is particularly important at lower light intensities.
Collapse
|
58
|
The role of dermal photoreceptors during the sea lamprey (Petromyzon marinus) spawning migration. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2008; 194:921-8. [DOI: 10.1007/s00359-008-0364-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Revised: 08/20/2008] [Accepted: 08/23/2008] [Indexed: 10/21/2022]
|
59
|
Schmidt TM, Taniguchi K, Kofuji P. Intrinsic and extrinsic light responses in melanopsin-expressing ganglion cells during mouse development. J Neurophysiol 2008; 100:371-84. [PMID: 18480363 DOI: 10.1152/jn.00062.2008] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Melanopsin (Opn4) is a photopigment found in a subset of retinal ganglion cells (RGCs) that project to various brain areas. These neurons are intrinsically photosensitive (ipRGCs) and are implicated in nonimage-forming responses to environmental light such as the pupillary light reflex and circadian entrainment. Recent evidence indicates that ipRGCs respond to light at birth, but questions remain as to whether and when they undergo significant functional changes. We used bacterial artificial chromosome transgenesis to engineer a mouse line in which enhanced green fluorescent protein (EGFP) is expressed under the control of the melanopsin promoter. Double immunolabeling for EGFP and melanopsin demonstrates their colocalization in ganglion cells of mutant mouse retinas. Electrophysiological recordings of ipRGCs in neonatal mice (postnatal day 0 [P0] to P7) demonstrated that these cells responded to light with small and sluggish depolarization. However, starting at P11 we observed ipRGCs that responded to light with a larger and faster onset (<1 s) and offset (<1 s) depolarization. These faster, larger depolarizations were observed in most ipRGCs by early adult ages. However, on application of a cocktail of synaptic blockers, we found that all cells responded to light with slow onset (>2.5 s) and offset (>10 s) depolarization, revealing the intrinsic, melanopsin-mediated light responses. The extrinsic, cone/rod influence on ipRGCs correlates with their extensive dendritic stratification in the inner plexiform layer. Collectively, these results demonstrate that ipRGCs make use of melanopsin for phototransduction before eye opening and that these cells further integrate signals derived from the outer retina as the retina matures.
Collapse
Affiliation(s)
- Tiffany M Schmidt
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
60
|
Radu RA, Hu J, Peng J, Bok D, Mata NL, Travis GH. Retinal pigment epithelium-retinal G protein receptor-opsin mediates light-dependent translocation of all-trans-retinyl esters for synthesis of visual chromophore in retinal pigment epithelial cells. J Biol Chem 2008; 283:19730-8. [PMID: 18474598 DOI: 10.1074/jbc.m801288200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Visual perception begins with the absorption of a photon by an opsin pigment, inducing isomerization of its 11-cis-retinaldehyde chromophore. After a brief period of activation, the resulting all-trans-retinaldehyde dissociates from the opsin apoprotein rendering it insensitive to light. Restoring light sensitivity to apo-opsin requires thermal re-isomerization of all-trans-retinaldehyde to 11-cis-retinaldehyde via an enzyme pathway called the visual cycle in retinal pigment epithelial (RPE) cells. Vertebrates can see over a 10(8)-fold range of background illumination. This implies that the visual cycle can regenerate a visual chromophore over a similarly broad range. However, nothing is known about how the visual cycle is regulated. Here we show that RPE cells, functionally or physically separated from photoreceptors, respond to light by mobilizing all-trans-retinyl esters. These retinyl esters are substrates for the retinoid isomerase and hence critical for regenerating visual chromophore. We show in knock-out mice and by RNA interference in human RPE cells that this mobilization is mediated by a protein called "RPE-retinal G protein receptor" (RGR) opsin. These data establish that RPE cells are intrinsically sensitive to light. Finally, we show that in the dark, RGR-opsin inhibits lecithin:retinol acyltransferase and all-trans-retinyl ester hydrolase in vitro and that this inhibition is released upon exposure to light. The results of this study suggest that RGR-opsin mediates light-dependent translocation of all-trans-retinyl esters from a storage pool in lipid droplets to an "isomerase pool" in membranes of the endoplasmic reticulum. This translocation permits insoluble all-trans-retinyl esters to be utilized as substrate for the synthesis of a new visual chromophore.
Collapse
|
61
|
Szkudlarek HJ, Herdzina O, Lewandowski MH. Ultra-slow oscillatory neuronal activity in the rat olivary pretectal nucleus: comparison with oscillations within the intergeniculate leaflet. Eur J Neurosci 2008; 27:2657-64. [DOI: 10.1111/j.1460-9568.2008.06225.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
62
|
Jusuf PR, Lee SCS, Hannibal J, Grünert U. Characterization and synaptic connectivity of melanopsin-containing ganglion cells in the primate retina. Eur J Neurosci 2008; 26:2906-21. [PMID: 18001286 DOI: 10.1111/j.1460-9568.2007.05924.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Melanopsin is a photopigment expressed in retinal ganglion cells, which are intrinsically photosensitive and are also involved in retinal circuits arising from rod and cone photoreceptors. This circuitry, however, is poorly understood. Here, we studied the morphology, distribution and synaptic input to melanopsin-containing ganglion cells in a New World monkey, the common marmoset (Callithrix jacchus). The dendrites of melanopsin-containing cells in marmoset stratify either close to the inner nuclear layer (outer stratifying), or close to the ganglion cell layer (inner stratifying). The dendritic fields of outer-stratifying cells tile the retina, with little overlap. However, the dendritic fields of outer-stratifying cells largely overlap with the dendritic fields of inner-stratifying cells. Thus, inner-stratifying and outer-stratifying cells may form functionally independent populations. The synaptic input to melanopsin-containing cells was determined using synaptic markers (antibodies to C-terminal binding protein 2, CtBP2, for presumed bipolar synapses, and antibodies to gephyrin for presumed amacrine synapses). Both outer-stratifying and inner-stratifying cells show colocalized immunoreactive puncta across their entire dendritic tree for both markers. The density of CtBP2 puncta on inner dendrites was about 50% higher than that on outer dendrites. The density of gephyrin puncta was comparable for outer and inner dendrites but higher than the density of CtBP2 puncta. The inner-stratifying cells may receive their input from a type of diffuse bipolar cell (DB6). Our results are consistent with the idea that both outer and inner melanopsin cells receive bipolar and amacrine input across their dendritic tree.
Collapse
Affiliation(s)
- Patricia R Jusuf
- National Vision Research Institute of Australia, Cnr Keppel & Cardigan Streets, Carlton, Victoria 3053, Australia
| | | | | | | |
Collapse
|
63
|
Abstract
The recent discovery of melanopsin-expressing retinal ganglion cells that mediate the pupil light reflex has provided new insights into how the pupil responds to different properties of light. These ganglion cells are unique in their ability to transduce light into electrical energy. There are parallels between the electrophysiologic behavior of these cells in primates and the clinical pupil response to chromatic stimuli. Under photopic conditions, a red light stimulus produces a pupil constriction mediated predominantly by cone input via trans-synaptic activation of melanopsin-expressing retinal ganglion cells, whereas a blue light stimulus at high intensity produces a steady-state pupil constriction mediated primarily by direct intrinsic photoactivation of the melanopsin-expressing ganglion cells. Preliminary data in humans suggest that under photopic conditions, cones primarily drive the transient phase of the pupil light reflex, whereas intrinsic activation of the melanopsin-expressing ganglion cells contributes heavily to sustained pupil constriction. The use of chromatic light stimuli to elicit transient and sustained pupil light reflexes may become a clinical pupil test that allows differentiation between disorders affecting photoreceptors and those affecting retinal ganglion cells.
Collapse
Affiliation(s)
- Aki Kawasaki
- Department of Neuro-Ophthalmology, Hôpital Ophtalmique Jules Gonin and University Eye Clinics of Lausanne, Avenue de France 15, Lausanne 1004, Switzerland.
| | | |
Collapse
|
64
|
Danilenko KV. Shortening of the menstrual cycle following light therapy in seasonal affective disorder. Psychiatry Res 2007; 153:93-5. [PMID: 17597228 DOI: 10.1016/j.psychres.2006.12.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 07/29/2006] [Accepted: 12/16/2006] [Indexed: 10/23/2022]
Abstract
A significantly earlier onset of menstruation by 1.2 days, on average, was found following light therapy in 38 winter depressives; in two of them it could be classified as a minor side effect. There was no association between this shortening and depression improvement. A direct action of light on the hypothalamic-pituitary-gonadal axis is suggested.
Collapse
Affiliation(s)
- Konstantin V Danilenko
- Institute of Internal Medicine, Siberian Branch of the Russian Academy of Medical Sciences, Bogatkova 175/1, Novosibirsk 630089, Russia.
| |
Collapse
|
65
|
Abstract
The retina detects light so that our body clock runs in time with the rising and setting of the sun. A recently identified class of photoreceptive neuron in the retina underlies this function and a new study has used viruses to unravel its connections.
Collapse
|
66
|
Viney TJ, Balint K, Hillier D, Siegert S, Boldogkoi Z, Enquist LW, Meister M, Cepko CL, Roska B. Local retinal circuits of melanopsin-containing ganglion cells identified by transsynaptic viral tracing. Curr Biol 2007; 17:981-8. [PMID: 17524644 DOI: 10.1016/j.cub.2007.04.058] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 04/28/2007] [Accepted: 04/30/2007] [Indexed: 11/16/2022]
Abstract
Intrinsically photosensitive melanopsin-containing retinal ganglion cells (ipRGCs) control important physiological processes, including the circadian rhythm, the pupillary reflex, and the suppression of locomotor behavior (reviewed in [1]). ipRGCs are also activated by classical photoreceptors, the rods and cones, through local retinal circuits [2, 3]. ipRGCs can be transsynaptically labeled through the pupillary-reflex circuit with the derivatives of the Bartha strain of the alphaherpesvirus pseudorabies virus(PRV) [4, 5] that express GFP [6-12]. Bartha-strain derivatives spread only in the retrograde direction [13]. There is evidence that infected cells function normally for a while during GFP expression [7]. Here we combine transsynaptic PRV labeling, two-photon laser microscopy, and electrophysiological techniques to trace the local circuit of different ipRGC subtypes in the mouse retina and record light-evoked activity from the transsynaptically labeled ganglion cells. First, we show that ipRGCs are connected by monostratified amacrine cells that provide strong inhibition from classical-photoreceptor-driven circuits. Second, we show evidence that dopaminergic interplexiform cells are synaptically connected to ipRGCs. The latter finding provides a circuitry link between light-dark adaptation and ipRGC function.
Collapse
Affiliation(s)
- Tim James Viney
- Neural Circuit Laboratories, Friedrich Miescher Institute, Maulbeerstrasse 66, Basel 4058, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Affiliation(s)
- Hsi-Wen Liao
- Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
68
|
Berson DM. Phototransduction in ganglion-cell photoreceptors. Pflugers Arch 2007; 454:849-55. [PMID: 17351786 DOI: 10.1007/s00424-007-0242-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2006] [Accepted: 02/13/2007] [Indexed: 11/26/2022]
Abstract
A third class of photoreceptors has recently been identified in the mammalian retina. They are a rare cell type within the class of ganglion cells, which are the output cells of the retina. These intrinsically photosensitive retinal ganglion cells support a variety of physiological responses to daylight, including synchronization of circadian rhythms, modulation of melatonin release, and regulation of pupil size. The goal of this review is to summarize what is currently known concerning the cellular and biochemical basis of phototransduction in these cells. I summarize the overwhelming evidence that melanopsin serves as the photopigment in these cells and review the emerging evidence that the downstream signaling cascade, including the light-gated channel, might resemble those found in rhabdomeric invertebrate photoreceptors.
Collapse
Affiliation(s)
- David M Berson
- Department of Neuroscience, Brown University, P.O. Box G-L4, Providence, RI 02912, USA.
| |
Collapse
|
69
|
Gamlin PDR, McDougal DH, Pokorny J, Smith VC, Yau KW, Dacey DM. Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells. Vision Res 2007; 47:946-54. [PMID: 17320141 PMCID: PMC1945238 DOI: 10.1016/j.visres.2006.12.015] [Citation(s) in RCA: 398] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 10/16/2006] [Accepted: 12/08/2006] [Indexed: 11/13/2022]
Abstract
Melanopsin, a novel photopigment, has recently been localized to a population of retinal ganglion cells that display inherent photosensitivity. During continuous light and following light offset, primates are known to exhibit sustained pupilloconstriction responses that resemble closely the photoresponses of intrinsically-photoreceptive ganglion cells. We report that, in the behaving macaque, following pharmacological blockade of conventional photoreceptor signals, significant pupillary responses persist during continuous light and following light offset. These pupil responses display the unique spectral tuning, slow kinetics, and irradiance coding of the sustained, melanopsin-derived ganglion cell photoresponses. We extended our observations to humans by using the sustained pupil response following light offset to document the contribution of these novel ganglion cells to human pupillary responses. Our results indicate that the intrinsic photoresponses of intrinsically-photoreceptive retinal ganglion cells play an important role in the pupillary light reflex and are primarily responsible for the sustained pupilloconstriction that occurs following light offset.
Collapse
Affiliation(s)
- Paul D R Gamlin
- Department of Vision Sciences, University of Alabama at Birmingham, AL 35294, USA.
| | | | | | | | | | | |
Collapse
|
70
|
Danilenko KV, Samoilova EA. Stimulatory effect of morning bright light on reproductive hormones and ovulation: results of a controlled crossover trial. PLOS CLINICAL TRIALS 2007; 2:e7. [PMID: 17290302 PMCID: PMC1851732 DOI: 10.1371/journal.pctr.0020007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Accepted: 12/20/2006] [Indexed: 11/18/2022]
Abstract
Objectives: Studies have shown a shortening of the menstrual cycle following light exposure in women with abnormally long menstrual cycles or with winter depression, suggesting that artificial light can influence reproductive hormones and ovulation. The study was designed to investigate this possibility. Design: Placebo-controlled, crossover, counterbalanced order. Setting: Medical centres and participants' homes in Novosibirsk (55°N), Russia. Participants: Twenty-two women, aged 19–37 years, with baseline menstrual cycle length 28.1–37.8 d and no clinically evident endocrine abnormalities completed the study. The study lasted for two menstrual cycles separated by at least one off-protocol cycle. Interventions: During one experimental cycle, bright light was administered at home for 1 wk with a light box emitting white light at 4,300 lux at 41 cm for 45 min shortly after awakening. During the other experimental cycle, dim light was <100 lux at 41 cm with a one-tube fluorescent source. Outcome Measures: Blood samples and ultrasound scans were obtained in the afternoon before and after the week of light exposure, on day ∼7 and 14 after menstruation onset. Further ultrasound scans after day 14 documented ovulation. Serum was assayed for thyroid-stimulating hormone (TSH), prolactin (PRL), luteinizing hormone (LH), follicle-stimulating hormone (FSH), and estradiol (E2). Results: Concentrations of PRL, LH, and FSH were significantly increased with bright versus dim light exposure, as was follicle size (ANOVA, intervention × day, p = 0.0043, 0.014, 0.049, and 0.042, respectively). The number of ovulatory cycles increased after exposure to bright compared to dim light (12 versus 6 cycles, Wilcoxon tied p = 0.034). Conclusions: Morning exposure to bright light in the follicular phase of the menstrual cycle stimulates the secretion of hypophyseal reproductive hormones, promotes ovary follicle growth, and increases ovulation rates in women with slightly lengthened menstrual cycles. This might be a promising method to overcome infertility. Background: It is not clear whether light plays any role in determining menstrual cycles or ovulation in women. However, light is used as a treatment for some medical conditions related to rhythm, most notably seasonal affective disorder. In this study, the researchers wanted to examine the role of light in influencing the menstrual cycle. In the trial reported here, 22 women with lengthened menstrual cycles were provided with a light box that emitted either bright light or dim light, and the women were asked to use the light box for a defined period each day for one menstrual cycle. The study had a crossover design, where women would receive either bright or dim light for one cycle, then another cycle without the light box, and finally a cycle with either bright or dim light, whichever they did not receive first. Outcomes assessed in the trial included measurements of the blood levels of certain hormones. Specifically, the researchers looked at three hormones that determine the reproductive cycle (lutenizing hormone [LH], follicle stimulating hormone [FSH], and prolactin); these are produced by a region of the brain that is controlled by the hypothalamus, a gland that is directly responsive to light. Additionally, ultrasound scans were used to check for ovulation during each cycle. The trial was carried out in winter in Novosibirsk, a Russian city. What the trial shows: When the researchers compared hormone levels between the “bright light” and “dim light” phases of the study, they found statistically significant increases in levels of LH, FSH, and prolactin in the blood. Ovulation was more likely in the “bright light” phase of the study as compared to the “dim light” phase. However, levels of two other hormones, thyroid stimulating hormone, and estradiol, were not significantly different when comparing the “bright” and “dim” cycles. Strengths and limitations: In this trial the use of a crossover design enabled each woman to act as her own control, thereby reducing the number of participants that were needed in the trial. A further strength in this study was the use of ultrasound scans to allow the researchers to pinpoint ovulation in the participants; similar studies have not tried to examine the effects of light both on reproductive hormones and ovulation. A weakness of the design is that participants were assigned to receive either dim light first or bright light first using alternation, not true randomization. Therefore blinding was not possible and the researchers recruiting participants would have known in advance what intervention each participant would receive first. Other weaknesses include the limited number of participants in this study, and the nature of the participant population, all of whom had lengthened menstrual cycles and were living at fairly northerly latitude. Contribution to the evidence: This study adds data suggesting that in women with lengthened menstrual cycles, ovulation can be stimulated by bright light. However, this finding would need to be replicated in a larger sample of women and it is not yet clear whether bright light will have the same effect on ovulation in women outside northerly latitudes and with average-length menstrual cycles.
Collapse
Affiliation(s)
- Konstantin V Danilenko
- Centre for Chronobiology, Institute of Internal Medicine, Siberian Branch of the Russian Academy of Medical Sciences, Novosibirsk, Russia.
| | | |
Collapse
|
71
|
Yao G, Zhang K, Bellassai M, Chang B, Lei B. Ultraviolet light-induced and green light-induced transient pupillary light reflex in mice. Curr Eye Res 2007; 31:925-33. [PMID: 17114118 DOI: 10.1080/02713680600932308] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE To study UV light-induced and green light-induced pupillary light reflex (PLR) in mice and to measure the illumination thresholds of rod-mediated and cone-mediated PLR responses. METHODS We measured dark-adapted transient PLR- in C57BL/6 mice elicited with ultraviolet and green light over an intensity range of 9 log units. To assist in isolating the responses mediated by rods and cones, we studied the PLRs in mouse models presenting pure cone and pure rod functions. We also characterized ERG signals in these mice under the same experimental conditions. RESULTS The UV light-induced transient PLR has identical intensity-response curves as green light-induced PLR in all the three mice strains. The threshold (5% PLR) of rod-driven PLR is 107 approximately 108 photons cm2 s-1, which is 1 approximately 2 log units lower than the dark-adapted ERG b-wave. The threshold of cone-driven PLR is approximately 1012.5 photons cm-2 s-1 and is similar to that of the cone ERG. CONCLUSIONS We demonstrated that mice have PLR responses under UV stimulation. The cone-elicited PLRs have a threshold that is approximately 5 log units higher than that of rod-elicited PLR at both UV and green wavelengths. We observed a divergence between the spectra responses in PLR and ERG. However, the mechanism and implications of this phenomenon are yet to be identified.
Collapse
Affiliation(s)
- Gang Yao
- Department of Biological Engineering, University of Missouri Columbia, Columbia, MO 65211-0001, USA
| | | | | | | | | |
Collapse
|
72
|
Hannibal J, Georg B, Fahrenkrug J. Melanopsin changes in neonatal albino rat independent of rods and cones. Neuroreport 2007; 18:81-5. [PMID: 17259866 DOI: 10.1097/wnr.0b013e328010ff56] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Intrinsically photosensitive retinal ganglion cells employ the photopigment melanopsin and provide light information to brain areas responsible for the regulation of circadian rhythms. The expression of melanopsin is regulated by environmental illumination, but it remains to be clarified whether the rods and cones are involved. Here, we examined the influence of 5 days of constant light and dark conditions on melanopsin mRNA and protein expression in newborn albino rats, in which functional rods and cones have not yet been developed. We found that the melanopsin mRNA level was unaffected, whereas the melanopsin protein level was more than two-fold higher in the darkness-adapted group than in pups raised in constant light. In pups raised during 12 : 12 h light/dark cycles, the melanopsin protein level was significantly higher during the day than at night. Our findings indicate that melanopsin protein changes are independent of input from the rods and cones.
Collapse
Affiliation(s)
- Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, Copenhagen NV, Denmark.
| | | | | |
Collapse
|
73
|
Lima LHRG, Scarparo AC, Isoldi MC, Visconti MA, Castrucci AML. Melanopsin in chicken melanocytes and retina. BIOL RHYTHM RES 2006. [DOI: 10.1080/09291010600870230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
74
|
Fleming MD, Benca RM, Behan M. Retinal projections to the subcortical visual system in congenic albino and pigmented rats. Neuroscience 2006; 143:895-904. [PMID: 16996223 PMCID: PMC1876705 DOI: 10.1016/j.neuroscience.2006.08.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 08/06/2006] [Accepted: 08/08/2006] [Indexed: 11/21/2022]
Abstract
The primary visual pathway in albino mammals is characterized by an increased decussation of retinal ganglion cell axons at the optic chiasm and an enhanced contralateral projection to the dorsal lateral geniculate nucleus. In contrast to the primary visual pathway, little is known about the organization of retinal input to most nuclei of the subcortical visual system in albino mammals. The subcortical visual system is a large group of retinorecipient nuclei in the diencephalon and mesencephalon. These areas mediate a range of behaviors that include both circadian and acute responses to light. We used a congenic strain of albino and pigmented rats with a mutation at the c locus for albinism (Fischer 344-c/+; LaVail MM, Lawson NR (1986) Development of a congenic strain of pigmented and albino rats for light damage studies. Exp Eye Res 43:867-869) to quantitatively assess the effects of albinism on retinal projections to a number of subcortical visual nuclei including the ventral lateral hypothalamus (VLH), ventral lateral preoptic area (VLPO), olivary pretectal nucleus (OPN), posterior limitans (PLi), commissural pretectal area (CPA), intergeniculate leaflet (IGL), ventral lateral geniculate nucleus (vLGN) and superior colliculus (SC). Following eye injections of the neuroanatomical tracer cholera toxin-beta, the distribution of anterogradely transported label was measured. The retinal projection to the contralateral VLH, PLi, CPA and IGL was enhanced in albino rats. No significant differences were found between albino and pigmented rats in retinal input to the VLPO, OPN and vLGN. These findings raise the possibility that enhanced retinofugal projections to subcortical visual nuclei in albinos may underlie some light-mediated behaviors that differ between albino and pigmented mammals.
Collapse
Affiliation(s)
- M D Fleming
- Department of Comparative Biosciences, University of Wisconsin, 2015 Linden Drive, Madison, WI 53706-1102, USA
| | | | | |
Collapse
|
75
|
Santillo S, Orlando P, De Petrocellis L, Cristino L, Guglielmotti V, Musio C. Evolving visual pigments: hints from the opsin-based proteins in a phylogenetically old "eyeless" invertebrate. Biosystems 2006; 86:3-17. [PMID: 16843587 DOI: 10.1016/j.biosystems.2006.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 03/23/2006] [Accepted: 03/27/2006] [Indexed: 10/24/2022]
Abstract
Visual pigments are photosensitive receptor proteins that trigger the transduction process producing the visual excitation once they have absorbed photons. In spite of the molecular and morpho-functional complexity that has characterized the development of animal eyes and eyeless photoreceptive systems, opsin-based protein family appears ubiquous along metazoan visual systems. Moreover, in addition to classic rhodopsin photoreceptors, all Metazoa have supplementary non-visual photosensitive structures, mainly located in the central nervous system, that sense light without forming an image and that rather regulate the organism's temporal physiology. The investigation of novel non-visual photopigments exerting extraretinal photoreception is a challenging field in vision research. Here we propose the cnidarian Hydra as a useful tool of investigation for molecular and functional differences between these pigment families. Hydra is the first metazoan owning a nervous system and it is an eyeless invertebrate showing only an extraocular photoreception, as it has no recognized visual or photosensitive structures. In this paper we provide an overview of the molecular and functional features of the opsin-based protein subfamilies and preliminary evidences in a phylogenetically old species of both image-forming and non-visual opsins. Then we give new insights on the molecular biology of Hydra photoreception and on the evolutionary pathways of visual pigments.
Collapse
Affiliation(s)
- Silvia Santillo
- Istituto di Cibernetica Eduardo Caianiello (ICIB), Consiglio Nazionale delle Ricerche (CNR), Via Campi Flegrei, 34 Comprensorio A Olivetti, Pozzuoli (Napoli), Italy
| | | | | | | | | | | |
Collapse
|
76
|
Hannibal J. Roles of PACAP‐Containing Retinal Ganglion Cells in Circadian Timing. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 251:1-39. [PMID: 16939776 DOI: 10.1016/s0074-7696(06)51001-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The brain's biological clock located in the suprachiasmatic nucleus (SCN) generates circadian rhythms in physiology and behavior. The clock-driven rhythms need daily adjustment (entrainment) to be synchronized with the astronomical day of 24 h. The most important stimulus for entrainment of the clock is the light-dark (LD) cycle. In this review functional elements of the light entrainment pathway will be considered with special focus on the neurotransmitter pituitary adenylate cyclase-activating polypeptide (PACAP), which is found exclusively in the monosynaptic neuronal pathway mediating light information to the SCN, the retinohypothalamic tract (RHT). The retinal ganglion cells of the RHT are intrinsically photosensitive due to the expression of melanopsin and seem to constitute a non-image forming photosensitive system in the mammalian eye regulating circadian timing, masking behavior, light-regulated melatonin secretion, and the pupillary light reflex. Evidence from in vitro and in vivo studies and studies of mice lacking PACAP and the specific PACAP receptor (PAC1) indicate that PACAP and glutamate are neurotransmitters in the RHT which in a clock and concentration-dependent manner interact during light entrainment of the clock.
Collapse
Affiliation(s)
- Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, Denmark
| |
Collapse
|
77
|
Figueiro MG, Bullough JD, Parsons RH, Rea MS. Preliminary evidence for a change in spectral sensitivity of the circadian system at night. J Circadian Rhythms 2005; 3:14. [PMID: 16336697 PMCID: PMC1326217 DOI: 10.1186/1740-3391-3-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Accepted: 12/11/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It is well established that the absolute sensitivity of the suprachiasmatic nucleus to photic stimulation received through the retino-hypothalamic tract changes throughout the 24-hour day. It is also believed that a combination of classical photoreceptors (rods and cones) and melanopsin-containing retinal ganglion cells participate in circadian phototransduction, with a spectral sensitivity peaking between 440 and 500 nm. It is still unknown, however, whether the spectral sensitivity of the circadian system also changes throughout the solar day. Reported here is a new study that was designed to determine whether the spectral sensitivity of the circadian retinal phototransduction mechanism, measured through melatonin suppression and iris constriction, varies at night. METHODS Human adult males were exposed to a high-pressure mercury lamp [450 lux (170 microW/cm2) at the cornea] and an array of blue light emitting diodes [18 lux (29 microW/cm2) at the cornea] during two nighttime experimental sessions. Both melatonin suppression and iris constriction were measured during and after a one-hour light exposure just after midnight and just before dawn. RESULTS An increase in the percentage of melatonin suppression and an increase in pupil constriction for the mercury source relative to the blue light source at night were found, suggesting a temporal change in the contribution of photoreceptor mechanisms leading to melatonin suppression and, possibly, iris constriction by light in humans. CONCLUSION The preliminary data presented here suggest a change in the spectral sensitivity of circadian phototransduction mechanisms at two different times of the night. These findings are hypothesized to be the result of a change in the sensitivity of the melanopsin-expressing retinal ganglion cells to light during the night.
Collapse
Affiliation(s)
- Mariana G Figueiro
- Lighting Research Center, Rensselaer Polytechnic Institute, 21 Union Street, Troy, NY 12180, USA
| | - John D Bullough
- Lighting Research Center, Rensselaer Polytechnic Institute, 21 Union Street, Troy, NY 12180, USA
| | - Robert H Parsons
- Department of Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Mark S Rea
- Lighting Research Center, Rensselaer Polytechnic Institute, 21 Union Street, Troy, NY 12180, USA
| |
Collapse
|