51
|
Liu J, Chin-Sang ID. C. elegans as a model to study PTEN's regulation and function. Methods 2014; 77-78:180-90. [PMID: 25514044 DOI: 10.1016/j.ymeth.2014.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 02/06/2023] Open
Abstract
PTEN (phosphatase and tensin homolog deleted on chromosome 10) has important roles in tumor suppression, metabolism, and development, yet its regulators, effectors, and functions are not fully understood. DAF-18 is the PTEN ortholog in Caenorhabditis elegans. DAF-18's role is highly conserved to human PTEN, and can be functionally replaced by human PTEN. Thus C. elegans provides a valuable model to study PTEN. This review assesses current and emerging methods to study DAF-18's regulators and functions in C. elegans. We propose genetic modify screens to identify genes that interact with daf-18/PTEN. These genes are potential targets for anticancer drug therapies. We also provide a review on the roles DAF-18/PTEN has during C. elegans development and how studying these physiological roles can provide mechanistic insight on DAF-18/PTEN function.
Collapse
Affiliation(s)
- Jun Liu
- Department of Biology, Queen's University, 116 Barrie St., Kingston, ON K7L 3N6, Canada.
| | - Ian D Chin-Sang
- Department of Biology, Queen's University, 116 Barrie St., Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
52
|
Hwang H, Krajniak J, Matsunaga Y, Benian GM, Lu H. On-demand optical immobilization of Caenorhabditis elegans for high-resolution imaging and microinjection. LAB ON A CHIP 2014; 14:3498-501. [PMID: 25056343 PMCID: PMC4148454 DOI: 10.1039/c4lc00697f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This paper describes a novel selective immobilization technique based on optical control of the sol-gel transition of thermoreversible Pluronic gel, which provides a simple, versatile, and biocompatible approach for high-resolution imaging and microinjection of Caenorhabditis elegans.
Collapse
Affiliation(s)
- Hyundoo Hwang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA 30332-0100, USA.
| | | | | | | | | |
Collapse
|
53
|
Cohen N, Sanders T. Nematode locomotion: dissecting the neuronal-environmental loop. Curr Opin Neurobiol 2014; 25:99-106. [PMID: 24709607 DOI: 10.1016/j.conb.2013.12.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/01/2013] [Accepted: 12/05/2013] [Indexed: 10/25/2022]
Abstract
With a fully reconstructed and extensively characterized neural circuit, the nematode Caenorhabditis elegans is a promising model system for integrating our understanding of neuronal, circuit and whole-animal dynamics. Fundamental to addressing this challenge is the need to consider the tight neuronal-environmental coupling that allows the animal to survive and adapt to changing conditions. Locomotion behaviors are affected by environmental variables both at the biomechanical level and via adaptive sensory responses that drive and modulate premotor and motor circuits. Here we review significant advances in our understanding of proprioceptive control of locomotion, and more abstract models of spatial orientation and navigation. The growing evidence of the complexity of the underlying circuits suggests that the intuition gained is but the first step in elucidating the secrets of neural computation in this relatively simple system.
Collapse
Affiliation(s)
- Netta Cohen
- School of Computing, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Tom Sanders
- School of Computing, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
54
|
Diomede L, Di Fede G, Romeo M, Bagnati R, Ghidoni R, Fiordaliso F, Salio M, Rossi A, Catania M, Paterlini A, Benussi L, Bastone A, Stravalaci M, Gobbi M, Tagliavini F, Salmona M. Expression of A2V-mutated Aβ in Caenorhabditis elegans results in oligomer formation and toxicity. Neurobiol Dis 2013; 62:521-32. [PMID: 24184799 PMCID: PMC4068289 DOI: 10.1016/j.nbd.2013.10.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 10/15/2013] [Accepted: 10/24/2013] [Indexed: 12/17/2022] Open
Abstract
Although Alzheimer's disease (AD) is usually sporadic, in a small proportion of cases it is familial and can be linked to mutations in β-amyloid precursor protein (APP). Unlike the other genetic defects, the mutation [alanine-673→valine-673] (A673V) causes the disease only in the homozygous condition with enhanced amyloid β (Aβ) production and aggregation; heterozygous carriers remain unaffected. It is not clear how misfolding and aggregation of Aβ is affected in vivo by this mutation and whether this correlates with its toxic effects. No animal models over-expressing the A673V–APP gene or alanine-2-valine (A2V) mutated human Aβ protein are currently available. Using the invertebrate Caenorhabditis elegans, we generated the first transgenic animal model to express the human Aβ1–40 wild-type (WT) in neurons or possess the A2V mutation (Aβ1–40A2V). Insertion of an Aβ-mutated gene into this nematode reproduced the homozygous state of the human pathology. Functional and biochemical characteristics found in the A2V strain were compared to those of transgenic C. elegans expressing Aβ1–40WT. The expression of both WT and A2V Aβ1–40 specifically reduced the nematode's lifespan, causing behavioral defects and neurotransmission impairment which were worse in A2V worms. Mutant animals were more resistant than WT to paralysis induced by the cholinergic agonist levamisole, indicating that the locomotor defect was specifically linked to postsynaptic dysfunctions. The toxicity caused by the mutated protein was associated with a high propensity to form oligomeric assemblies which accumulate in the neurons, suggesting this to be the central event involved in the postsynaptic damage and early onset of the disease in homozygous human A673V carriers. We generated the first transgenic animal model expressing in neurons the human Aβ1–40 wild-type or has the A2V mutation. Aβ1–40 expression reduced the worm's lifespan, caused behavioral and neuronal defects which were worse in the A2V strain. The behavioral defects of mutant worms were specifically linked to postsynaptic dysfunctions. The toxicity of Aβ1–40A2V was associated with its high propensity to form oligomers which accumulate in the neurons. These transgenic strains represent an attractive tools for an in vivo screening of compounds interfering with oligomers.
Collapse
Affiliation(s)
- Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, 20156 Milan, Italy.
| | - Giuseppe Di Fede
- Division of Neurology and Neuropathology, "Carlo Besta" National Neurological Institute, 20133 Milan, Italy
| | - Margherita Romeo
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, 20156 Milan, Italy
| | - Renzo Bagnati
- Department of Environmental Health Sciences, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, 20156 Milan, Italy
| | - Roberta Ghidoni
- Proteomics Unit, IRCCS "Centro S. Giovanni di Dio-Fatebenefratelli", Via Pilastroni 4, 25125 Brescia, Italy
| | - Fabio Fiordaliso
- Department of Cardiovascular Research, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, 20156 Milan, Italy
| | - Monica Salio
- Department of Cardiovascular Research, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, 20156 Milan, Italy
| | - Alessandro Rossi
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, 20156 Milan, Italy
| | - Marcella Catania
- Division of Neurology and Neuropathology, "Carlo Besta" National Neurological Institute, 20133 Milan, Italy
| | - Anna Paterlini
- Proteomics Unit, IRCCS "Centro S. Giovanni di Dio-Fatebenefratelli", Via Pilastroni 4, 25125 Brescia, Italy
| | - Luisa Benussi
- Proteomics Unit, IRCCS "Centro S. Giovanni di Dio-Fatebenefratelli", Via Pilastroni 4, 25125 Brescia, Italy
| | - Antonio Bastone
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, 20156 Milan, Italy
| | - Matteo Stravalaci
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, 20156 Milan, Italy
| | - Marco Gobbi
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, 20156 Milan, Italy
| | - Fabrizio Tagliavini
- Division of Neurology and Neuropathology, "Carlo Besta" National Neurological Institute, 20133 Milan, Italy
| | - Mario Salmona
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, 20156 Milan, Italy
| |
Collapse
|
55
|
Rakowski F, Srinivasan J, Sternberg PW, Karbowski J. Synaptic polarity of the interneuron circuit controlling C. elegans locomotion. Front Comput Neurosci 2013; 7:128. [PMID: 24106473 PMCID: PMC3788333 DOI: 10.3389/fncom.2013.00128] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 09/07/2013] [Indexed: 11/27/2022] Open
Abstract
Caenorhabditis elegans is the only animal for which a detailed neural connectivity diagram has been constructed. However, synaptic polarities in this diagram, and thus, circuit functions are largely unknown. Here, we deciphered the likely polarities of seven pre-motor neurons implicated in the control of worm's locomotion, using a combination of experimental and computational tools. We performed single and multiple laser ablations in the locomotor interneuron circuit and recorded times the worms spent in forward and backward locomotion. We constructed a theoretical model of the locomotor circuit and searched its all possible synaptic polarity combinations and sensory input patterns in order to find the best match to the timing data. The optimal solution is when either all or most of the interneurons are inhibitory and forward interneurons receive the strongest input, which suggests that inhibition governs the dynamics of the locomotor interneuron circuit. From the five pre-motor interneurons, only AVB and AVD are equally likely to be excitatory, i.e., they have probably similar number of inhibitory and excitatory connections to distant targets. The method used here has a general character and thus can be also applied to other neural systems consisting of small functional networks.
Collapse
Affiliation(s)
- Franciszek Rakowski
- Interdisciplinary Center for Mathematical and Computational Modeling, University of Warsaw Warsaw, Poland
| | | | | | | |
Collapse
|
56
|
Leung LC, Wang GX, Mourrain P. Imaging zebrafish neural circuitry from whole brain to synapse. Front Neural Circuits 2013; 7:76. [PMID: 23630470 PMCID: PMC3634052 DOI: 10.3389/fncir.2013.00076] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/03/2013] [Indexed: 12/20/2022] Open
Abstract
Recent advances in imaging tools are inspiring zebrafish researchers to tackle ever more ambitious questions in the neurosciences. Behaviorally fundamental conserved neural networks can now be potentially studied using zebrafish from a brain-wide scale to molecular resolution. In this perspective, we offer a roadmap by which a zebrafish researcher can navigate the course from collecting neural activities across the brain associated with a behavior, to unraveling molecular identities and testing the functional relevance of active neurons. In doing so, important insights will be gained as to how neural networks generate behaviors and assimilate changes in synaptic connectivity.
Collapse
Affiliation(s)
- Louis C Leung
- Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences, Beckman Center, Stanford University Palo Alto, CA, USA
| | | | | |
Collapse
|
57
|
Kwon N, Pyo J, Lee SJ, Je JH. 3-D worm tracker for freely moving C. elegans. PLoS One 2013; 8:e57484. [PMID: 23437394 PMCID: PMC3578814 DOI: 10.1371/journal.pone.0057484] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 01/25/2013] [Indexed: 12/02/2022] Open
Abstract
The manner in which the nervous system regulates animal behaviors in natural environments is a fundamental issue in biology. To address this question, C. elegans has been widely used as a model animal for the analysis of various animal behaviors. Previous behavioral assays have been limited to two-dimensional (2-D) environments, confining the worm motion to a planar substrate that does not reflect three-dimensional (3-D) natural environments such as rotting fruits or soil. Here, we develop a 3-D worm tracker (3DWT) for freely moving C. elegans in 3-D environments, based on a stereoscopic configuration. The 3DWT provides us with a quantitative trajectory, including the position and movement direction of the worm in 3-D. The 3DWT is also capable of recording and visualizing postures of the moving worm in 3-D, which are more complex than those in 2-D. Our 3DWT affords new opportunities for understanding the nervous system function that regulates animal behaviors in natural 3-D environments.
Collapse
Affiliation(s)
- Namseop Kwon
- X-ray Imaging Center, Pohang University of Science and Technology, Pohang, South Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Jaeyeon Pyo
- X-ray Imaging Center, Pohang University of Science and Technology, Pohang, South Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Seung-Jae Lee
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, South Korea
- Department of Molecular and Life Science, Pohang University of Science and Technology, Pohang, South Korea
- World Class University Information Technology Convergence Engineering, Pohang University of Science and Technology, Pohang, South Korea
- * E-mail: (JHJ); (SL)
| | - Jung Ho Je
- X-ray Imaging Center, Pohang University of Science and Technology, Pohang, South Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, South Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, South Korea
- * E-mail: (JHJ); (SL)
| |
Collapse
|
58
|
Izquierdo EJ, Beer RD. Connecting a connectome to behavior: an ensemble of neuroanatomical models of C. elegans klinotaxis. PLoS Comput Biol 2013; 9:e1002890. [PMID: 23408877 PMCID: PMC3567170 DOI: 10.1371/journal.pcbi.1002890] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 12/03/2012] [Indexed: 11/23/2022] Open
Abstract
Increased efforts in the assembly and analysis of connectome data are providing new insights into the principles underlying the connectivity of neural circuits. However, despite these considerable advances in connectomics, neuroanatomical data must be integrated with neurophysiological and behavioral data in order to obtain a complete picture of neural function. Due to its nearly complete wiring diagram and large behavioral repertoire, the nematode worm Caenorhaditis elegans is an ideal organism in which to explore in detail this link between neural connectivity and behavior. In this paper, we develop a neuroanatomically-grounded model of salt klinotaxis, a form of chemotaxis in which changes in orientation are directed towards the source through gradual continual adjustments. We identify a minimal klinotaxis circuit by systematically searching the C. elegans connectome for pathways linking chemosensory neurons to neck motor neurons, and prune the resulting network based on both experimental considerations and several simplifying assumptions. We then use an evolutionary algorithm to find possible values for the unknown electrophsyiological parameters in the network such that the behavioral performance of the entire model is optimized to match that of the animal. Multiple runs of the evolutionary algorithm produce an ensemble of such models. We analyze in some detail the mechanisms by which one of the best evolved circuits operates and characterize the similarities and differences between this mechanism and other solutions in the ensemble. Finally, we propose a series of experiments to determine which of these alternatives the worm may be using.
Collapse
|
59
|
A perimotor framework reveals functional segmentation in the motoneuronal network controlling locomotion in Caenorhabditis elegans. J Neurosci 2011; 31:14611-23. [PMID: 21994377 DOI: 10.1523/jneurosci.2186-11.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The neuronal connectivity dataset of the nematode Caenorhabditis elegans attracts wide attention from computational neuroscientists and experimentalists. However, the dataset is incomplete. The ventral and dorsal nerve cords of a single nematode were reconstructed halfway along the body and the posterior data are missing, leaving 21 of 75 motoneurons of the locomotor network with partial or no connectivity data. Using a new framework for network analysis, the perimotor space, we identified rules of connectivity that allowed us to approximate the missing data by extrapolation. Motoneurons were mapped into perimotor space in which each motoneuron is located according to the muscle cells it innervates. In this framework, a pattern of iterative connections emerges which includes most (0.90) of the connections. We identified a repeating unit consisting of 12 motoneurons and 12 muscle cells. The cell bodies of the motoneurons of such a unit are not necessarily anatomical neighbors and there is no obvious anatomical segmentation. A connectivity model, composed of six repeating units, is a description of the network that is both simplified (modular and without noniterative connections) and more complete (includes the posterior part) than the original dataset. The perimotor framework of observed connectivity and the segmented connectivity model give insights and advance the study of the neuronal infrastructure underlying locomotion in C. elegans. Furthermore, we suggest that the tools used herein may be useful to interpret, simplify, and represent connectivity data of other motor systems.
Collapse
|
60
|
Calarco JA, Zhen M, Blencowe BJ. Networking in a global world: establishing functional connections between neural splicing regulators and their target transcripts. RNA (NEW YORK, N.Y.) 2011; 17:775-91. [PMID: 21415141 PMCID: PMC3078728 DOI: 10.1261/rna.2603911] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Recent genome-wide analyses have indicated that almost all primary transcripts from multi-exon human genes undergo alternative pre-mRNA splicing (AS). Given the prevalence of AS and its importance in expanding proteomic complexity, a major challenge that lies ahead is to determine the functional specificity of isoforms in a cellular context. A significant fraction of alternatively spliced transcripts are regulated in a tissue- or cell-type-specific manner, suggesting that these mRNA variants likely function in the generation of cellular diversity. Complementary to these observations, several tissue-specific splicing factors have been identified, and a number of methodological advances have enabled the identification of large repertoires of target transcripts regulated by these proteins. An emerging theme is that tissue-specific splicing factors regulate coherent sets of splice variants in genes known to function in related biological pathways. This review focuses on the recent progress in our understanding of neural-specific splicing factors and their regulatory networks and outlines existing and emerging strategies for uncovering important biological roles for the isoforms that comprise these networks.
Collapse
Affiliation(s)
- John A Calarco
- Banting and Best Department of Medical Research, Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
61
|
Liu Y, LeBeouf B, Guo X, Correa PA, Gualberto DG, Lints R, Garcia LR. A cholinergic-regulated circuit coordinates the maintenance and bi-stable states of a sensory-motor behavior during Caenorhabditis elegans male copulation. PLoS Genet 2011; 7:e1001326. [PMID: 21423722 PMCID: PMC3053324 DOI: 10.1371/journal.pgen.1001326] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 02/04/2011] [Indexed: 11/18/2022] Open
Abstract
Penetration of a male copulatory organ into a suitable mate is a conserved and necessary behavioral step for most terrestrial matings; however, the detailed molecular and cellular mechanisms for this distinct social interaction have not been elucidated in any animal. During mating, the Caenorhabditis elegans male cloaca is maintained over the hermaphrodite's vulva as he attempts to insert his copulatory spicules. Rhythmic spicule thrusts cease when insertion is sensed. Circuit components consisting of sensory/motor neurons and sex muscles for these steps have been previously identified, but it was unclear how their outputs are integrated to generate a coordinated behavior pattern. Here, we show that cholinergic signaling between the cloacal sensory/motor neurons and the posterior sex muscles sustains genital contact between the sexes. Simultaneously, via gap junctions, signaling from these muscles is transmitted to the spicule muscles, thus coupling repeated spicule thrusts with vulval contact. To transit from rhythmic to sustained muscle contraction during penetration, the SPC sensory-motor neurons integrate the signal of spicule's position in the vulva with inputs from the hook and cloacal sensilla. The UNC-103 K(+) channel maintains a high excitability threshold in the circuit, so that sustained spicule muscle contraction is not stimulated by fewer inputs. We demonstrate that coordination of sensory inputs and motor outputs used to initiate, maintain, self-monitor, and complete an innate behavior is accomplished via the coupling of a few circuit components.
Collapse
Affiliation(s)
- Yishi Liu
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Brigitte LeBeouf
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Howard Hughes Medical Institute, Texas A&M University, College Station, Texas, United States of America
| | - Xiaoyan Guo
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Paola A. Correa
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Daisy G. Gualberto
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Howard Hughes Medical Institute, Texas A&M University, College Station, Texas, United States of America
| | - Robyn Lints
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - L. Rene Garcia
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Howard Hughes Medical Institute, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|