51
|
Albertini S, Lo Cigno I, Calati F, De Andrea M, Borgogna C, Dell'Oste V, Landolfo S, Gariglio M. HPV18 Persistence Impairs Basal and DNA Ligand-Mediated IFN-β and IFN-λ 1 Production through Transcriptional Repression of Multiple Downstream Effectors of Pattern Recognition Receptor Signaling. THE JOURNAL OF IMMUNOLOGY 2018; 200:2076-2089. [PMID: 29386255 DOI: 10.4049/jimmunol.1701536] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/05/2018] [Indexed: 12/17/2022]
Abstract
Although it is clear that high-risk human papillomaviruses (HPVs) can selectively infect keratinocytes and persist in the host, it still remains to be unequivocally determined whether they can escape antiviral innate immunity by interfering with pattern recognition receptor (PRR) signaling. In this study, we have assessed the innate immune response in monolayer and organotypic raft cultures of NIKS cells harboring multiple copies of episomal HPV18 (NIKSmcHPV18), which fully recapitulates the persistent state of infection. We show for the first time, to our knowledge, that NIKSmcHPV18, as well as HeLa cells (a cervical carcinoma-derived cell line harboring integrated HPV18 DNA), display marked downregulation of several PRRs, as well as other PRR downstream effectors, such as the adaptor protein stimulator of IFN genes and the transcription factors IRF1 and 7. Importantly, we provide evidence that downregulation of stimulator of IFN genes, cyclic GMP-AMP synthase, and retinoic acid-inducible gene I mRNA levels occurs at the transcriptional level through a novel epigenetic silencing mechanism, as documented by the accumulation of repressive heterochromatin markers seen at the promoter region of these genes. Furthermore, stimulation of NIKSmcHPV18 cells with salmon sperm DNA or poly(deoxyadenylic-deoxythymidylic) acid, two potent inducers of PRR signaling, only partially restored PRR protein expression. Accordingly, the production of IFN-β and IFN-λ1 was significantly reduced in comparison with the parental NIKS cells, indicating that HPV18 exerts its immunosuppressive activity through downregulation of PRR signaling. Altogether, our findings indicate that high-risk human papillomaviruses have evolved broad-spectrum mechanisms that allow simultaneous depletion of multiple effectors of the innate immunity network, thereby creating an unreactive cellular milieu suitable for viral persistence.
Collapse
Affiliation(s)
- Silvia Albertini
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara 28100, Italy; and
| | - Irene Lo Cigno
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara 28100, Italy; and
| | - Federica Calati
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara 28100, Italy; and
| | - Marco De Andrea
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara 28100, Italy; and.,Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, Turin Medical School, Turin 10126, Italy
| | - Cinzia Borgogna
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara 28100, Italy; and
| | - Valentina Dell'Oste
- Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, Turin Medical School, Turin 10126, Italy
| | - Santo Landolfo
- Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, Turin Medical School, Turin 10126, Italy
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara 28100, Italy; and
| |
Collapse
|
52
|
Johnson ME, Cantalupo PG, Pipas JM. Identification of Head and Neck Cancer Subtypes Based on Human Papillomavirus Presence and E2F-Regulated Gene Expression. mSphere 2018; 3:e00580-17. [PMID: 29359188 PMCID: PMC5760753 DOI: 10.1128/msphere.00580-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 11/20/2022] Open
Abstract
Human papillomavirus (HPV) is present in a subset of head and neck squamous cell carcinomas (HNSCCs). The cell cycle regulatory Rb-E2F pathway is a major target of HPV and is perturbed by these viruses in cell culture and animal models, as well as in human tumors. In this study, we examined differences in the Rb-E2F pathway displayed by HPV-positive (HPV+) and HPV-negative (HPV-) HNSCC tumors. We created a computational approach that effectively categorizes gene expression as unchanged, downregulated, or upregulated by comparing the gene's mRNA levels in the tumor to the corresponding mRNA levels across normal tissue samples. Our findings suggest that there are three major HNSCC subtypes, defined by differences in the presence of HPV and in E2F-regulated gene expression. Most HPV+ HNSCC tumors show upregulation of E2F-regulated genes, which is consistent with inactivation of Rb by the virus-encoded E7 protein. In contrast, many HPV- HNSCCs show little or no change in the Rb-E2F pathway. However, we also identified a set of tumors that show alterations in the Rb-E2F pathway in the absence of HPV. Thus, one class of HPV- HNSCCs arise without significant alterations of the Rb-E2F pathway, while a second class of tumors appear to deregulate this pathway independently of the presence of HPV. IMPORTANCE Cancer is a complex disease that can be caused by a multitude of factors. HNSCC is complicated because some of these cancers are clearly associated with HPV, while others have no viral involvement. Determining the pathways that are commonly altered in both types of HNSCC, as well as those that are unique to viral and nonviral tumors, is important for a basic understanding of how these cancers arise and progress and critical to the development of targeted therapies. In this work, we show that all HPV-associated tumors have increased expression of E2F target genes, indicating that the tumor suppressor function of Rb is blocked. Importantly, Rb is also inhibited in a subset of nonviral tumors, suggesting that mutations present in these cancers mimic the action of the HPV E6 and E7 oncogenes.
Collapse
Affiliation(s)
- Molly E. Johnson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Paul G. Cantalupo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - James M. Pipas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
53
|
Hong SY. DNA damage response is hijacked by human papillomaviruses to complete their life cycle. J Zhejiang Univ Sci B 2017; 18:215-232. [PMID: 28271657 DOI: 10.1631/jzus.b1600306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The DNA damage response (DDR) is activated when DNA is altered by intrinsic or extrinsic agents. This pathway is a complex signaling network and plays important roles in genome stability, tumor transformation, and cell cycle regulation. Human papillomaviruses (HPVs) are the main etiological agents of cervical cancer. Cervical cancer ranks as the fourth most common cancer among women and the second most frequent cause of cancer-related death worldwide. Over 200 types of HPVs have been identified and about one third of these infect the genital tract. The HPV life cycle is associated with epithelial differentiation. Recent studies have shown that HPVs deregulate the DDR to achieve a productive life cycle. In this review, I summarize current findings about how HPVs mediate the ataxia-telangiectasia mutated kinase (ATM) and the ATM-and RAD3-related kinase (ATR) DDRs, and focus on the roles that ATM and ATR signalings play in HPV viral replication. In addition, I demonstrate that the signal transducer and activator of transcription-5 (STAT)-5, an important immune regulator, can promote ATM and ATR activations through different mechanisms. These findings may provide novel opportunities for development of new therapeutic targets for HPV-related cancers.
Collapse
Affiliation(s)
- Shi-Yuan Hong
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
54
|
Moody C. Mechanisms by which HPV Induces a Replication Competent Environment in Differentiating Keratinocytes. Viruses 2017; 9:v9090261. [PMID: 28925973 PMCID: PMC5618027 DOI: 10.3390/v9090261] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 12/15/2022] Open
Abstract
Human papillomaviruses (HPV) are the causative agents of cervical cancer and are also associated with other genital malignancies, as well as an increasing number of head and neck cancers. HPVs have evolved their life cycle to contend with the different cell states found in the stratified epithelium. Initial infection and viral genome maintenance occurs in the proliferating basal cells of the stratified epithelium, where cellular replication machinery is abundant. However, the productive phase of the viral life cycle, including productive replication, late gene expression and virion production, occurs upon epithelial differentiation, in cells that normally exit the cell cycle. This review outlines how HPV interfaces with specific cellular signaling pathways and factors to provide a replication-competent environment in differentiating cells.
Collapse
Affiliation(s)
- Cary Moody
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
55
|
Wilson VG. Viral Interplay with the Host Sumoylation System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:359-388. [PMID: 28197923 PMCID: PMC7121812 DOI: 10.1007/978-3-319-50044-7_21] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Viruses have evolved elaborate means to regulate diverse cellular pathways in order to create a cellular environment that facilitates viral survival and reproduction. This includes enhancing viral macromolecular synthesis and assembly, as well as preventing antiviral responses, including intrinsic, innate, and adaptive immunity. There are numerous mechanisms by which viruses mediate their effects on the host cell, and this includes targeting various cellular post-translational modification systems, including sumoylation. The wide-ranging impact of sumoylation on cellular processes such as transcriptional regulation, apoptosis, stress response, and cell cycle control makes it an attractive target for viral dysregulation. To date, proteins from both RNA and DNA virus families have been shown to be modified by SUMO conjugation, and this modification appears critical for viral protein function. More interestingly, members of the several viral families have been shown to modulate sumoylation, including papillomaviruses, adenoviruses, herpesviruses, orthomyxoviruses, filoviruses, and picornaviruses. This chapter will focus on mechanisms by which sumoylation both impacts human viruses and is used by viruses to promote viral infection and disease.
Collapse
Affiliation(s)
- Van G Wilson
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, 8447 HWY 47, Bryan, TX, 77807-1359, USA.
| |
Collapse
|
56
|
Shanmugasundaram S, You J. Targeting Persistent Human Papillomavirus Infection. Viruses 2017; 9:v9080229. [PMID: 28820433 PMCID: PMC5580486 DOI: 10.3390/v9080229] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 07/30/2017] [Accepted: 08/15/2017] [Indexed: 12/14/2022] Open
Abstract
While the majority of Human papillomavirus (HPV) infections are transient and cleared within a couple of years following exposure, 10-20% of infections persist latently, leading to disease progression and, ultimately, various forms of invasive cancer. Despite the clinical efficiency of recently developed multivalent prophylactic HPV vaccines, these preventive measures are not effective against pre-existing infection. Additionally, considering that the burden associated with HPV is greatest in regions with limited access to preventative vaccination, the development of effective therapies targeting persistent infection remains imperative. This review discusses not only the mechanisms underlying persistent HPV infection, but also the promise of immunomodulatory therapeutic vaccines and small-molecular inhibitors, which aim to augment the host immune response against the viral infection as well as obstruct critical viral-host interactions.
Collapse
Affiliation(s)
- Srinidhi Shanmugasundaram
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
57
|
Changing Stem Cell Dynamics during Papillomavirus Infection: Potential Roles for Cellular Plasticity in the Viral Lifecycle and Disease. Viruses 2017; 9:v9080221. [PMID: 28805675 PMCID: PMC5580478 DOI: 10.3390/v9080221] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 12/14/2022] Open
Abstract
Stem cells and cellular plasticity are likely important components of tissue response to infection. There is emerging evidence that stem cells harbor receptors for common pathogen motifs and that they are receptive to local inflammatory signals in ways suggesting that they are critical responders that determine the balance between health and disease. In the field of papillomaviruses stem cells have been speculated to play roles during the viral life cycle, particularly during maintenance, and virus-promoted carcinogenesis but little has been conclusively determined. I summarize here evidence that gives clues to the potential role of stem cells and cellular plasticity in the lifecycle papillomavirus and linked carcinogenesis. I also discuss outstanding questions which need to be resolved.
Collapse
|
58
|
The role of interleukin 10 in human papilloma virus infection and progression to cervical carcinoma. Cytokine Growth Factor Rev 2017; 34:1-13. [PMID: 28365229 DOI: 10.1016/j.cytogfr.2017.03.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 01/05/2023]
Abstract
Although Human Papillomavirus (HPV) exerts a vital influence on cervical carcinogenesis, other factors influence the development of a squamous intraepithelial lesion (SIL) that may or not progress to cervical cancer. Among several cytokines, Interleukin 10 (IL-10) stands out as an important anti-inflammatory factor, leading to immune system evasion through an immunosuppressive state. In the cervical microenvironment, during different stages of HPV infection, IL-10 production can be induced and maintained by different cell sources, including infected keratinocytes, some subsets of dendritic cells (DC), tumor associated macrophages (TAM), T regulatory cells (Treg) and tumor cells. Further, a wide range of effects can be exerted by IL-10 on different cell populations, such as inhibiting proinflammatory cytokine production, DCs differentiation, antigen presenting function and T-helper 1 (Th1) polarization. IL-10 is one of several cytokines involved in cancer development and sustenance, although its role in cancer is still controversial and poorly understood. However, cervical IL-10 levels tend to increase in parallel to SIL development and are even higher within cervical tumors. Accumulating data have shown that after HPV infection, IL-10 levels are enhanced as a result of HPV E2, E6 and E7 proteins action over IL-10 gene transcription, while IL-10 stimulates HPV E6 and E7 expression. Therefore, this interplay between HPV and IL-10 creates a vicious cycle that could favor an immunosuppressive microenvironment in the cervix, facilitating the progression of a simple HPV infection to SIL or cervical cancer.
Collapse
|
59
|
Human Papillomavirus Genotyping of Incidental Malignant and Premalignant Lesions on Hemorrhoidectomy Specimens. Am J Surg Pathol 2017; 41:382-388. [DOI: 10.1097/pas.0000000000000809] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
60
|
Abstract
Human papillomavirus (HPV) is an essential causal factor in a subset of head and neck neoplasms, most notably oropharyngeal squamous cell carcinoma, for which HPV infection has important diagnostic, prognostic, and therapeutic implications. This article summarizes the current understanding of HPV-associated neoplasms of the head and neck, including the recently described carcinoma with adenoid cystic-like features. Salient clinical, gross, and microscopic features are discussed, and the utility of specific ancillary studies is highlighted.
Collapse
Affiliation(s)
- Aaron M Udager
- Department of Pathology, University of Michigan Health System, 2G309 UH, 1500 East Medical Center Drive, Ann Arbor, MI 48109-5054, USA
| | - Jonathan B McHugh
- Department of Pathology, University of Michigan Health System, 2G332 UH, 1500 East Medical Center Drive, Ann Arbor, MI 48109-5054, USA.
| |
Collapse
|
61
|
Smelov V, Hanisch R, McKay-Chopin S, Sokolova O, Eklund C, Komyakov B, Gheit T, Tommasino M. Prevalence of cutaneous beta and gamma human papillomaviruses in the anal canal of men who have sex with women. PAPILLOMAVIRUS RESEARCH 2017; 3:66-72. [PMID: 28720458 PMCID: PMC5883282 DOI: 10.1016/j.pvr.2017.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/19/2016] [Accepted: 02/13/2017] [Indexed: 12/15/2022]
Abstract
Background Data regarding anal cutaneous HPV detection among HIV-positive and HIV-negative persons largely relies on studies among men who have sex with men in limited geographical settings. Understanding the distribution, determinants, and potential human health effects of anal cutaneous HPV types among men who have sex with women (MSW) is important. Methods Anal canal swab samples from 415 Russian MSW (384 HIV-negative and 31 HIV-positive) were tested for 43 β-HPVs and 29 γ-HPVs, using a multiplex PCR combined with Luminex technology. Results β-HPV was detected in 24.4% and γ-HPV in 15.9% of anal samples of all Russian MSW. In total, 34 β-HPV and 19 γ-HPV types were detected, with the most commonly detected β-HPV types being 110, 22 and 124 and the most common γ-HPV types being 95, 132 and 50. For both genera, being HIV-positive at the time of testing was a significant determinant of detection (74.2% for β-HPVs and 48.4% for γ-HPVs compared to 20.1% and 12.5% in HIV-negative MSW, respectively). Conclusions A wide spectrum and moderate prevalence of anal β-HPV and γ-HPV types was found in our MSW study sample, suggesting that routes other than penile-anal intercourse may be important in cutaneous HPV transmission. β and γ HPV types commonly colonize the anal canal of MSW, but their geographical variation in prevalence could be wide. HIV-positive men were more likely to have both genera of HPV types detected. Routes other than penile-anal intercourse may be important in cutaneous HPV transmission.
Collapse
Affiliation(s)
- Vitaly Smelov
- Infections and Cancer Biology Group, International Agency for Research on Cancer, World Health Organization, Lyon, France; Screening Group, International Agency for Research on Cancer, World Health Organization, Lyon, France; Department of Urology, North-Western State Medical University named after I.I. Mechnikov, St. Petersburg, Russia; Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Rachel Hanisch
- Section of Environment and Radiation, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Sandrine McKay-Chopin
- Infections and Cancer Biology Group, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Olga Sokolova
- Faculty of Medicine, St. Petersburg State University, St. Petersburg, Russia; Clinical Infectious Diseases Hospital named after S.P. Botkin,, St. Petersburg, Russia
| | - Carina Eklund
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Boris Komyakov
- Department of Urology, North-Western State Medical University named after I.I. Mechnikov, St. Petersburg, Russia
| | - Tarik Gheit
- Infections and Cancer Biology Group, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Massimo Tommasino
- Infections and Cancer Biology Group, International Agency for Research on Cancer, World Health Organization, Lyon, France
| |
Collapse
|
62
|
Moscicki AB, Ma Y, Gheit T, McKay-Chopin S, Farhat S, Widdice LE, Tommasino M. Prevalence and Transmission of Beta and Gamma Human Papillomavirus in Heterosexual Couples. Open Forum Infect Dis 2017; 4:ofw216. [PMID: 28480229 PMCID: PMC5414092 DOI: 10.1093/ofid/ofw216] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 09/21/2016] [Accepted: 10/20/2016] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Beta (β) and gamma (γ) human papillomavirus (HPV) are commonly found on the skin. Few of the β types are associated with nonmelanoma skin cancer. Little is known about transmission patterns of these HPV, specifically in the anogenital (AG) areas. The primary objective of this study was to examine the AG concordance and transmission of β and γHPV types between heterosexual couples. METHODS Archival samples from a previously published study examining concordance of alpha HPV types between couples were tested for β and γHPV. Hand, mouth, and genital samples were obtained 5 times over a 6-week period. RESULTS Of the 21 couples examined, β and γHPV were detected in AG sites in 67% and 30% of men, respectively, and 41% and 25% of women. Positive concordance for β and γHPV was 27% and 20%, respectively, which was greater than the observed concordance between noncouples (10% for βHPV and 4% for γHPV). Transmission rate of βHPV between AG areas was 15.9 (95% confidence interval [CI], 3.3-46.5) per 100 person months for men-to-women at risk and for γHPV was 6.6 (95% CI, .2-36.7). Risks for women-to-men were similar. CONCLUSIONS Beta and γHPV are common in the AG area, and data suggest that they can be sexually transmitted.
Collapse
Affiliation(s)
- Anna-Barbara Moscicki
- Department of Pediatrics, Division of Adolescent Medicine, University of California, Los Angeles
| | - Yifei Ma
- Department of Pediatrics, School of Medicine, University of California, San Francisco
| | - Tarik Gheit
- Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
| | - Sandrine McKay-Chopin
- Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
| | - Sepideh Farhat
- Department of Pediatrics, School of Medicine, University of California, San Francisco
| | - Lea E Widdice
- Cincinnati Children's Hospital Medical Center and University of Cincinnati, Ohio
| | - Massimo Tommasino
- Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
| |
Collapse
|
63
|
Tomaić V. Functional Roles of E6 and E7 Oncoproteins in HPV-Induced Malignancies at Diverse Anatomical Sites. Cancers (Basel) 2016; 8:cancers8100095. [PMID: 27775564 PMCID: PMC5082385 DOI: 10.3390/cancers8100095] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/15/2016] [Accepted: 10/08/2016] [Indexed: 01/13/2023] Open
Abstract
Approximately 200 human papillomaviruses (HPVs) infect human epithelial cells, of which the alpha and beta types have been the most extensively studied. Alpha HPV types mainly infect mucosal epithelia and a small group of these causes over 600,000 cancers per year worldwide at various anatomical sites, especially anogenital and head-and-neck cancers. Of these the most important is cervical cancer, which is the leading cause of cancer-related death in women in many parts of the world. Beta HPV types infect cutaneous epithelia and may contribute towards the initiation of non-melanoma skin cancers. HPVs encode two oncoproteins, E6 and E7, which are directly responsible for the development of HPV-induced carcinogenesis. They do this cooperatively by targeting diverse cellular pathways involved in the regulation of cell cycle control, of apoptosis and of cell polarity control networks. In this review, the biological consequences of papillomavirus targeting of various cellular substrates at diverse anatomical sites in the development of HPV-induced malignancies are highlighted.
Collapse
Affiliation(s)
- Vjekoslav Tomaić
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy.
- Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia.
| |
Collapse
|
64
|
Gil da Costa RM, Peleteiro MC, Pires MA, DiMaio D. An Update on Canine, Feline and Bovine Papillomaviruses. Transbound Emerg Dis 2016; 64:1371-1379. [PMID: 27615361 DOI: 10.1111/tbed.12555] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Indexed: 12/14/2022]
Abstract
Over recent years, a growing number of papillomaviruses have been identified, which cause a wide range of lesions in domestic and wild animals. Papillomavirus-induced lesions may have a great impact on animal health, and some diseases observed in farm animals are associated with significant economic losses. This concise review brings together recent advancements on animal papillomavirus research, providing the scientific community and veterinary practitioners with an update on this rapidly evolving field. Among others, bovine, canine and feline papillomaviruses (BPV, CPV and FcaPV) are most extensively discussed, in view of the recent discovery of new viral types and their worldwide importance for animal health. Feline papillomaviruses 2 is an emerging, highly prevalent pathogen in domestic cats, associated with a subset of malignant skin lesions. Aspects related to cross-species infection by BPV and its environmental co-factors are also addressed. Animal papillomaviruses are also fascinating models for studying molecular and cell biology and have recently inspired some major breakthroughs. Overall, it is clear that additional, international and systematic efforts are needed to clarify which lesions are caused by which viral types and to develop experimental models for studying animal papillomavirus.
Collapse
Affiliation(s)
- R M Gil da Costa
- LEPABE, Chemical Engineering Department, Faculty of Engineering, University of Porto (FEUP), Porto, Portugal.,Molecular Oncology and Viral Pathology Group, CI-IPOP, Portuguese Institute of Oncology, Porto, Portugal
| | - M C Peleteiro
- Faculty of Veterinary Medicine, CIISA, University of Lisbon, Lisboa, Portugal
| | - M A Pires
- Veterinary Sciences Department, CECAV, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - D DiMaio
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.,Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA.,Yale Cancer Center, New Haven, CT, USA
| |
Collapse
|
65
|
Abstract
Human papillomaviruses (HPVs) represent a large collection of viral types associated with significant clinical disease of cutaneous and mucosal epithelium. HPV-associated cancers are found in anogenital and oral mucosa, and at various cutaneous sites. Papillomaviruses are highly species and tissue restricted, and these viruses display both mucosotropic, cutaneotropic or dual tropism for epithelial tissues. A subset of HPV types, predominantly mucosal, are also oncogenic and cancers with these HPV types account for more than 200,000 deaths world-wide. Host control of HPV infections requires both innate and adaptive immunity, but the viruses have developed strategies to escape immune detection. Viral proteins can disrupt both innate pathogen-sensing pathways and T-cell based recognition and subsequent destruction of infected tissues. Current treatments to manage HPV infections include mostly ablative strategies in which recurrences are common and only active disease is treated. Although much is known about the papillomavirus life cycle, viral protein functions, and immune responsiveness, we still lack knowledge in a number of key areas of PV biology including tissue tropism, site-specific cancer progression, codon usage profiles, and what are the best strategies to mount an effective immune response to the carcinogenic stages of PV disease. In this review, disease transmission, protection and control are discussed together with questions related to areas in PV biology that will continue to provide productive opportunities of discovery and to further our understanding of this diverse set of human viral pathogens.
Collapse
Affiliation(s)
- Neil D Christensen
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|
66
|
Zeng Q, Chen J, Li Y, Werle KD, Zhao RX, Quan CS, Wang YS, Zhai YX, Wang JW, Youssef M, Cui R, Liang J, Genovese N, Chow LT, Li YL, Xu ZX. LKB1 inhibits HPV-associated cancer progression by targeting cellular metabolism. Oncogene 2016; 36:1245-1255. [PMID: 27546620 PMCID: PMC5322260 DOI: 10.1038/onc.2016.290] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 12/14/2022]
Abstract
Liver kinase B1 (LKB1) is mutationally inactivated in Peutz-Jeghers syndrome and in a variety of cancers including human papillomavirus (HPV)-caused cervical cancer. However, the significance of LKB1 mutations in cervical cancer initiation and progress has not been examined. Herein, we demonstrated that, in mouse embryonic fibroblasts, loss of LKB1 and transduction of HPV16 E6/E7 had an additive effect on constraining cell senescence while promoting cell proliferation and increasing glucose consumption, lactate production, and ATP generation. Knock-down of LKB1 increased and ectopic expression of LKB1 decreased glycolysis, anchorage-independent cell growth, and cell migration and invasion in HPV transformed cells. In the tumorigenesis and lung metastasis model in syngeneic mice, depletion of LKB1 markedly increased tumor metastatic colonies in lungs without affecting subcutaneous tumor growth. We showed that HPV16 E6/E7 enhanced the expression of hexokinase-ll (HK-II) in the glycolytic pathway through elevated c-MYC. Ectopic LKB1 reduced HK-II along with glycolysis. The inverse relationship between HK-II and LKB1 was also observed in normal and HPV-associated cervical lesions. We propose that LKB1 acts as a safeguard against HPV-stimulated aerobic glycolysis and tumor progression. These findings may eventually aid in the development of therapeutic strategy for HPV-associated malignancies by targeting cell metabolism.
Collapse
Affiliation(s)
- Q Zeng
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China.,Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J Chen
- Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Y Li
- Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - K D Werle
- Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - R-X Zhao
- Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - C-S Quan
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Y-S Wang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Y-X Zhai
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - J-W Wang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - M Youssef
- Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - R Cui
- Department of Dermatology, Boston University, School of Medicine, Boston, MA, USA
| | - J Liang
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - N Genovese
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - L T Chow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Y-L Li
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Z-X Xu
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China.,Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|