51
|
Andrianova NV, Zorova LD, Babenko VA, Pevzner IB, Popkov VA, Silachev DN, Plotnikov EY, Zorov DB. Rapamycin Is Not Protective against Ischemic and Cisplatin-Induced Kidney Injury. BIOCHEMISTRY (MOSCOW) 2020; 84:1502-1512. [PMID: 31870254 DOI: 10.1134/s0006297919120095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Autophagy plays an important role in the pathogenesis of acute kidney injury (AKI). Although autophagy activation was shown to be associated with an increased lifespan and beneficial effects in various pathologies, the impact of autophagy activators, particularly, rapamycin and its analogues on AKI remains obscure. In our study, we explored the effects of rapamycin treatment in in vivo and in vitro models of ischemic and cisplatin-induced AKI. The impact of rapamycin on the kidney function after renal ischemia/reperfusion (I/R) or exposure to the nephrotoxic agent cisplatin was assessed by quantifying blood urea nitrogen and serum creatinine and evaluating the content of neutrophil gelatinase-associated lipocalin, a novel biomarker of AKI. In vitro experiments were performed on the primary culture of renal tubular cells (RTCs) that were subjected to oxygen-glucose deprivation (OGD) or incubated with cisplatin under various rapamycin treatment protocols. Cell viability and proliferation were estimated by the MTT assay and real-time cell analysis using an RTCA iCELLigence system. Although rapamycin inhibited mTOR (mammalian target of rapamycin) signaling, it failed to enhance the autophagy and to ameliorate the severity of AKI caused by ischemia or cisplatin-induced nephrotoxicity. Experiments with RTCs demonstrated that rapamycin exhibited the anti-proliferative effect in primary RTCs cultures but did not protect renal cells exposed to OGD or cisplatin. Our study revealed for the first time that the mTOR inhibitor rapamycin did not prevent AKI caused by renal I/R or cisplatin-induced nephrotoxicity and, therefore, cannot be considered as an ideal mimetic of the autophagy-associated nephroprotective mechanisms (e.g., those induced by caloric restriction), as it had been suggested earlier. The protective action of such approaches like caloric restriction might not be limited to mTOR inhibition and can proceed through more complex mechanisms involving alternative autophagy-related targets. Thus, the use of rapamycin and its analogues for the treatment of various AKI forms requires further studies in order to understand potential protective or adverse effects of these compounds in different contexts.
Collapse
Affiliation(s)
- N V Andrianova
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119992, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - L D Zorova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - V A Babenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - I B Pevzner
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - V A Popkov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - D N Silachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - E Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia. .,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| | - D B Zorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia. .,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| |
Collapse
|
52
|
Malone T, Schäfer L, Simon N, Heavey S, Cuffe S, Finn S, Moore G, Gately K. Current perspectives on targeting PIM kinases to overcome mechanisms of drug resistance and immune evasion in cancer. Pharmacol Ther 2019; 207:107454. [PMID: 31836451 DOI: 10.1016/j.pharmthera.2019.107454] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/03/2019] [Indexed: 12/22/2022]
Abstract
PIM kinases are a class of serine/threonine kinases that play a role in several of the hallmarks of cancer including cell cycle progression, metabolism, inflammation and immune evasion. Their constitutively active nature and unique catalytic structure has led them to be an attractive anticancer target through the use of small molecule inhibitors. This review highlights the enhanced activity of PIM kinases in cancer that can be driven by hypoxia in the tumour microenvironment and the important role that aberrant PIM kinase activity plays in resistance mechanisms to chemotherapy, radiotherapy, anti-angiogenic therapies and targeted therapies. We highlight an interaction of PIM kinases with numerous major oncogenic players, including but not limited to, stabilisation of p53, synergism with c-Myc, and notable parallel signalling with PI3K/Akt. We provide a comprehensive overview of PIM kinase's role as an escape mechanism to targeted therapies including PI3K/mTOR inhibitors, MET inhibitors, anti-HER2/EGFR treatments and the immunosuppressant rapamycin, providing a rationale for co-targeting treatment strategies for a more durable patient response. The current status of PIM kinase inhibitors and their use as a combination therapy with other targeted agents, in addition to the development of novel multi-molecularly targeted single therapeutic agents containing a PIM kinase targeting moiety are discussed.
Collapse
Affiliation(s)
- Tom Malone
- Dept. of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Lea Schäfer
- Dept. of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Nathalie Simon
- Dept. of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Susan Heavey
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK
| | - Sinead Cuffe
- Dept. of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Stephen Finn
- Dept. of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Gillian Moore
- School of Pharmacy and Biomolecular Sciences, RCSI, Dublin, Ireland
| | - Kathy Gately
- Dept. of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland.
| |
Collapse
|
53
|
Mack JM, Verkamp B, Richter GT, Nicholas R, Stewart K, Crary SE. Effect of sirolimus on coagulopathy of slow-flow vascular malformations. Pediatr Blood Cancer 2019; 66:e27896. [PMID: 31250546 DOI: 10.1002/pbc.27896] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/25/2019] [Accepted: 06/10/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND/OBJECTIVES Stagnant blood flow present in slow-flow vascular malformations can lead to localized intravascular coagulopathy (LIC), measured by elevated D-dimer levels, low fibrinogen, and/or thrombocytopenia. LIC can lead to localized thrombosis and/or bleeding, resulting in pain, swelling, and functional limitations. Patients with complex vascular malformations treated with sirolimus show clinical improvement in these symptoms. We hypothesized that the clinical benefits of sirolimus may correlate with improvements in coexisting LIC. DESIGN/METHODS A retrospective chart review was performed, including D-dimer, fibrinogen, and platelet count, in patients with slow-flow vascular malformations treated with sirolimus. Laboratory values were assessed at three time points (presirolimus, 1-3 months postsirolimus, and last clinic visit). Clinical response, as defined by decreased pain and swelling, was extracted from the record. RESULTS Thirty-five patients at our vascular anomalies center had been prescribed sirolimus between 2014 and 2017. Fifteen patients (12 combined slow-flow vascular malformations and three pure venous malformations) remained after excluding patients that did not have adequate records or a venous component to their vascular malformation. Patients who did not adhere to the treatment were also excluded. All 15 had elevated D-dimer levels prior to treatment and there was a statistically significant decrease in D-dimer levels following treatment with sirolimus. Symptomatic improvement of pain and swelling was reported after 3 months of starting sirolimus in 13/15 patients. CONCLUSION This study suggests that sirolimus improves coagulopathy in slow-flow vascular malformations, as evidenced by reduced D-dimer levels. Improvement in LIC symptoms also correlates with sirolimus-corrected coagulopathy.
Collapse
Affiliation(s)
- Joana M Mack
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Division of Pediatric Hematology-Oncology, Department of Pediatrics, Arkansas Children's Hospital, Little Rock, Arkansas
| | - Bethany Verkamp
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Arkansas Children's Hospital, Little Rock, Arkansas.,School of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Gresham T Richter
- Division of Pediatric Otolaryngology, Department of Otolaryngology-Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Richard Nicholas
- Division of Pediatric Orthopedic Surgery, Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Kelly Stewart
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Arkansas Children's Hospital, Little Rock, Arkansas
| | - Shelley E Crary
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Division of Pediatric Hematology-Oncology, Department of Pediatrics, Arkansas Children's Hospital, Little Rock, Arkansas
| |
Collapse
|
54
|
Tavakol S, Ashrafizadeh M, Deng S, Azarian M, Abdoli A, Motavaf M, Poormoghadam D, Khanbabaei H, Afshar EG, Mandegary A, Pardakhty A, Yap CT, Mohammadinejad R, Kumar AP. Autophagy Modulators: Mechanistic Aspects and Drug Delivery Systems. Biomolecules 2019; 9:E530. [PMID: 31557936 PMCID: PMC6843293 DOI: 10.3390/biom9100530] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/14/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy modulation is considered to be a promising programmed cell death mechanism to prevent and cure a great number of disorders and diseases. The crucial step in designing an effective therapeutic approach is to understand the correct and accurate causes of diseases and to understand whether autophagy plays a cytoprotective or cytotoxic/cytostatic role in the progression and prevention of disease. This knowledge will help scientists find approaches to manipulate tumor and pathologic cells in order to enhance cellular sensitivity to therapeutics and treat them. Although some conventional therapeutics suffer from poor solubility, bioavailability and controlled release mechanisms, it appears that novel nanoplatforms overcome these obstacles and have led to the design of a theranostic-controlled drug release system with high solubility and active targeting and stimuli-responsive potentials. In this review, we discuss autophagy modulators-related signaling pathways and some of the drug delivery strategies that have been applied to the field of therapeutic application of autophagy modulators. Moreover, we describe how therapeutics will target various steps of the autophagic machinery. Furthermore, nano drug delivery platforms for autophagy targeting and co-delivery of autophagy modulators with chemotherapeutics/siRNA, are also discussed.
Collapse
Affiliation(s)
- Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Milad Ashrafizadeh
- Department of basic science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Shuo Deng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Maryam Azarian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autónoma de Barcelona, Barcelona, Spain.
| | - Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| | - Mahsa Motavaf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Delaram Poormoghadam
- Department of Medical Nanotechnology, Faculty of Advanced Sciences & Technology, Pharmaceutical Sciences Branch, Islamic Azad University, (IAUPS), Tehran, Iran.
| | - Hashem Khanbabaei
- Medical Physics Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Elham Ghasemipour Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Ali Mandegary
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Abbas Pardakhty
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Celestial T Yap
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.
| |
Collapse
|
55
|
Wijesinha M, Hirshon JM, Terrin M, Magder L, Brown C, Stafford K, Iacono A. Survival Associated With Sirolimus Plus Tacrolimus Maintenance Without Induction Therapy Compared With Standard Immunosuppression After Lung Transplant. JAMA Netw Open 2019; 2:e1910297. [PMID: 31461151 PMCID: PMC6716294 DOI: 10.1001/jamanetworkopen.2019.10297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022] Open
Abstract
Importance Median survival after lung transplant is less than 6 years. Standard maintenance therapy typically includes tacrolimus and an antimetabolite (mycophenolate mofetil or azathioprine). Replacing the antimetabolite with sirolimus after postoperative wound healing may improve long-term survival due to antifibrotic, antiproliferative, and antiaging effects of sirolimus. Objectives To compare survival between patients receiving sirolimus plus tacrolimus vs mycophenolate mofetil plus tacrolimus (the most common maintenance therapy) and to identify the combination of induction and maintenance therapy associated with the highest survival. Design, Setting, and Participants This cohort study of US recipients of lung transplants from January 1, 2003, through August 31, 2016, analyzed United Network for Organ Sharing (UNOS) data from January 1 through September 13, 2018. Because initiation of sirolimus therapy is usually delayed 3 to 12 months after lung transplant, primary analyses were based on patients alive and free of chronic rejection and malignant disease at 1 year in all groups, whereas sensitivity analyses used appropriate methods to include all patients from transplant time. Regression models adjusted for available potential confounders, including transplant center performance. Exposures Cell cycle inhibitor maintenance therapies, including sirolimus (n = 219), mycophenolate mofetil (n = 5782), mycophenolate sodium (n = 408), azathioprine (n = 2556), and concurrent sirolimus plus mycophenolate mofetil (n = 54), were compared within a tacrolimus-based regimen. Combinations of each induction (basiliximab, daclizumab, antithymocyte globulin, alemtuzumab, or none) and maintenance (tacrolimus plus sirolimus, mycophenolate mofetil, or azathioprine) therapy were also compared. Main Outcomes and Measures Survival was the primary outcome; chronic rejection incidence and subsequent mortality were secondary outcomes. Results Among this population of 9019 patients (median age, 57 years [interquartile range {IQR}, 46-63 years]; 5194 men [57.6%]), sirolimus plus tacrolimus was associated with better survival than mycophenolate mofetil plus tacrolimus (median, 8.9 years [IQR, 4.4-12.7 years] vs 7.1 years [IQR, 3.6-12.1 years]; adjusted hazard ratio [aHR], 0.71; 95% CI, 0.56-0.89; P = .003). Chronic rejection incidence (aHR, 0.75; 95% CI, 0.61-0.92) and mortality after chronic rejection (aHR, 0.52; 95% CI, 0.31-0.81) were lower with sirolimus plus tacrolimus. Compared with mycophenolate mofetil plus tacrolimus, survival differences for sirolimus plus mycophenolate mofetil plus tacrolimus (aHR, 1.14; 95% CI, 0.79-1.65), mycophenolate sodium plus tacrolimus (aHR, 0.95; 95% CI, 0.77-1.17), and azathioprine plus tacrolimus (aHR, 0.93; 95% CI, 0.84-1.02) were not significant. The induction-maintenance combination with the highest survival was sirolimus plus tacrolimus without induction therapy (median survival, 10.7 years [IQR, 7.3-12.7 years]; aHR, 0.48; 95% CI, 0.31-0.76; P = .002) compared with mycophenolate mofetil plus tacrolimus with induction therapy (median survival, 7.4 years [IQR, 3.9-12.6 years]). Conclusions and Relevance Sirolimus plus tacrolimus was associated with improved patient survival after lung transplant compared with mycophenolate mofetil plus tacrolimus; no antibody induction therapy with sirolimus plus tacrolimus was associated with maximal survival.
Collapse
Affiliation(s)
- Marniker Wijesinha
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore
| | - Jon Mark Hirshon
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore
| | - Michael Terrin
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore
- Department of Medicine, University of Maryland School of Medicine, Baltimore
| | - Laurence Magder
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore
| | - Clayton Brown
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore
| | - Kristen Stafford
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore
| | - Aldo Iacono
- Department of Medicine, University of Maryland School of Medicine, Baltimore
| |
Collapse
|
56
|
Sirolimus as a new drug to treat RIF patients with elevated Th17/Treg ratio: A double-blind, phase II randomized clinical trial. Int Immunopharmacol 2019; 74:105730. [PMID: 31299610 DOI: 10.1016/j.intimp.2019.105730] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND RIF is clinically defined as the failure of good quality embryos to implant into the uterus following at least three cycles of In Vitro Fertilization/Embryo Transfer (IVF/ET). During human pregnancy, a genetically different fetus is allowed to survive within the uterus despite the maternal recognition of fetal alloantigens. Compared with normal pregnant women, early loss of embryo is associated with systemic lower levels of Treg cells in IVF. Moreover, several lines of evidence have indicated that differentiation of naive T cells into Th17 is deleterious for normal pregnancy and may cause implantation failure. Sirolimus as the most common mTOR (mammalian target of Rapamycin) inhibitor is able to effectively prevent allograft rejection. Here we aimed to evaluate Sirolimus effects on Th17/Treg axis and subsequently on pregnancy outcome. METHODS AND MATERIALS 121 patients with a history of at least 3 implatation failures were selected and enrolled in this clinical trial. Blood was drawn between days 5 and 10 of the cycle prior to the index IVF/ET cycle to assess baseline value of Th17 cells and regulatory T cells ratios using flowcytometry. A Th17/Treg cell ratio equal or >0.74 was considered to be the elevated Th17/Treg cell ratio. In 76 patients with elevated Th17/Treg ratios, 43 individuals were treated with Sirolimus and 33 remained untreated. RESULTS Our results demonstrated that Sirolimus treatment led to an increase in Treg cells number and function in treated group and reduced the frequency and function of Th17 cells. Moreover Th17/Treg cell ratio, significantly reduced from 1.18 ± 0.46% to 0.9 ± 0.45% following Sirolimus intervention (P = 0.024). In contrast, no significant difference in Th17 and Treg cell frequencies and Th17/Treg cell ratio was observed in untreated control subjects before and after ET. Finally our data showed a significantly higher clinical pregnancy rate (55.81%) in Sirolimus-treated patients compared with control group (24.24%) (P < 0.0005). We also found a significantly increased live birth rate (48.83%) in RIF women who received Sirolimus compared with control group (21.21%) (P < 0.0001). CONCLUSION The findings of the current study revealed the fact that Sirolimus exhibit potent immunosuppressive effects by blocking intracellular immune responses downstream of co-stimulatory signals, also is able to improve reproductive outcome in RIF women with imbalanced Th17/Treg ratio by modulate of Th17 /Treg axis, thus representing a new approach for the potential treatment of patients with embryo implantation failure.
Collapse
|
57
|
Pham JV, Yilma MA, Feliz A, Majid MT, Maffetone N, Walker JR, Kim E, Cho HJ, Reynolds JM, Song MC, Park SR, Yoon YJ. A Review of the Microbial Production of Bioactive Natural Products and Biologics. Front Microbiol 2019; 10:1404. [PMID: 31281299 PMCID: PMC6596283 DOI: 10.3389/fmicb.2019.01404] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/04/2019] [Indexed: 12/24/2022] Open
Abstract
A variety of organisms, such as bacteria, fungi, and plants, produce secondary metabolites, also known as natural products. Natural products have been a prolific source and an inspiration for numerous medical agents with widely divergent chemical structures and biological activities, including antimicrobial, immunosuppressive, anticancer, and anti-inflammatory activities, many of which have been developed as treatments and have potential therapeutic applications for human diseases. Aside from natural products, the recent development of recombinant DNA technology has sparked the development of a wide array of biopharmaceutical products, such as recombinant proteins, offering significant advances in treating a broad spectrum of medical illnesses and conditions. Herein, we will introduce the structures and diverse biological activities of natural products and recombinant proteins that have been exploited as valuable molecules in medicine, agriculture and insect control. In addition, we will explore past and ongoing efforts along with achievements in the development of robust and promising microorganisms as cell factories to produce biologically active molecules. Furthermore, we will review multi-disciplinary and comprehensive engineering approaches directed at improving yields of microbial production of natural products and proteins and generating novel molecules. Throughout this article, we will suggest ways in which microbial-derived biologically active molecular entities and their analogs could continue to inspire the development of new therapeutic agents in academia and industry.
Collapse
Affiliation(s)
- Janette V. Pham
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Mariamawit A. Yilma
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Adriana Feliz
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Murtadha T. Majid
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Nicholas Maffetone
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Jorge R. Walker
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Eunji Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, South Korea
| | - Hyo Je Cho
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, South Korea
| | - Jared M. Reynolds
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Myoung Chong Song
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, South Korea
| | - Sung Ryeol Park
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
- Natural Products Discovery Institute, Doylestown, PA, United States
| | - Yeo Joon Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
58
|
Dose Escalation Study to Assess the Pharmacokinetic Parameters of a Nano-amorphous Oral Sirolimus Formulation in Healthy Volunteers. Eur J Drug Metab Pharmacokinet 2019; 44:777-785. [PMID: 31089971 DOI: 10.1007/s13318-019-00562-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND AND OBJECTIVES Sirolimus (Rapamune®) exhibits low bioavailability, high variability and moderate food effect following oral administration. This makes therapeutic blood monitoring of sirolimus concentrations necessary for kidney transplant patients. Furthermore, reaching therapeutic blood sirolimus concentrations in renal cancer patients was found to be challenging when the marketed drug was administered alone. A novel, nano-amorphous formulation of the compound was developed and its pharmacokinetic properties were investigated in a dose escalation study in a first-in-human clinical trial. The effect of food at the highest dose on the pharmacokinetic parameters was also assessed. METHODS Each group received one of the escalating doses (0.5-2-10-40 mg) of sirolimus as the novel formulation in the fasted state. Following a 2- to 3-week washout period, the 40-mg group then also received another 40 mg dose in the fed state. Sirolimus whole blood concentrations were determined for up to 48 h. To avoid degradation of sirolimus in the acidic environment in the stomach, 40 mg famotidine was administered 3 h pre-dose in all regimens. The main pharmacokinetic parameters were calculated and data were compared with pharmacokinetic data reported for dose escalation studies for Rapamune®. RESULTS Thirty-two healthy volunteers were divided into 4 cohorts of 8 volunteers. Dose increments resulted in approximately dose-proportional increases of maximal plasma concentrations (Cmax) and area under the concentration-time curve (AUC)0-48 h up to 10 mg, while less than dose-proportional increases were observed when the dose was increased from 10 to 40 mg. Mean AUCinf at the 40 mg dose in the fasted state was 4,300 ± 1,083 ng·h/ml, which is 28% higher than the AUC reported following the administration of 90 (2 × 45) mg Rapamune® and 11% higher than the exposure reported for 25 mg intravenous pro-drug temsirolimus (3,810 ng·h/ml). At the 40 mg dose, food reduced Cmax by 35.5%, but it had no statistically significant effect on AUC. Inter-individual variability of the pharmacokinetic parameters mostly fell in the 20-30% (CV) range showing that sirolimus administered as the nano-amorphous formulation is a low-to-moderate variability drug. CONCLUSION Based on the pharmacokinetic profiles observed, the nano-amorphous formulation could be a better alternative to Rapamune® for the treatment of mammalian target of rapamycin-responsive malignancies. Therapeutically relevant plasma concentrations and exposures can be achieved by a single 40 mg oral dose. Furthermore, the low variability observed might make therapeutic blood monitoring unnecessary for transplant patients taking sirolimus as an immunosuppressant.
Collapse
|
59
|
Sang AX, McPherson MC, Ivison GT, Qu X, Rigdon J, Esquivel CO, Krams SM, Martinez OM. Dual blockade of the PI3K/Akt/mTOR pathway inhibits posttransplant Epstein-Barr virus B cell lymphomas and promotes allograft survival. Am J Transplant 2019; 19:1305-1314. [PMID: 30549430 PMCID: PMC6482059 DOI: 10.1111/ajt.15216] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 01/25/2023]
Abstract
Posttransplant lymphoproliferative disorder (PTLD) is a serious complication of organ transplantation that often manifests as Epstein-Barr virus (EBV)-associated B cell lymphomas. Current treatments for PTLD have limited efficacy and can be associated with graft rejection or systemic toxicities. The mTOR inhibitor, rapamycin, suppresses tumor growth of EBV+ B cell lymphoma cells in vitro and in vivo; however, the efficacy is limited and clinical benefits of mTOR inhibitors for PTLD are variable. Here, we show constitutive activation of multiple nodes within the PI3K/Akt/mTOR pathway in EBV+ PTLD-derived cell lines. Inhibition of either PI3K or Akt, with specific inhibitors CAL-101 and MK-2206, respectively, diminished growth of EBV+ B cell lines from PTLD patients in a dose-dependent manner. Importantly, rapamycin combined with CAL-101 or MK-2206 had a synergistic effect in suppressing cell growth as determined by IC50 isobolographic analysis and Loewe indices. Moreover, these combinations were significantly more effective than rapamycin alone in inhibiting tumor xenograft growth in NOD-SCID mice. Finally, both CAL-101 and MK-2206 also prolonged survival of heterotopic cardiac allografts in C57BL/6 mice. Thus, combination therapy with rapamycin and a PI3K inhibitor, or an Akt inhibitor, can be an efficacious treatment for EBV-associated PTLD, while simultaneously promoting allograft survival.
Collapse
Affiliation(s)
- Adam X Sang
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Marla C McPherson
- Stanford Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Geoffrey T Ivison
- Stanford Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiumei Qu
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph Rigdon
- Quantitative Sciences Unit, Stanford University School of Medicine, Stanford, CA, USA
| | - Carlos O Esquivel
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sheri M Krams
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA,Stanford Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Olivia M Martinez
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA,Stanford Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
60
|
Leung WH, Gay J, Martin U, Garrett TE, Horton HM, Certo MT, Blazar BR, Morgan RA, Gregory PD, Jarjour J, Astrakhan A. Sensitive and adaptable pharmacological control of CAR T cells through extracellular receptor dimerization. JCI Insight 2019; 5:124430. [PMID: 31039141 DOI: 10.1172/jci.insight.124430] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapies have achieved promising outcomes in several cancers, however more challenging oncology indications may necessitate advanced antigen receptor designs and functions. Here we describe a bipartite receptor system comprised of separate antigen targeting and signal transduction polypeptides, each containing an extracellular dimerization domain. We demonstrate that T cell activation remains antigen dependent but can only be achieved in the presence of a dimerizing drug, rapamycin. Studies performed in vitro and in xenograft mouse models illustrate equivalent to superior anti-tumor potency compared to currently used CAR designs, and at rapamycin concentrations well below immunosuppressive levels. We further show that the extracellular positioning of the dimerization domains enables the administration of recombinant re-targeting modules, potentially extending antigen targeting. Overall, this novel regulatable CAR design has exquisite drug sensitivity, provides robust anti-tumor responses, and is uniquely flexible for multiplex antigen targeting or retargeting, which may further assist the development of safe, potent and durable T cell therapeutics.
Collapse
Affiliation(s)
| | - Joel Gay
- bluebird bio, inc., Cambridge, Massachusetts, USA
| | - Unja Martin
- bluebird bio, inc., Cambridge, Massachusetts, USA
| | | | | | | | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | |
Collapse
|
61
|
Kulacoglu H, Köckerling F. Hernia and Cancer: The Points Where the Roads Intersect. Front Surg 2019; 6:19. [PMID: 31024927 PMCID: PMC6460227 DOI: 10.3389/fsurg.2019.00019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/18/2019] [Indexed: 12/24/2022] Open
Abstract
Introduction: This review aimed to present common points, intersections, and potential interactions or mutual effects for hernia and cancer. Besides direct relationships, indirect connections, and possible involvements were searched. Materials and Methods: A literature search of PubMed database was performed in July 2018 as well as a search of relevant journals and reference lists. The total number of screened articles was 1,422. Some articles were found in multiple different searches. A last PubMed search was performed during manuscript writing in December 2018 to update the knowledge. Eventually 427 articles with full text were evaluated, and 264 included, in this review. Results: There is no real evidence for a possible common etiology for abdominal wall hernias and any cancer type. The two different diseases had been found to have some common points in the studies on genes, integrins, and biomarkers, however, to date no meaningful relationship has been identified between these points. There is also some, albeit rather conflicting, evidence for inguinal hernia being a possible risk factor for testicular cancer. Neoadjuvant or adjuvant therapeutic modalities like chemotherapy and radiotherapy may cause postoperative herniation with their adverse effects on tissue repair. Certain specific substances like bevacizumab may cause more serious complications and interfere with hernia repair. There are only two articles in PubMed directly related to the topic of "hernia and cancer." In one of these the authors claimed that there was no association between cancer development and hernia repair with mesh. The other article reported two cases of squamous-cell carcinoma developed secondary to longstanding mesh infections. Conclusion: As expected, the relationship between abdominal wall hernias and cancer is weak. Hernia repair with mesh does not cause cancer, there is only one case report on cancer development following a longstanding prosthetic material infections. However, there are some intersection points between these two disease groups which are worthy of research in the future.
Collapse
Affiliation(s)
| | - Ferdinand Köckerling
- Department of Surgery, Centre for Minimally Invasive Surgery, Vivantes Klinikum, Berlin, Germany
| |
Collapse
|
62
|
Abstract
Mild environmental stress might have beneficial effects in aging by activating maintenance and repair processes in cells and organs. These beneficial stress effects fit to the concept of hormesis. Prominent stressors acting in a hormetic way are physical exercises, fasting, cold and heat. This review will introduce some toxins, which have been found to induce hormetic responses in animal models of aging research. To highlight the molecular signature of these hormetic effects we will depict signaling pathways affected by low doses of toxins on cellular and organismic level. As prominent examples for signaling pathways involved in both aging processes as well as toxin responses, PI3K/Akt/mTOR- and AMPK-signal transduction will be described in more detail. Due to the striking overlap of signaling pathways mediating toxin induced responses and aging processes we propose considering the ability of low doses of toxins to slow down the rate of aging.
Collapse
|
63
|
Van Vliet T, Kohli J, Demaria M. Consequences of senotherapies for tissue repair and reprogramming. TRANSLATIONAL MEDICINE OF AGING 2019. [DOI: 10.1016/j.tma.2019.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
64
|
Grant MJ, DeVito N, Salama AKS. Checkpoint inhibitor use in two heart transplant patients with metastatic melanoma and review of high-risk populations. Melanoma Manag 2018; 5:MMT10. [PMID: 30459942 PMCID: PMC6240846 DOI: 10.2217/mmt-2018-0004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 08/03/2018] [Indexed: 12/12/2022] Open
Abstract
Due to the unique side-effect profile of immune checkpoint inhibitors (ICIs), groups of patients deemed to be at high risk of complications were excluded from trials that proved the efficacy and safety of these agents in patients with various malignancies. Among these excluded patients were those with prior solid organ transplantation, chronic viral infections and pre-existing autoimmune diseases including paraneoplastic syndromes. We present follow-up on a patient from a previously published case report with an orthotopic heart transplantation who was treated with both cytotoxic T-lymphocyte antigen 4 and PD-1 inhibition safely, without organ rejection. Additionally, we describe the case of a patient with a cardiac allograft who also did not experience organ rejection after treatment with pembrolizumab. Through smaller trials, retrospective analyses, case series and individual case reports, we are accumulating initial data on how these agents are tolerated by the aforementioned groups. Our survey of the literature has found more evidence of organ transplant rejection in patients treated with PD-1 inhibitors than those treated with inhibitors of cytotoxic T-lymphocyte antigen 4. Patients with chronic viral infections, especially hepatitis C, seem to have little to no risk of treatment-related increase in serum RNA levels. The literature contains few documented cases of devastating exacerbations of pre-existing autoimmune disease during treatment with ICIs, and flares seem to be easily controlled by immunosuppression in the vast majority of cases. Last, several cases allude to a promising role for disease-specific antibodies and other serum biomarkers in identifying patients at high risk of developing certain immune-related adverse events, detecting subclinical immune-related adverse event onset, and monitoring treatment response to immunosuppressive therapy in patients treated with ICIs. Though these excluded populations have not been well studied in randomized placebo-controlled trials, we may be able to learn and derive hypotheses from the existing observational data in the literature.
Collapse
Affiliation(s)
- Michael J Grant
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Nicholas DeVito
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.,Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - April K S Salama
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.,Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
65
|
FTY720 Decreases Tumorigenesis in Group 3 Medulloblastoma Patient-Derived Xenografts. Sci Rep 2018; 8:6913. [PMID: 29720672 PMCID: PMC5932040 DOI: 10.1038/s41598-018-25263-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 03/14/2018] [Indexed: 12/20/2022] Open
Abstract
Group 3 tumors account for 28% of medulloblastomas and have the worst prognosis. FTY720, an immunosuppressant currently approved for treatment of multiple sclerosis, has shown antitumor effects in several human cancer cell lines. We hypothesized that treatment with FTY720 (fingolimod) would decrease tumorigenicity in medulloblastoma patient-derived xenografts (PDXs). Three Group 3 medulloblastoma PDXs (D341, D384 and D425) were utilized. Expression of PP2A and its endogenous inhibitors I2PP2A and CIP2A was detected by immunohistochemistry and immunoblotting. PP2A activation was measured via phosphatase activation kit. Cell viability, proliferation, migration and invasion assays were performed after treatment with FTY720. Cell cycle analysis was completed using flow cytometry. A flank model using D425 human medulloblastoma PDX cells was used to assess the in vivo effects of FTY720. FTY720 activated PP2A and led to decreased medulloblastoma PDX cell viability, proliferation, migration and invasion and G1 cell cycle arrest in all three PDXs. FTY720 treatment of mice bearing D425 medulloblastoma PDX tumors resulted in a significant decrease in tumor growth compared to vehicle treated animals. FTY720 decreased viability, proliferation, and motility in Group 3 medulloblastoma PDX cells and significantly decreased tumor growth in vivo. These results suggest that FTY720 should be investigated further as a potential therapeutic agent for medulloblastoma.
Collapse
|
66
|
Shaki H, Ganji F, Kempen PJ, Dolatshahi-Pirouz A, Vasheghani-Farahani E. Self-assembled amphiphilic-dextran nanomicelles for delivery of rapamycin. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
67
|
Abstract
Inhibitors of mTOR, including clinically available rapalogs such as rapamycin (Sirolimus) and Everolimus, are gerosuppressants, which suppress cellular senescence. Rapamycin slows aging and extends life span in a variety of species from worm to mammals. Rapalogs can prevent age-related diseases, including cancer, atherosclerosis, obesity, neurodegeneration and retinopathy and potentially rejuvenate stem cells, immunity and metabolism. Here, I further suggest how rapamycin can be combined with metformin, inhibitors of angiotensin II signaling (Losartan, Lisinopril), statins (simvastatin, atorvastatin), propranolol, aspirin and a PDE5 inhibitor. Rational combinations of these drugs with physical exercise and an anti-aging diet (Koschei formula) can maximize their anti-aging effects and decrease side effects.
Collapse
|
68
|
Varusai TM, Nguyen LK. Dynamic modelling of the mTOR signalling network reveals complex emergent behaviours conferred by DEPTOR. Sci Rep 2018; 8:643. [PMID: 29330362 PMCID: PMC5766521 DOI: 10.1038/s41598-017-18400-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/01/2017] [Indexed: 01/10/2023] Open
Abstract
The mechanistic Target of Rapamycin (mTOR) signalling network is an evolutionarily conserved network that controls key cellular processes, including cell growth and metabolism. Consisting of the major kinase complexes mTOR Complex 1 and 2 (mTORC1/2), the mTOR network harbours complex interactions and feedback loops. The DEP domain-containing mTOR-interacting protein (DEPTOR) was recently identified as an endogenous inhibitor of both mTORC1 and 2 through direct interactions, and is in turn degraded by mTORC1/2, adding an extra layer of complexity to the mTOR network. Yet, the dynamic properties of the DEPTOR-mTOR network and the roles of DEPTOR in coordinating mTORC1/2 activation dynamics have not been characterised. Using computational modelling, systems analysis and dynamic simulations we show that DEPTOR confers remarkably rich and complex dynamic behaviours to mTOR signalling, including abrupt, bistable switches, oscillations and co-existing bistable/oscillatory responses. Transitions between these distinct modes of behaviour are enabled by modulating DEPTOR expression alone. We characterise the governing conditions for the observed dynamics by elucidating the network in its vast multi-dimensional parameter space, and develop strategies to identify core network design motifs underlying these dynamics. Our findings provide new systems-level insights into the complexity of mTOR signalling contributed by DEPTOR.
Collapse
Affiliation(s)
- Thawfeek M Varusai
- European Bioinformatics Institute, EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK.,Systems Biology Ireland, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lan K Nguyen
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, 3800, Australia. .,Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, 3800, Australia. .,Systems Biology Ireland, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
69
|
Tolerogenic nanoparticles restore the antitumor activity of recombinant immunotoxins by mitigating immunogenicity. Proc Natl Acad Sci U S A 2018; 115:E733-E742. [PMID: 29311317 DOI: 10.1073/pnas.1717063115] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Protein-based drugs are very active in treating cancer, but their efficacy can be limited by the formation of neutralizing antidrug antibodies (ADAs). Recombinant immunotoxins are proteins that are very effective in patients with leukemia, where immunity is suppressed, but induce ADAs, which compromise their activity, in patients with intact immunity. Here we induced a specific, durable, and transferable immune tolerance to recombinant immunotoxins by combining them with nanoparticles containing rapamycin (SVP-R). SVP-R mitigated the formation of inhibitory ADAs in naïve and sensitized mice, resulting in restoration of antitumor activity. The immune tolerance is mediated by colocalization of the SVP-R and immunotoxin to dendritic cells and macrophages in the spleen and is abrogated by depletion of regulatory T cells. Tolerance induced by SVPs was not blocked by checkpoint inhibitors or costimulatory agonist monoclonal antibodies that by themselves enhance ADA formation.
Collapse
|
70
|
Fan YL, Hou HW, Tay HM, Guo WM, Berggren PO, Loo SCJ. Preservation of Anticancer and Immunosuppressive Properties of Rapamycin Achieved Through Controlled Releasing Particles. AAPS PharmSciTech 2017; 18:2648-2657. [PMID: 28251512 DOI: 10.1208/s12249-017-0745-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/14/2017] [Indexed: 12/24/2022] Open
Abstract
Rapamycin is commonly used in chemotherapy and posttransplantation rejection suppression, where sustained release is preferred. Conventionally, rapamycin has to be administered in excess due to its poor solubility, and this often leads to cytotoxicity and undesirable side effects. In addition, rapamycin has been shown to be hydrolytically unstable, losing its bioactivity within a few hours. The use of drug delivery systems is hypothesized to preserve the bioactivity of rapamycin, while providing controlled release of this otherwise potent drug. This paper reports on the use of microparticles (MP) as a means to tune and sustain the delivery of bioactive rapamycin for up to 30 days. Rapamycin was encapsulated (100% efficiency) in poly(lactic-co-glycolic acid) (PLGA), polycaprolactone (PCL), or a mixture of both via an emulsion method. The use of different polymer types and mixture was shown to achieve a variety of release kinetics and profile. Released rapamycin was subsequently evaluated against breast cancer cell (MCF-7) and human lymphocyte cell (Jurkat). Inhibition of cell proliferation was in good agreement with in vitro release profiles, which confirmed the intact bioactivity of rapamycin. For Jurkat cells, the suppression of cell growth was proven to be effective up to 20 days, a duration significantly longer than free rapamycin. Taken together, these results demonstrate the ability to tune, sustain, and preserve the bioactivity of rapamycin using MP formulations. The sustained delivery of rapamycin could lead to better therapeutic effects than bolus dosage, at the same time improving patient compliance due to its long-acting duration.
Collapse
|
71
|
Kohorst MA, Warad DM, Matsumoto JM, Heimbach JK, El-Youssef M, Arndt CAS, Rodriguez V, Nageswara Rao AA. Management of pediatric hepatocellular carcinoma: A multimodal approach. Pediatr Transplant 2017. [PMID: 28631359 DOI: 10.1111/petr.13007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
HCC is rare in the pediatric population, but is the second most common liver malignancy in children. Survival rates for primary unresectable HCC have been dismal. The objective of this study was to describe our experience with a multimodal approach for the management of unresectable HCC in two adolescent patients and to review the literature. Both patients are currently alive with no recurrence at 51 and 29 months post-transplant. Multimodality treatment involving chemotherapy with doxorubicin, cisplatin, and sorafenib; TACE; timely liver transplantation; and post-transplant therapy with sorafenib and mTOR inhibitors may help improve outcomes and prolong survival in pediatric patients with unresectable HCC.
Collapse
Affiliation(s)
- Mira A Kohorst
- Department of Pediatric and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Mayo Clinic, Rochester, MN, USA
| | - Deepti M Warad
- Department of Pediatric and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Mounif El-Youssef
- Department of Pediatric and Adolescent Medicine, Division of Pediatric Gastroenterology, Mayo Clinic, Rochester, MN, USA
| | - Carola A S Arndt
- Department of Pediatric and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Mayo Clinic, Rochester, MN, USA
| | - Vilmarie Rodriguez
- Department of Pediatric and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Mayo Clinic, Rochester, MN, USA
| | - Amulya A Nageswara Rao
- Department of Pediatric and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
72
|
Smith A, Niu W, Desai A. The Effect of Conversion from a Calcineurin Inhibitor to Sirolimus on Skin Cancer Reduction in Post-renal Transplantation Patients. Cureus 2017; 9:e1564. [PMID: 29057176 PMCID: PMC5640387 DOI: 10.7759/cureus.1564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In kidney transplant patients, skin cancer is the most commonly involved neoplasm. More than 90% of post-transplantation skin cancers are nonmelanoma skin cancers (NMSCs). The majority of them are squamous cell carcinomas and basal cell carcinomas. Calcineurin inhibitors (CNIs) such as cyclosporine and tacrolimus are immunosuppressive agents given after solid organ transplantation, but they can also promote tumor growth. Sirolimus is a novel class of immunosuppressants and has been proven to have antineoplastic properties. We review clinical trials and meta-analyses studying if conversion from CNI to sirolimus in post-renal transplantation patients decreases the development of NMSCs. A critical appraisal of the literature demonstrated that, while smaller scale studies tended to yield no clinically significant data, larger clinical trials and meta-analyses supported the conclusion that converting to sirolimus in post-renal transplant patients leads to reductions in skin cancer development. As a result, we conclude that conversion to sirolimus likely reduces NMSC in post-renal transplantation patients. Larger scale clinical trials with more rigorous stratification and less patient dropout rate are needed for more definitive conclusions.
Collapse
Affiliation(s)
- Aaron Smith
- College of Medicine, University of Central Florida
| | - Wei Niu
- College of Medicine, University of Central Florida
| | - Anand Desai
- College of Medicine, University of Central Florida
| |
Collapse
|
73
|
Asante-Korang A, Carapellucci J, Krasnopero D, Doyle A, Brown B, Amankwah E. Conversion from calcineurin inhibitors to mTOR inhibitors as primary immunosuppressive drugs in pediatric heart transplantation. Clin Transplant 2017; 31. [PMID: 28708333 DOI: 10.1111/ctr.13054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2017] [Indexed: 11/28/2022]
Abstract
There are only a few reports of successful use of mammalian target of rapamycin (mTORI) as primary immunosuppression in pediatric heart transplantation. Compared to calcineurin inhibitors, mTORI have less side effects, especially nephrotoxicity, infections, and malignancies. A retrospective study was conducted at our institution of all 170 heart transplants from 1995 to 2015. Nineteen patients were switched from tacrolimus (n=15) or cyclosporin (n=4) to everolimus (n=4) or sirolimus (n=15) due to nephrotoxicity (n=5), malignancy (n=8), EBV viremia/reactive plasmacytic changes (n=5), and immune hemolytic anemia (n=1). We monitored for rejection, infection, BUN, creatinine, hyperlipidemia, EBV and CMV copies, CBC, cardiac allograft vasculopathy (CAV), and death. Target trough levels of sirolimus and everolimus were 4-10. Four treatment failures included debilitating rash, bone marrow suppression, recurrent rejection, and renal transplantation. There were no deaths. One patient had recurrent rejection episodes, and tacrolimus was reinitiated. One patient with preexisting CAV underwent heart retransplantation. One patient, who was treated for PTLD, transformed to CD30+ Hodgkins disease, and was treated with brentuximab. There were three acute rejection episodes. Median creatinine preswitch was higher 0.82 than postswitch 0.78 (P=.016). Median eGFR was lower preswitch, 75.6, than postswitch, 91.2 (P=.0004). These results indicate that conversion to mTORI as primary immunosuppression may be safely accomplished in some pediatric heart transplant patients.
Collapse
Affiliation(s)
- Alfred Asante-Korang
- Divisions of Cardiology, Johns Hopkins All Children's Hospital, St Petersburg, FL, USA
| | - Jennifer Carapellucci
- Divisions of Cardiology, Johns Hopkins All Children's Hospital, St Petersburg, FL, USA
| | - Diane Krasnopero
- Divisions of Cardiology, Johns Hopkins All Children's Hospital, St Petersburg, FL, USA
| | - Abigail Doyle
- Divisions of Cardiology, Johns Hopkins All Children's Hospital, St Petersburg, FL, USA
| | - Brian Brown
- Pharmacy, Johns Hopkins All Children's Hospital, St Petersburg, FL, USA
| | - Ernest Amankwah
- Center for Translational Research, Johns Hopkins All Children's Hospital, St Petersburg, FL, USA.,Hematology Oncology, Johns Hopkins All Children's Hospital, St Petersburg, FL, USA
| |
Collapse
|
74
|
Abstract
Cell size is amenable by genetic and environmental factors. The highly conserved nutrient-responsive Target of Rapamycin (TOR) signaling pathway regulates cellular metabolic status and growth in response to numerous inputs. Timing and duration of TOR pathway activity is pivotal for both cell mass built up as well as cell cycle progression and is controlled and fine-tuned by the abundance and quality of nutrients, hormonal signals, growth factors, stress, and oxygen. TOR kinases function within two functionally and structurally discrete multiprotein complexes, TORC1 and TORC2, that are implicated in temporal and spatial control of cell size and growth respectively; however, recent data indicate that such functional distinctions are much more complex. Here, we briefly review roles of the two complexes in cellular growth and cytoarchitecture in various experimental model systems.
Collapse
Affiliation(s)
- Suam Gonzalez
- School of Health, Sport and Bioscience, University of East LondonLondon, United Kingdom
| | - Charalampos Rallis
- School of Health, Sport and Bioscience, University of East LondonLondon, United Kingdom
| |
Collapse
|
75
|
Association of Baseline Viral Serology and Sirolimus Regimens With Kidney Transplant Outcomes: A 14-Year Registry-Based Cohort Study in the United States. Transplantation 2017; 101:377-386. [PMID: 28121742 DOI: 10.1097/tp.0000000000001520] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The risks for transplant outcomes associated with baseline viral serostatus in kidney transplant recipients (KTR) on sirolimus have not been widely studied. METHODS We performed a cohort-study of 61 590 adult KTR in 2000 to 2013. We used Cox regression models to determine the adjusted hazard ratio (aHR) of patient death, death-censored graft loss and posttransplant malignancy associated with the baseline serostatus (+ or -: hepatitis B core [HBc], hepatitis C virus [HCV], Epstein-Barr virus [EBV], or cytomegalovirus [CMV]) in KTR on sirolimus (SRL) + mycophenolate (MPA) or SRL + tacrolimus (Tac), relative to the control-regimen: Tac + MPA. RESULTS Compared with Tac + MPA, SRL + MPA, and SRL + Tac were associated with higher risks of 5-year mortality (aHR, 1.41; 95% CI, 1.23-1.60 and aHR, 1.59; 95% CI, 1.38-1.83, respectively) and death-censored graft loss (aHR, 1.41; 95% CI, 1.24-1.60 and aHR, 1.38; 95% CI, 1.21-1.57, respectively). In KTR with negative pretransplant EBV, CMV, HBc, or HCV serostatus, SRL + MPA not SRL + Tac was associated with a lower risk of posttransplant malignancy compared with control (aHR, 0.27; 95% CI, 0.10-0.72; aHR, 0.61; 95% CI, 0.43-0.88; aHR, 0.79; 95% CI, 0.64-0.97; and aHR, 0.80; 95% CI, 0.65-0.98, respectively, for SRL + MPA and aHR, 0.98: 95% CI, 0.52-1.80; aHR, 0.69; 95% CI, 0.46-1.06; aHR, 0.83; 95% CI, 0.66-1.06 and aHR, 0.85; 95% CI, 0.67-1.07, respectively, for SRL + Tac). In KTR with positive serostatus to any of the above viruses, SRL + MPA or SRL + Tac was not associated with a different malignancy risk compared with control. CONCLUSIONS Compared with Tac + MPA, SRL regimens were associated with higher risks for patient death and graft loss, although SRL + MPA was associated with a lower risk for posttransplant malignancy in kidney allograft recipients with negative pretransplant HBc, HCV, EBV, or CMV serology.
Collapse
|
76
|
The intestinal TORC2 signaling pathway contributes to associative learning in Caenorhabditis elegans. PLoS One 2017; 12:e0177900. [PMID: 28542414 PMCID: PMC5444632 DOI: 10.1371/journal.pone.0177900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 05/04/2017] [Indexed: 12/25/2022] Open
Abstract
Several types of associative learning are dependent upon the presence or absence of food, and are crucial for the survival of most animals. Target of rapamycin (TOR), a kinase which exists as a component of two complexes, TOR complex 1 (TORC1) and TOR complex 2 (TORC2), is known to act as a nutrient sensor in numerous organisms. However, the in vivo roles of TOR signaling in the nervous system remain largely unclear, partly because its multifunctionality and requirement for survival make it difficult to investigate. Here, using pharmacological inhibitors and genetic analyses, we show that TORC1 and TORC2 contribute to associative learning between salt and food availability in the nematode Caenorhabditis elegans in a process called taste associative learning. Worms migrate to salt concentrations experienced previously during feeding, but they avoid salt concentrations experienced under starvation conditions. Administration of the TOR inhibitor rapamycin causes a behavioral defect after starvation conditioning. Worms lacking either RICT-1 or SINH-1, two TORC2 components, show defects in migration to high salt levels after learning under both fed and starved conditions. We also analyzed the behavioral phenotypes of mutants of the putative TORC1 substrate RSKS-1 (the C. elegans homolog of the mammalian S6 kinase S6K) and the putative TORC2 substrates SGK-1 and PKC-2 (homologs of the serum and glucocorticoid-induced kinase 1, SGK1, and protein kinase C-α, PKC-α, respectively) and found that neuronal RSKS-1 and PKC-2, as well as intestinal SGK-1, are involved in taste associative learning. Our findings shed light on the functions of TOR signaling in behavioral plasticity and provide insight into the mechanisms by which information sensed in the intestine affects the nervous system to modulate food-searching behaviors.
Collapse
|
77
|
Leontieva OV, Blagosklonny MV. While reinforcing cell cycle arrest, rapamycin and Torins suppress senescence in UVA-irradiated fibroblasts. Oncotarget 2017; 8:109848-109856. [PMID: 29312653 PMCID: PMC5752566 DOI: 10.18632/oncotarget.17827] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/02/2017] [Indexed: 12/20/2022] Open
Abstract
Sunlight predisposes to skin cancer and melanomas. Ultraviolet A (UVA), a long wave component of sunlight, can reach dermal fibroblasts. Here we studied UVA-induced senescence in human fibroblasts in vitro. It is known that senescence occurs, when cell cycle is arrested, but mTOR is still active, thus converting arrest to senescence (geroconversion). We showed that, while arresting cell cycle, UVA did not inhibit mTOR, enabling geroconversion. In UVA-treated cells, mTOR remained fully active. Rapamycin and Torins 1/ 2 prevented UVA-induced senescent phenotype, although they further re-enforced cell cycle arrest. Given that senescent stromal fibroblasts support tumorigenesis, we envision that mTOR inhibitors may potentially be used to prevent sunlight-caused tumors as well as skin photo-aging.
Collapse
Affiliation(s)
- Olga V Leontieva
- Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | |
Collapse
|
78
|
Gupta S, Roy A, Dwarakanath BS. Metabolic Cooperation and Competition in the Tumor Microenvironment: Implications for Therapy. Front Oncol 2017; 7:68. [PMID: 28447025 PMCID: PMC5388702 DOI: 10.3389/fonc.2017.00068] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/24/2017] [Indexed: 12/31/2022] Open
Abstract
The tumor microenvironment (TME) is an ensemble of non-tumor cells comprising fibroblasts, cells of the immune system, and endothelial cells, besides various soluble secretory factors from all cellular components (including tumor cells). The TME forms a pro-tumorigenic cocoon around the tumor cells where reprogramming of the metabolism occurs in tumor and non-tumor cells that underlies the nature of interactions as well as competitions ensuring steady supply of nutrients and anapleoretic molecules for the tumor cells that fuels its growth even under hypoxic conditions. This metabolic reprogramming also plays a significant role in suppressing the immune attack on the tumor cells and in resistance to therapies. Thus, the metabolic cooperation and competition among the different TME components besides the inherent alterations in the tumor cells arising out of genetic as well as epigenetic changes supports growth, metastasis, and therapeutic resistance. This review focuses on the metabolic remodeling achieved through an active cooperation and competition among the three principal components of the TME—the tumor cells, the T cells, and the cancer-associated fibroblasts while discussing about the current strategies that target metabolism of TME components. Further, we will also consider the probable therapeutic opportunities targeting the various metabolic pathways as well as the signaling molecules/transcription factors regulating them for the development of novel treatment strategies for cancer.
Collapse
Affiliation(s)
- Seema Gupta
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Amrita Roy
- School of Life Sciences, B. S. Abdur Rahman Crescent University, Chennai, India
| | | |
Collapse
|
79
|
Tsai HH, Lai HY, Chen YC, Li CF, Huang HS, Liu HS, Tsai YS, Wang JM. Metformin promotes apoptosis in hepatocellular carcinoma through the CEBPD-induced autophagy pathway. Oncotarget 2017; 8:13832-13845. [PMID: 28099155 PMCID: PMC5355142 DOI: 10.18632/oncotarget.14640] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 01/04/2017] [Indexed: 12/19/2022] Open
Abstract
Metformin, as an AMP-activated protein kinase (AMPK) activator, can activate autophagy. A study showed that metformin decreased the risk of hepatocellular carcinoma (HCC) in diabetic patients. However, the detailed mechanism in the metformin-mediated anticancer effect remains an open question. Transcription factor CCAAT/enhancer-binding protein delta (CEBPD) has been suggested to serve as a tumor suppressor and is responsive to multiple anticancer drugs in HCC. In this study, we found that CEBPD and autophagy are involved in metformin-induced cell apoptosis in Huh7 cells. The underlying mechanisms in this process included a reduction in Src-mediated CEBPD protein degradation and an increase in CEBPD-regulated LC3B and ATG3 gene transcription under metformin treatment. We also found that AMPK is involved in metformin-induced CEBPD expression. Combined treatment with metformin and rapamycin can enhance autophagic cell death through the AMPK-dependent and AMPK-independent pathway, respectively. Taken together, we provide a new insight and therapeutic approach by targeting autophagy in the treatment of HCC.
Collapse
Affiliation(s)
- Hsin-Hwa Tsai
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan, Taiwan
| | - Hong-Yue Lai
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yueh-Chiu Chen
- Department of Pharmacology, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Huei-Sheng Huang
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Hsiao-Sheng Liu
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan
| | - Yau-Sheng Tsai
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ju-Ming Wang
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan, Taiwan
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
80
|
Effective Depletion of Pre-existing Anti-AAV Antibodies Requires Broad Immune Targeting. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 4:159-168. [PMID: 28345001 PMCID: PMC5363314 DOI: 10.1016/j.omtm.2017.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/04/2017] [Indexed: 11/22/2022]
Abstract
Pre-existing antibodies (Abs) to AAV pose a critical challenge for the translation of gene therapies. No effective approach is available to overcome pre-existing Abs. Given the complexity of Ab production, overcoming pre-existing Abs will require broad immune targeting. We generated a mouse model of pre-existing AAV9 Abs to test multiple immunosuppressants, including bortezomib, rapamycin, and prednisolone, individually or in combination. We identified an effective approach combining rapamycin and prednisolone, reducing serum AAV9 Abs by 70%–80% at 4 weeks and 85%–93% at 8 weeks of treatment. The rapamycin plus prednisolone treatment resulted in significant decreases in the frequency of B cells, plasma cells, and IgG-secreting and AAV9-specific Ab-producing plasma cells in bone marrow. The rapamycin plus prednisolone treatment also significantly reduced frequencies of IgD−IgG+ class-switched/FAS+CL7+ germinal center B cells, and of activated CD4+ T cells expressing PD1 and GL7, in spleen. These data suggest that rapamycin plus prednisolone has selective inhibitory effects on both T helper type 2 support of B cell activation in spleen and on bone marrow plasma cell survival, leading to effective AAV9 Abs depletion. This promising immunomodulation approach is highly translatable, and it poses minimal risk in the context of therapeutic benefits promised by gene therapy for severe monogenetic diseases, with a single or possibly a few treatments over a lifetime.
Collapse
|
81
|
Barnett R, Barta VS, Jhaveri KD. Preserved Renal-Allograft Function and the PD-1 Pathway Inhibitor Nivolumab. N Engl J Med 2017; 376:191-192. [PMID: 28076715 DOI: 10.1056/nejmc1614298] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
82
|
Metagenomics and Single-Cell Omics Data Analysis for Human Microbiome Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 939:117-137. [PMID: 27807746 DOI: 10.1007/978-981-10-1503-8_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microbes are ubiquitous on our planet, and it is well known that the total number of microbial cells on earth is huge. These organisms usually live in communities, and each of these communities has a different taxonomical structure. As such, microbial communities would serve as the largest reservoir of genes and genetic functions for a vast number of applications in "bio"-related disciplines, especially in biomedicine. Human microbiome is the area in which the relationships between ourselves as hosts and our microbiomes have been examined.In this chapter, we have first reviewed the researches in microbes on community, population and single-cell levels in general. Then we have focused on the effects of recent metagenomics and single-cell advances on human microbiome research, as well as their effects on translational biomedical research. We have also foreseen that with the advancement of big-data analysis techniques, deeper understanding of human microbiome, as well as its broader applications, could be realized.
Collapse
|
83
|
Insulin and TOR signal in parallel through FOXO and S6K to promote epithelial wound healing. Nat Commun 2016; 7:12972. [PMID: 27713427 PMCID: PMC5059774 DOI: 10.1038/ncomms12972] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/22/2016] [Indexed: 12/18/2022] Open
Abstract
The TOR and Insulin/IGF signalling (IIS) network controls growth, metabolism and ageing. Although reducing TOR or insulin signalling can be beneficial for ageing, it can be detrimental for wound healing, but the reasons for this difference are unknown. Here we show that IIS is activated in the cells surrounding an epidermal wound in Drosophila melanogaster larvae, resulting in PI3K activation and redistribution of the transcription factor FOXO. Insulin and TOR signalling are independently necessary for normal wound healing, with FOXO and S6K as their respective effectors. IIS is specifically required in cells surrounding the wound, and the effect is independent of glycogen metabolism. Insulin signalling is needed for the efficient assembly of an actomyosin cable around the wound, and constitutively active myosin II regulatory light chain suppresses the effects of reduced IIS. These findings may have implications for the role of insulin signalling and FOXO activation in diabetic wound healing.
Collapse
|
84
|
Hanly EK, Bednarczyk RB, Tuli NY, Moscatello AL, Halicka HD, Li J, Geliebter J, Darzynkiewicz Z, Tiwari RK. mTOR inhibitors sensitize thyroid cancer cells to cytotoxic effect of vemurafenib. Oncotarget 2016; 6:39702-13. [PMID: 26284586 PMCID: PMC4741856 DOI: 10.18632/oncotarget.4052] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/31/2015] [Indexed: 12/23/2022] Open
Abstract
Treatment options for advanced metastatic thyroid cancer patients are limited. Vemurafenib, a BRAFV600E inhibitor, has shown promise in clinical trials although cellular resistance occurs. Combination therapy that includes BRAFV600E inhibition and avoids resistance is a clinical need. We used an in vitro model to examine combination treatment with vemurafenib and mammalian target of rapamycin (mTOR) inhibitors, metformin and rapamycin. Cellular viability and apoptosis were analyzed in thyroid cell lines by trypan blue exclusion and TUNEL assays. Combination of vemurafenib and metformin decreased cell viability and increased apoptosis in both BCPAP papillary thyroid cancer cells and 8505c anaplastic thyroid cancer cells. This combination was also found to be active in vemurafenib-resistant BCPAP cells. Changes in expression of signaling molecules such as decreased mTOR expression in BCPAP and enhanced inhibition of phospho-MAPK in resistant BCPAP and 8505c were observed. The second combination of vemurafenib and rapamycin amplified cell death in BCPAP cells. We conclude that combination of BRAFV600E and mTOR inhibition forms the basis of a treatment regimen that should be further investigated in in vivo model systems. Metformin or rapamycin adjuvant treatment may provide clinical benefits with minimal side effects to BRAFV600E-positive advanced thyroid cancer patients treated with vemurafenib.
Collapse
Affiliation(s)
- Elyse K Hanly
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Robert B Bednarczyk
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Neha Y Tuli
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Augustine L Moscatello
- Department of Otolaryngology/Head and Neck Surgery, New York Medical College, Valhalla, NY, USA
| | - H Dorota Halicka
- Department of Pathology, New York Medical College, Valhalla, NY, USA
| | - Jiangwei Li
- Department of Pathology, New York Medical College, Valhalla, NY, USA
| | - Jan Geliebter
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | | | - Raj K Tiwari
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
85
|
Zhang J, Fu JZ, Hong SF, Jiang H, Qi ZQ, Huang ZS, Xia JJ. Toxicity of rapamycin and its derivatives to pancreatic islets. Shijie Huaren Xiaohua Zazhi 2016; 24:2667-2675. [DOI: 10.11569/wcjd.v24.i17.2667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The development of islet transplantation has been promoted by the proposal of the Edmonton protocol. Rapamycin, as a recommended immunosuppressive medicine of the Edmonton protocol, has been getting extraordinarily popular. At the same time, derivatives of rapamycin (everolimus, deforolimus, zotarolimus and temsirolimus) have also garnered great interest. While the immunosuppressive and anti-cancer effects of rapalogs were being discussed actively, researchers discovered their cytotoxic effect on pancreatic islets. Whether they could be ideal drugs for anti-rejection after islet transplantation needs further study. This review aims to elucidate the function and application of rapalogs as well as their toxicity to pancreatic islets.
Collapse
|
86
|
Wang X, Pan C, Gong J, Liu X, Li H. Enhancing the Enrichment of Pharmacophore-Based Target Prediction for the Polypharmacological Profiles of Drugs. J Chem Inf Model 2016; 56:1175-83. [PMID: 27187084 DOI: 10.1021/acs.jcim.5b00690] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PharmMapper is a web server for drug target identification by reversed pharmacophore matching the query compound against an annotated pharmacophore model database, which provides a computational polypharmacology prediction approach for drug repurposing and side effect risk evaluation. But due to the inherent nondiscriminative feature of the simple fit scores used for prediction results ranking, the signal/noise ratio of the prediction results is high, posing a challenge for predictive reliability. In this paper, we improved the predictive accuracy of PharmMapper by generating a ligand-target pairwise fit score matrix from profiling all the annotated pharmacophore models against corresponding ligands in the original complex structures that were used to extract these pharmacophore models. The matrix reflects the noise baseline of fit score distribution of the background database, thus enabling estimation of the probability of finding a given target randomly with the calculated ligand-pharmacophore fit score. Two retrospective tests were performed which confirmed that the probability-based ranking score outperformed the simple fit score in terms of identification of both known drug targets and adverse drug reaction related off-targets.
Collapse
Affiliation(s)
- Xia Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, and ‡School of Information Science and Engineering, East China University of Science and Technology , Shanghai 200237, China
| | - Chenxu Pan
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, and ‡School of Information Science and Engineering, East China University of Science and Technology , Shanghai 200237, China
| | - Jiayu Gong
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, and ‡School of Information Science and Engineering, East China University of Science and Technology , Shanghai 200237, China
| | - Xiaofeng Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, and ‡School of Information Science and Engineering, East China University of Science and Technology , Shanghai 200237, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, and ‡School of Information Science and Engineering, East China University of Science and Technology , Shanghai 200237, China
| |
Collapse
|
87
|
Caloric restriction: beneficial effects on brain aging and Alzheimer’s disease. Mamm Genome 2016; 27:300-19. [DOI: 10.1007/s00335-016-9647-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 05/16/2016] [Indexed: 01/25/2023]
|
88
|
Abstract
Oncolytic virotherapy is a cancer treatment in which replication-competent viruses are used that specifically infect, replicate in and lyse malignant tumour cells, while minimizing harm to normal cells. Anecdotal evidence of the effectiveness of this strategy has existed since the late nineteenth century, but advances and innovations in biotechnological methods in the 1980s and 1990s led to a renewed interest in this type of therapy. Multiple clinical trials investigating the use of agents constructed from a wide range of viruses have since been performed, and several of these enrolled patients with urological malignancies. Data from these clinical trials and from preclinical studies revealed a number of challenges to the effectiveness of oncolytic virotherapy that have prompted the development of further sophisticated strategies. Urological cancers have a range of distinctive features, such as specific genetic mutations and cell surface markers, which enable improving both effectiveness and safety of oncolytic virus treatments. The strategies employed in creating advanced oncolytic agents include alteration of the virus tropism, regulating transcription and translation of viral genes, combination with chemotherapy, radiotherapy or gene therapy, arming viruses with factors that stimulate the immune response against tumour cells and delivery technologies to ensure that the viral agent reaches its target tissue.
Collapse
Affiliation(s)
- Zahid Delwar
- Department of Surgery, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada
| | - Kaixin Zhang
- Department of Urology, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, British Columbia V5Z 1M9, Canada
| | - Paul S Rennie
- Prostate Research Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, British Columbia V6H 3Z6, Canada
| | - William Jia
- Department of Surgery, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada
| |
Collapse
|
89
|
Abstract
Diabetes mellitus is a metabolic homeostasis disease that contributes to additional comorbidities such as cardiovascular disease (CVD) and cancer. It has a long undiagnosed latent period during which there can be irreparable damage to the pancreas and cardiovascular tissues. Recent studies have highlighted the roles of several microRNAs in CVD. Determining the microRNAs that link diabetes mellitus and CVD is an important topic to be explored. In the present review, we discuss the microRNAs that contribute to the progression of diabetes mellitus and CVD and focus on the miR-29 family microRNAs whose expression is upregulated by hyperglycemia and proinflammatory cytokines, the hallmarks of diabetes mellitus. Upregulation of miR-29 expression is a key factor in the loss of pancreatic β cells and development of the first stage of type 1 diabetes mellitus (T1DM). Additionally, miR-29-mediated suppression of myeloid cell leukemia 1 (MCL-1), an important prosurvival protein, underlies Marfan's syndrome, abdominal aortic aneurysm, and diabetes mellitus-associated cardiomyocyte disorganization. Suppression of miR-29 expression and subsequent increase in the prosurvival MCL-1, however, promotes tumor development. Therefore, miR-29 mimics that suppress MCL-1 are hailed as tumor suppressors. The critical question is whether an increase in miR-29 levels is well tolerated in conditions of comorbidities in which insulin resistance is an underlying disease. In light of increasing awareness of the interconnection of diabetes mellitus, CVD, and cancer, it is of utmost importance to understand the mechanism of action of current treatment options on all of the comorbidities and careful evaluation of cardiovascular toxicity must accompany any treatment paradigm that increases miR-29 levels.
Collapse
Affiliation(s)
- Anna Ślusarz
- aDepartment of Medicine bDepartment of Biochemistry, University of Missouri cHarry S. Truman Memorial Veterans Affairs Hospital dDepartment of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA
| | | |
Collapse
|
90
|
Waler JA, Merinbaum DJ, Waler AR. Lymphangiomatosis With Hemihypertrophy. Glob Pediatr Health 2016; 3:2333794X16655255. [PMID: 35211649 PMCID: PMC8862189 DOI: 10.1177/2333794x16655255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 05/18/2016] [Indexed: 01/19/2023] Open
|
91
|
Huang J, Xie Y, Sun X, Zeh HJ, Kang R, Lotze MT, Tang D. DAMPs, ageing, and cancer: The 'DAMP Hypothesis'. Ageing Res Rev 2015; 24:3-16. [PMID: 25446804 DOI: 10.1016/j.arr.2014.10.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 09/24/2014] [Accepted: 10/22/2014] [Indexed: 12/25/2022]
Abstract
Ageing is a complex and multifactorial process characterized by the accumulation of many forms of damage at the molecular, cellular, and tissue level with advancing age. Ageing increases the risk of the onset of chronic inflammation-associated diseases such as cancer, diabetes, stroke, and neurodegenerative disease. In particular, ageing and cancer share some common origins and hallmarks such as genomic instability, epigenetic alteration, aberrant telomeres, inflammation and immune injury, reprogrammed metabolism, and degradation system impairment (including within the ubiquitin-proteasome system and the autophagic machinery). Recent advances indicate that damage-associated molecular pattern molecules (DAMPs) such as high mobility group box 1, histones, S100, and heat shock proteins play location-dependent roles inside and outside the cell. These provide interaction platforms at molecular levels linked to common hallmarks of ageing and cancer. They can act as inducers, sensors, and mediators of stress through individual plasma membrane receptors, intracellular recognition receptors (e.g., advanced glycosylation end product-specific receptors, AIM2-like receptors, RIG-I-like receptors, and NOD1-like receptors, and toll-like receptors), or following endocytic uptake. Thus, the DAMP Hypothesis is novel and complements other theories that explain the features of ageing. DAMPs represent ideal biomarkers of ageing and provide an attractive target for interventions in ageing and age-associated diseases.
Collapse
|
92
|
Tengku Din TADAA, Seeni A, Khairi WNM, Shamsuddin S, Jaafar H. Effects of rapamycin on cell apoptosis in MCF-7 human breast cancer cells. Asian Pac J Cancer Prev 2015; 15:10659-63. [PMID: 25605156 DOI: 10.7314/apjcp.2014.15.24.10659] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rapamycin is an effective anti-angiogenic drug. However, the mode of its action remains unclear. Therefore, in this study, we aimed to elucidate the antitumor mechanism of rapamycin, hypothetically via apoptotic promotion, using MCF-7 breast cancer cells. MATERIALS AND METHODS MCF-7 cells were plated at a density of 15105 cells/well in 6-well plates. After 24h, cells were treated with a series of concentrations of rapamycin while only adding DMEM medium with PEG for the control regiment and grown at 37oC, 5% CO2 and 95% air for 72h. Trypan blue was used to determine the cell viability and proliferation. Untreated and rapamycin-treated MCF-7 cells were also examined for morphological changes with an inverted-phase contrast microscope. Alteration in cell morphology was ascertained, along with a stage in the cell cycle and proliferation. In addition, cytotoxicity testing was performed using normal mouse breast mammary pads. RESULTS Our results clearly showed that rapamycin exhibited inhibitory activity on MCF-7 cell lines. The IC50 value of rapamycin on the MCF-7 cells was determined as 0.4μg/ml (p<0.05). Direct observation by inverted microscopy demonstrated that the MCF-7 cells treated with rapamycin showed characteristic features of apoptosis including cell shrinkage, vascularization and autophagy. Cells underwent early apoptosis up to 24% after 72h. Analysis of the cell cycle showed an increase in the G0G1 phase cell population and a corresponding decrease in the S and G2M phase populations, from 81.5% to 91.3% and 17.3% to 7.9%, respectively. CONCLUSIONS This study demonstrated that rapamycin may potentially act as an anti-cancer agent via the inhibition of growth with some morphological changes of the MCF-7 cancer cells, arrest cell cycle progression at G0/G1 phase and induction of apoptosis in late stage of apoptosis. Further studies are needed to further characterize the mode of action of rapamycin as an anti-cancer agent.
Collapse
|
93
|
Exploiting a precise design of universal synthetic modular regulatory elements to unlock the microbial natural products in Streptomyces. Proc Natl Acad Sci U S A 2015; 112:12181-6. [PMID: 26374838 DOI: 10.1073/pnas.1511027112] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
There is a great demand for precisely quantitating the expression of genes of interest in synthetic and systems biotechnology as new and fascinating insights into the genetics of streptomycetes have come to light. Here, we developed, for the first time to our knowledge, a quantitative method based on flow cytometry and a superfolder green fluorescent protein (sfGFP) at single-cell resolution in Streptomyces. Single cells of filamentous bacteria were obtained by releasing the protoplasts from the mycelium, and the dead cells could be distinguished from the viable ones by propidium iodide (PI) staining. With this sophisticated quantitative method, some 200 native or synthetic promoters and 200 ribosomal binding sites (RBSs) were characterized in a high-throughput format. Furthermore, an insulator (RiboJ) was recruited to eliminate the interference between promoters and RBSs and improve the modularity of regulatory elements. Seven synthetic promoters with gradient strength were successfully applied in a proof-of-principle approach to activate and overproduce the cryptic lycopene in a predictable manner in Streptomyces avermitilis. Our work therefore presents a quantitative strategy and universal synthetic modular regulatory elements, which will facilitate the functional optimization of gene clusters and the drug discovery process in Streptomyces.
Collapse
|
94
|
Abstract
The most physiological type of cell cycle arrest - namely, contact inhibition in dense culture - is the least densely studied. Despite cell cycle arrest, confluent cells do not become senescent. We recently described that mTOR (target of rapamycin) is inactive in contact-inhibited cells. Therefore, conversion from reversible arrest to senescence (geroconversion) is suppressed. I this Perspective, we further extended the gerosuppression model. While causing senescence in regular cell density, etoposide failed to cause senescence in contact-inhibited cells. A transient reactivation of mTOR favored geroconversion in etoposide-treated confluent cells. Like p21, p16 did not cause senescence in high cell density. We discuss that suppression of geroconversion in confluent and contact-inhibited cultures mimics gerosuppression in the organism. We confirmed that levels of p-S6 were low in murine tissues in the organism compared with mouse embryonic fibroblasts in cell culture, whereas p-Akt was reciprocally high in the organism.
Collapse
Affiliation(s)
- Olga V Leontieva
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elms and Carlson Streets, Buffalo, NY 14263, USA
| | - Mikhail V Blagosklonny
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elms and Carlson Streets, Buffalo, NY 14263, USA
| |
Collapse
|
95
|
Tan HK, Moad AIH, Tan ML. The mTOR signalling pathway in cancer and the potential mTOR inhibitory activities of natural phytochemicals. Asian Pac J Cancer Prev 2015; 15:6463-75. [PMID: 25169472 DOI: 10.7314/apjcp.2014.15.16.6463] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) kinase plays an important role in regulating cell growth and cell cycle progression in response to cellular signals. It is a key regulator of cell proliferation and many upstream activators and downstream effectors of mTOR are known to be deregulated in various types of cancers. Since the mTOR signalling pathway is commonly activated in human cancers, many researchers are actively developing inhibitors that target key components in the pathway and some of these drugs are already on the market. Numerous preclinical investigations have also suggested that some herbs and natural phytochemicals, such as curcumin, resveratrol, timosaponin III, gallic acid, diosgenin, pomegranate, epigallocatechin gallate (EGCC), genistein and 3,3'-diindolylmethane inhibit the mTOR pathway either directly or indirectly. Some of these natural compounds are also in the clinical trial stage. In this review, the potential anti-cancer and chemopreventive activities and the current status of clinical trials of these phytochemicals are discussed.
Collapse
Affiliation(s)
- Heng Kean Tan
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, Ministry of Science, Technology and Innovation (MOSTI), Halaman Bukit Gambir, Malaysia E-mail : ,
| | | | | |
Collapse
|
96
|
Maenhout SK, Du Four S, Corthals J, Neyns B, Thielemans K, Aerts JL. AZD1480 delays tumor growth in a melanoma model while enhancing the suppressive activity of myeloid-derived suppressor cells. Oncotarget 2015; 5:6801-15. [PMID: 25149535 PMCID: PMC4196164 DOI: 10.18632/oncotarget.2254] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AZD1480 is a potent, competitive small-molecule inhibitor of JAK1/2 kinase which inhibits STAT3 phosphorylation and tumor growth. Here we investigated the effects of AZD1480 on the function of different immune cell populations in a melanoma model. When MO4 tumor-bearing mice were treated with AZD1480 we observed a strong inhibition of tumor growth as well as a prolonged survival. Moreover, a significant decrease in the percentage of myeloid-derived suppressor cells (MDSCs) was observed after treatment with AZD1480. However, AZD1480 enhanced the suppressive capacity of murine MDSCs while at the same time impairing the proliferative as well as the IFN-γ secretion capacity of murine T cells. The addition of AZD1480 to co-cultures of human MDSCs and T cells does not affect the suppressive activity of MDSCs but it does reduce the IFN-γ secretion and the proliferative capacity of T cells. We showed that although AZD1480 has the ability to delay the tumor growth of MO4 tumor-bearing mice, this drug has detrimental effects on several aspects of the immune system. These data indicate that systemic targeting of the JAK/STAT pathway by JAK1/2 inhibition can have divergent effects on tumor growth and anti-tumor immune responses.
Collapse
Affiliation(s)
- Sarah K Maenhout
- Laboratory of Molecular and Cellular Therapy, Department of Immunology-Physiology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stephanie Du Four
- Laboratory of Molecular and Cellular Therapy, Department of Immunology-Physiology, Vrije Universiteit Brussel, Brussels, Belgium. Department of Medical Oncology, Universiteit Ziekenhuis Brussel, Brussels, Belgium
| | - Jurgen Corthals
- Laboratory of Molecular and Cellular Therapy, Department of Immunology-Physiology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bart Neyns
- Laboratory of Molecular and Cellular Therapy, Department of Immunology-Physiology, Vrije Universiteit Brussel, Brussels, Belgium. Department of Medical Oncology, Universiteit Ziekenhuis Brussel, Brussels, Belgium
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy, Department of Immunology-Physiology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Joeri L Aerts
- Laboratory of Molecular and Cellular Therapy, Department of Immunology-Physiology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
97
|
Auley MTM, Mooney KM, Angell PJ, Wilkinson SJ. Mathematical modelling of metabolic regulation in aging. Metabolites 2015; 5:232-51. [PMID: 25923415 PMCID: PMC4495371 DOI: 10.3390/metabo5020232] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 12/20/2022] Open
Abstract
The underlying cellular mechanisms that characterize aging are complex and multifaceted. However, it is emerging that aging could be regulated by two distinct metabolic hubs. These hubs are the pathway defined by the mammalian target of rapamycin (mTOR) and that defined by the NAD+-dependent deacetylase enzyme, SIRT1. Recent experimental evidence suggests that there is crosstalk between these two important pathways; however, the mechanisms underpinning their interaction(s) remains poorly understood. In this review, we propose using computational modelling in tandem with experimentation to delineate the mechanism(s). We briefly discuss the main modelling frameworks that could be used to disentangle this relationship and present a reduced reaction pathway that could be modelled. We conclude by outlining the limitations of computational modelling and by discussing opportunities for future progress in this area.
Collapse
Affiliation(s)
- Mark T Mc Auley
- Faculty of Science & Engineering, University of Chester, Thornton Science Park, CH2 4NU, UK.
| | - Kathleen M Mooney
- Faculty of Health and Social Care, Edge Hill University, Ormskirk, Lancashire, L39 4QP, UK.
| | - Peter J Angell
- School of Health Sciences, Liverpool Hope University, Taggart Avenue, Liverpool, L16 9JD, UK.
| | - Stephen J Wilkinson
- Faculty of Science & Engineering, University of Chester, Thornton Science Park, CH2 4NU, UK.
| |
Collapse
|
98
|
Saha A, Blando J, Tremmel L, DiGiovanni J. Effect of Metformin, Rapamycin, and Their Combination on Growth and Progression of Prostate Tumors in HiMyc Mice. Cancer Prev Res (Phila) 2015; 8:597-606. [PMID: 25908508 DOI: 10.1158/1940-6207.capr-15-0014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/06/2015] [Indexed: 11/16/2022]
Abstract
In this study, we compared the effect of oral administration of metformin (MET) and rapamycin (RAPA) alone or in combination on prostate cancer development and progression in HiMyc mice. MET (250 mg/kg body weight in the drinking water), RAPA (2.24 mg/kg body weight microencapsulated in the diet), and the combination inhibited progression of prostatic intraepithelial neoplasia lesions to adenocarcinomas in the ventral prostate (VP). RAPA and the combination were more effective than MET at the doses used. Inhibition of prostate cancer progression in HiMyc mice by RAPA was associated with a significant reduction in mTORC1 signaling that was further potentiated by the combination of MET and RAPA. In contrast, treatment with MET alone enhanced AMPK activation, but had little or no effect on mTORC1 signaling pathways in the VP of HiMyc mice. Further analyses revealed a significant effect of all treatments on prostate tissue inflammation as assessed by analysis of the expression of cytokines, the presence of inflammatory cells and NFκB signaling. MET at the dose used appeared to reduce prostate cancer progression primarily by reducing tissue inflammation whereas RAPA and the combination appeared to inhibit prostate cancer progression in this mouse model via the combined effects on both mTORC1 signaling as well as on tissue inflammation. Overall, these data support the hypothesis that blocking mTORC1 signaling and/or tissue inflammation can effectively inhibit prostate cancer progression in a relevant mouse model of human prostate cancer. Furthermore, combinatorial approaches that target both pathways may be highly effective for prevention of prostate cancer progression in men.
Collapse
Affiliation(s)
- Achinto Saha
- Division of Pharmacology and Toxicology, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas
| | - Jorge Blando
- Division of Pharmacology and Toxicology, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas. Immunopathology Laboratory Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lisa Tremmel
- Division of Pharmacology and Toxicology, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas. Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas.
| |
Collapse
|
99
|
Moschetta M, Reale A, Marasco C, Vacca A, Carratù MR. Therapeutic targeting of the mTOR-signalling pathway in cancer: benefits and limitations. Br J Pharmacol 2015; 171:3801-13. [PMID: 24780124 DOI: 10.1111/bph.12749] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/29/2014] [Accepted: 04/15/2014] [Indexed: 12/21/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) plays an important role in the regulation of protein translation, cell growth and metabolism. The mTOR protein forms two distinct multi-subunit complexes: mTORC1 and mTORC2. The mTORC1 complex is activated by diverse stimuli, such as growth factors, nutrients, energy and stress signals; and essential signalling pathways, such as PI3K and MAPK, in order to control cell growth, proliferation and survival. mTORC1 also activates S6K1 and 4EBP1, which are involved in mRNA translation. The mTORC2 complex is resistant to rapamycin inhibitory activity and is generally insensitive to nutrient- and energy-dependent signals. It activates PKC-α and Akt and regulates the actin cytoskeleton. Deregulation of the mTOR-signalling pathway (PI3K amplification/mutation, PTEN loss of function, Akt overexpression, and S6K1, 4EBP1 and eIF4E overexpression) is common in cancer, and alterations in components of the mTOR pathway have a major role in tumour progression. Therefore, mTOR is an appealing therapeutic target in many tumours. Here we summarize the upstream regulators and downstream effectors of the mTORC1 and mTORC2 pathways, the role of mTOR in cancer, and the potential therapeutic values and issues related to the novel agents targeting the mTOR-signalling pathway.
Collapse
Affiliation(s)
- M Moschetta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Section of Internal Medicine, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School 'Aldo Moro', Bari, Italy
| | | | | | | | | |
Collapse
|
100
|
Mammalian target of rapamycin's distinct roles and effectiveness in promoting compensatory axonal sprouting in the injured CNS. J Neurosci 2015; 34:15347-55. [PMID: 25392502 DOI: 10.1523/jneurosci.1935-14.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mammalian target of rapamycin (mTOR) functions as a master sensor of nutrients and energy, and controls protein translation and cell growth. Deletion of phosphatase and tensin homolog (PTEN) in adult CNS neurons promotes regeneration of injured axons in an mTOR-dependent manner. However, others have demonstrated mTOR-independent axon regeneration in different cell types, raising the question of how broadly mTOR regulates axonal regrowth across different systems. Here we define the role of mTOR in promoting collateral sprouting of spared axons, a key axonal remodeling mechanism by which functions are recovered after CNS injury. Using pharmacological inhibition, we demonstrate that mTOR is dispensable for the robust spontaneous sprouting of corticospinal tract axons seen after pyramidotomy in postnatal mice. In contrast, moderate spontaneous axonal sprouting and induced-sprouting seen under different conditions in young adult mice (i.e., PTEN deletion or degradation of chondroitin proteoglycans; CSPGs) are both reduced upon mTOR inhibition. In addition, to further determine the potency of mTOR in promoting sprouting responses, we coinactivate PTEN and CSPGs, and demonstrate that this combination leads to an additive increase in axonal sprouting compared with single treatments. Our findings reveal a developmental switch in mTOR dependency for inducing axonal sprouting, and indicate that PTEN deletion in adult neurons neither recapitulates the regrowth program of postnatal animals, nor is sufficient to completely overcome an inhibitory environment. Accordingly, exploiting mTOR levels by targeting PTEN combined with CSPG degradation represents a promising strategy to promote extensive axonal plasticity in adult mammals.
Collapse
|