51
|
Gajula Balija MB, Griesinger C, Herzig A, Zweckstetter M, Jäckle H. Pre-fibrillar α-synuclein mutants cause Parkinson's disease-like non-motor symptoms in Drosophila. PLoS One 2011; 6:e24701. [PMID: 21931820 PMCID: PMC3169624 DOI: 10.1371/journal.pone.0024701] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 08/16/2011] [Indexed: 11/19/2022] Open
Abstract
Parkinson's disease (PD) is linked to the formation of insoluble fibrillar aggregates of the presynaptic protein α-Synuclein (αS) in neurons. The appearance of such aggregates coincides with severe motor deficits in human patients. These deficits are often preceded by non-motor symptoms such as sleep-related problems in the patients. PD-like motor deficits can be recapitulated in model organisms such as Drosophila melanogaster when αS is pan-neurally expressed. Interestingly, both these deficits are more severe when αS mutants with reduced aggregation properties are expressed in flies. This indicates that that αS aggregation is not the primary cause of the PD-like motor symptoms. Here we describe a model for PD in Drosophila which utilizes the targeted expression of αS mutants in a subset of dopadecarboxylase expressing serotonergic and dopaminergic (DA) neurons. Our results show that targeted expression of pre-fibrillar αS mutants not only recapitulates PD-like motor symptoms but also the preceding non-motor symptoms such as an abnormal sleep-like behavior, altered locomotor activity and abnormal circadian periodicity. Further, the results suggest that the observed non-motor symptoms in flies are caused by an early impairment of neuronal functions rather than by the loss of neurons due to cell death.
Collapse
Affiliation(s)
- Madhu Babu Gajula Balija
- Abteilung Molekulare Entwicklungsbiologie, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Christian Griesinger
- Abteilung für NMR-basierte Strukturbiologie, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Alf Herzig
- Abteilung Molekulare Entwicklungsbiologie, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Markus Zweckstetter
- Abteilung für NMR-basierte Strukturbiologie, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Herbert Jäckle
- Abteilung Molekulare Entwicklungsbiologie, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
- * E-mail:
| |
Collapse
|
52
|
Thakurdas P, Sharma S, Singh B, Vanlalhriatpuia K, Joshi D. Varying the length of dim nocturnal illumination differentially affects the pacemaker controlling the locomotor activity rhythm of Drosophila jambulina. Chronobiol Int 2011; 28:390-6. [PMID: 21721854 DOI: 10.3109/07420528.2011.574021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Photic entrainment of animals in the field is basically attributed to their exposure to the dimly lit nights flanked by the dawn and dusk twilight transitions. This implicates the functional significance of the dimly lit nights as that of the twilight transitions. Recently, the authors have demonstrated that the dimly lit night at 0.0006 lux altered the attributes of the circadian rhythm of locomotor activity of Drosophila jambulina. The present study examined whether the durations of such dimly lit nights affect the entrainment and free-running rhythmicity of D. jambulina. Flies were subjected for 10 days to two types of 24-h lighting regimes in which the photophase (L) was at 10 lux for all flies but the scotophase, which varied in duration from 9 to 15 h, was either at 0 lux (D phase) for control flies or 0.0006 lux (the artificial starlight or S phase) for experimental flies. Thereafter, they were transferred to constant darkness (DD) to compare the after-effects of the dimly lit nights on the period (τ) of free-running rhythm in DD with that of the completely dark nights. Control flies were entrained by all LD cycles, but the experimental flies were entrained only by five LS cycles in which the duration of the S phases ranged from 10 to 14 h. The two LS cycles with very short (9 h) and long (15 h) S phases rendered the flies completely arrhythmic. Control flies started activity shortly before lights-on and continued well after lights-off. The experimental flies, however, commenced activity several hours prior to lights-on but ended activity abruptly at lights-off as the result of a negative masking effect of nocturnal illumination. Length of the midday rest was considerably shorter in the control than in the experimental flies in each lighting regime. The active phase in the control flies was predictably shortened; nonetheless, it was invariable in the experimental flies as the nights lengthened. Transfer from lighting regimes to DD initiated robust free-running rhythmicity in all flies including the arrhythmic ones subjected to LS cycles with 9 and 15 h of scotophases. The τ was profoundly affected by the nocturnal irradiance of the prior entraining lighting regime, as it was always shorter in the experimental than in the control flies. Thus, these results indisputably demonstrate the changes in fundamental properties of the circadian pacemaker of D. jambulina were solely attributed to the extremely dim nocturnal irradiance. This strain of D. jambulina is entrained essentially by the dimly lit natural nights, since it is never exposed to the prevailing photic cues such as the twilight transitions or bright photoperiod, owing to the dense vegetation of its habitat.
Collapse
Affiliation(s)
- Pooja Thakurdas
- Center for Biological Rhythm Research, Ahmednagar College, Ahmednag, M.S., India
| | | | | | | | | |
Collapse
|
53
|
Pandey UB, Nichols CD. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev 2011; 63:411-36. [PMID: 21415126 PMCID: PMC3082451 DOI: 10.1124/pr.110.003293] [Citation(s) in RCA: 706] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The common fruit fly, Drosophila melanogaster, is a well studied and highly tractable genetic model organism for understanding molecular mechanisms of human diseases. Many basic biological, physiological, and neurological properties are conserved between mammals and D. melanogaster, and nearly 75% of human disease-causing genes are believed to have a functional homolog in the fly. In the discovery process for therapeutics, traditional approaches employ high-throughput screening for small molecules that is based primarily on in vitro cell culture, enzymatic assays, or receptor binding assays. The majority of positive hits identified through these types of in vitro screens, unfortunately, are found to be ineffective and/or toxic in subsequent validation experiments in whole-animal models. New tools and platforms are needed in the discovery arena to overcome these limitations. The incorporation of D. melanogaster into the therapeutic discovery process holds tremendous promise for an enhanced rate of discovery of higher quality leads. D. melanogaster models of human diseases provide several unique features such as powerful genetics, highly conserved disease pathways, and very low comparative costs. The fly can effectively be used for low- to high-throughput drug screens as well as in target discovery. Here, we review the basic biology of the fly and discuss models of human diseases and opportunities for therapeutic discovery for central nervous system disorders, inflammatory disorders, cardiovascular disease, cancer, and diabetes. We also provide information and resources for those interested in pursuing fly models of human disease, as well as those interested in using D. melanogaster in the drug discovery process.
Collapse
Affiliation(s)
- Udai Bhan Pandey
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, 1901 Perdido St., New Orleans, LA 70112, USA
| | | |
Collapse
|
54
|
Abstract
Light-sensing CRYPTOCHROME activates the firing of neurons involved in circadian rhythms.
Collapse
Affiliation(s)
- Seol Hee Im
- Department of Anatomy and Neurobiology, Washington University Medical School, St. Louis, MO 63110, USA
| | | |
Collapse
|
55
|
Fogle KJ, Parson KG, Dahm NA, Holmes TC. CRYPTOCHROME is a blue-light sensor that regulates neuronal firing rate. Science 2011; 331:1409-13. [PMID: 21385718 DOI: 10.1126/science.1199702] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Light-responsive neural activity in central brain neurons is generally conveyed through opsin-based signaling from external photoreceptors. Large lateral ventral arousal neurons (lLNvs) in Drosophila melanogaster increase action potential firing within seconds in response to light in the absence of all opsin-based photoreceptors. Light-evoked changes in membrane resting potential occur in about 100 milliseconds. The light response is selective for blue wavelengths corresponding to the spectral sensitivity of CRYPTOCHROME (CRY). cry-null lines are light-unresponsive, but restored CRY expression in the lLNv rescues responsiveness. Furthermore, expression of CRY in neurons that are normally unresponsive to light confers responsiveness. The CRY-mediated light response requires a flavin redox-based mechanism and depends on potassium channel conductance, but is independent of the classical circadian CRY-TIMELESS interaction.
Collapse
Affiliation(s)
- Keri J Fogle
- Department of Physiology and Biophysics, University of California-Irvine, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
56
|
Van Swinderen B, Andretic R. Dopamine in Drosophila: setting arousal thresholds in a miniature brain. Proc Biol Sci 2011; 278:906-13. [PMID: 21208962 DOI: 10.1098/rspb.2010.2564] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In mammals, the neurotransmitter dopamine (DA) modulates a variety of behaviours, although DA function is mostly associated with motor control and reward. In insects such as the fruitfly, Drosophila melanogaster, DA also modulates a wide array of behaviours, ranging from sleep and locomotion to courtship and learning. How can a single molecule play so many different roles? Adaptive changes within the DA system, anatomical specificity of action and effects on a variety of behaviours highlight the remarkable versatility of this neurotransmitter. Recent genetic and pharmacological manipulations of DA signalling in Drosophila have launched a surfeit of stories-each arguing for modulation of some aspect of the fly's waking (and sleeping) life. Although these stories often seem distinct and unrelated, there are some unifying themes underlying DA function and arousal states in this insect model. One of the central roles played by DA may involve perceptual suppression, a necessary component of both sleep and selective attention.
Collapse
Affiliation(s)
- Bruno Van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.
| | | |
Collapse
|
57
|
Behavioral consequences of dopamine deficiency in the Drosophila central nervous system. Proc Natl Acad Sci U S A 2010; 108:834-9. [PMID: 21187381 DOI: 10.1073/pnas.1010930108] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The neuromodulatory function of dopamine (DA) is an inherent feature of nervous systems of all animals. To learn more about the function of neural DA in Drosophila, we generated mutant flies that lack tyrosine hydroxylase, and thus DA biosynthesis, selectively in the nervous system. We found that DA is absent or below detection limits in the adult brain of these flies. Despite this, they have a lifespan similar to WT flies. These mutants show reduced activity, extended sleep time, locomotor deficits that increase with age, and they are hypophagic. Whereas odor and electrical shock avoidance are not affected, aversive olfactory learning is abolished. Instead, DA-deficient flies have an apparently "masochistic" tendency to prefer the shock-associated odor 2 h after conditioning. Similarly, sugar preference is absent, whereas sugar stimulation of foreleg taste neurons induces normal proboscis extension. Feeding the DA precursor L-DOPA to adults substantially rescues the learning deficit as well as other impaired behaviors that were tested. DA-deficient flies are also defective in positive phototaxis, without alteration in visual perception and optomotor response. Surprisingly, visual tracking is largely maintained, and these mutants still possess an efficient spatial orientation memory. Our findings show that flies can perform complex brain functions in the absence of neural DA, whereas specific behaviors involving, in particular, arousal and choice require normal levels of this neuromodulator.
Collapse
|
58
|
Yarali A, Gerber B. A Neurogenetic Dissociation between Punishment-, Reward-, and Relief-Learning in Drosophila. Front Behav Neurosci 2010; 4:189. [PMID: 21206762 PMCID: PMC3013555 DOI: 10.3389/fnbeh.2010.00189] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 12/02/2010] [Indexed: 01/09/2023] Open
Abstract
What is particularly worth remembering about a traumatic experience is what brought it about, and what made it cease. For example, fruit flies avoid an odor which during training had preceded electric shock punishment; on the other hand, if the odor had followed shock during training, it is later on approached as a signal for the relieving end of shock. We provide a neurogenetic analysis of such relief learning. Blocking, using UAS-shibirets1, the output from a particular set of dopaminergic neurons defined by the TH-Gal4 driver partially impaired punishment learning, but left relief learning intact. Thus, with respect to these particular neurons, relief learning differs from punishment learning. Targeting another set of dopaminergic/serotonergic neurons defined by the DDC-Gal4 driver on the other hand affected neither punishment nor relief learning. As for the octopaminergic system, the tbhM18 mutation, compromising octopamine biosynthesis, partially impaired sugar-reward learning, but not relief learning. Thus, with respect to this particular mutation, relief learning, and reward learning are dissociated. Finally, blocking output from the set of octopaminergic/tyraminergic neurons defined by the TDC2-Gal4 driver affected neither reward, nor relief learning. We conclude that regarding the used genetic tools, relief learning is neurogenetically dissociated from both punishment and reward learning. This may be a message relevant also for analyses of relief learning in other experimental systems including man.
Collapse
Affiliation(s)
- Ayse Yarali
- Neurobiologie und Genetik, Biozentrum, Universität Würzburg Würzburg, Germany
| | | |
Collapse
|
59
|
White KE, Humphrey DM, Hirth F. The dopaminergic system in the aging brain of Drosophila. Front Neurosci 2010; 4:205. [PMID: 21165178 PMCID: PMC3002484 DOI: 10.3389/fnins.2010.00205] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 10/30/2010] [Indexed: 11/29/2022] Open
Abstract
Drosophila models of Parkinson's disease are characterized by two principal phenotypes: the specific loss of dopaminergic (DA) neurons in the aging brain and defects in motor behavior. However, an age-related analysis of these baseline parameters in wildtype Drosophila is lacking. Here we analyzed the DA system and motor behavior in aging Drosophila. DA neurons in the adult brain can be grouped into bilateral symmetric clusters, each comprising a stereotypical number of cells. Analysis of TH > mCD8::GFP and cell type-specific MARCM clones revealed that DA neurons show cluster-specific, stereotypical projection patterns with terminal arborization in target regions that represent distinct functional areas of the adult brain. Target areas include the mushroom bodies, involved in memory formation and motivation, and the central complex, involved in the control of motor behavior, indicating that similar to the mammalian brain, DA neurons in the fly brain are involved in the regulation of specific behaviors. Behavioral analysis revealed that Drosophila show an age-related decline in startle-induced locomotion and negative geotaxis. Motion tracking however, revealed that walking activity, and exploration behavior, but not centrophobism increase at late stages of life. Analysis of TH > Dcr2, mCD8::GFP revealed a specific effect of Dcr2 expression on walking activity but not on exploratory or centrophobic behavior, indicating that the siRNA pathway may modulate distinct DA behaviors in Drosophila. Moreover, DA neurons were maintained between early- and late life, as quantified by TH > mCD8::GFP and anti-TH labeling, indicating that adult onset, age-related degeneration of DA neurons does not occur in the aging brain of Drosophila. Taken together, our data establish baseline parameters in Drosophila for the study of Parkinson's disease as well as other disorders affecting DA neurons and movement control.
Collapse
Affiliation(s)
- Katherine E White
- Department of Neuroscience, Institute of Psychiatry, Medical Research Council Centre for Neurodegeneration Research, King's College London London, UK
| | | | | |
Collapse
|
60
|
Jackson FR. Glial cell modulation of circadian rhythms. Glia 2010; 59:1341-50. [PMID: 21732426 DOI: 10.1002/glia.21097] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 09/22/2010] [Indexed: 11/09/2022]
Abstract
Studies of Drosophila and mammals have documented circadian changes in the morphology and biochemistry of glial cells. In addition, it is known that astrocytes of flies and mammals contain evolutionarily conserved circadian molecular oscillators that are similar to neuronal oscillators. In several sections of this review, I summarize the morphological and biochemical rhythms of glia that may contribute to circadian control. I also discuss the evidence suggesting that glia-neuron interactions may be critical for circadian timing in both flies and mammals. Throughout the review, I attempt to compare and contrast findings from these invertebrate and vertebrate models so as to provide a synthesis of current knowledge and indicate potential research avenues that may be useful for better understanding the roles of glial cells in the circadian system.
Collapse
Affiliation(s)
- F Rob Jackson
- Department of Neuroscience, Center for Neuroscience Research, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.
| |
Collapse
|
61
|
Zocchi L, Sassone-Corsi P. Joining the dots: from chromatin remodeling to neuronal plasticity. Curr Opin Neurobiol 2010; 20:432-40. [PMID: 20471240 PMCID: PMC3375208 DOI: 10.1016/j.conb.2010.04.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 04/07/2010] [Accepted: 04/09/2010] [Indexed: 01/26/2023]
Abstract
In recent years spectacular advances in the field of epigenetics have taken place. Multiple lines of evidence that connect epigenetic regulation to brain functions have been accumulating. Neurons daily convert a variety of external stimuli into rapid or long-lasting changes in gene expression. Control is achieved through several covalent modifications that occur both on DNA and chromatin. Specific modifications mediate many developmental processes and adult brain functions, such as synaptic plasticity and memory. In this review, we focus on crucial chromatin remodeling events that mediate long-lasting neuronal responses. The challenging goal is to reach sufficient understanding of these epigenetic pathways in the brain so that they may be useful for future development of specific pharmacological strategies.
Collapse
Affiliation(s)
- Loredana Zocchi
- Department of Pharmacology, School of Medicine, University of California, Irvine, 92697 Irvine, California
| | - Paolo Sassone-Corsi
- Department of Pharmacology, School of Medicine, University of California, Irvine, 92697 Irvine, California
| |
Collapse
|
62
|
Abstract
The circadian clock organizes biochemical and physiological processes of an organism in a temporal fashion. This temporal organization is crucial to avoid interference of processes that have adverse effects on each other. Thus, disruption of temporal organization can lead to health problems and behavioral disorders related to mood alterations. To alleviate the consequences of a disrupted temporal organization in the body, it is of importance to understand the processes involved in the synchronization of all body clocks and their phase relationship to the environmental day/night cycle at the mechanistic level. This review will focus on internal and external factors affecting synchronization and function of the circadian system and highlight connections to mood-related behavior.
Collapse
Affiliation(s)
- Urs Albrecht
- Department of Medicine, Unit of Biochemistry, University of Fribourg, 1700 Fribourg, Switzerland.
| |
Collapse
|