Storvik KAM, Foster PL. RpoS, the stress response sigma factor, plays a dual role in the regulation of Escherichia coli's error-prone DNA polymerase IV.
J Bacteriol 2010;
192:3639-44. [PMID:
20472798 PMCID:
PMC2897332 DOI:
10.1128/jb.00358-10]
[Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 05/05/2010] [Indexed: 12/21/2022] Open
Abstract
RpoS, Escherichia coli's general stress response sigma factor, regulates error-prone DNA polymerase IV (Pol IV) (encoded by the dinB gene). Pol IV is induced in stationary-phase cells, and thereafter, levels of the protein remain elevated for several days of continuous incubation. This induction and persistence in stationary-phase cells are dependent on RpoS. Data presented here show that this regulation is direct via the RpoS-directed transcription of the dinB gene. However, a loss of RpoS also results in a decrease in Pol IV-dependent mutation when Pol IV is overexpressed from an RpoS-independent promoter in exponentially growing cells. The loss of RpoS also increases cell sensitivity to 4-nitroquinoline-1-oxide, indicating that RpoS affects the ability of Pol IV to bypass DNA lesions. Thus, in addition to directly driving the transcription of the dinB gene in stationary-phase cells, RpoS regulates the activity of Pol IV in exponentially growing cells via a second, indirect pathway.
Collapse