51
|
Tubman E, He Y, Hays TS, Odde DJ. Kinesin-5 mediated chromosome congression in insect spindles. Cell Mol Bioeng 2018; 11:25-36. [PMID: 29552234 PMCID: PMC5849273 DOI: 10.1007/s12195-017-0500-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 07/31/2017] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The microtubule motor protein kinesin-5 is well known to establish the bipolar spindle by outward sliding of antiparallel interpolar microtubules. In yeast, kinesin-5 also facilitates chromosome alignment "congression" at the spindle equator by preferentially depolymerizing long kinetochore microtubules (kMTs). The motor protein kinesin-8 has also been linked to chromosome congression. Therefore, we sought to determine whether kinesin-5 or kinesin-8 facilitates chromosome congression in insect spindles. METHODS RNAi of the kinesin-5 Klp61F and kinesin-8 Klp67A were performed separately in Drosophila melanogaster S2 cells to test for inhibited chromosome congression. Klp61F RNAi, Klp67A RNAi, and control metaphase mitotic spindles expressing fluorescent tubulin and fluorescent Cid were imaged, and their fluorescence distributions were compared. RESULTS RNAi of Klp61F with a weak Klp61F knockdown resulted in longer kMTs and less congressed kinetochores compared to control over a range of conditions, consistent with kinesin-5 length-dependent depolymerase activity. RNAi of the kinesin-8 Klp67A revealed that kMTs relative to the spindle lengths were not longer compared to control, but rather that the spindles were longer, indicating that Klp67A acts preferentially as a length-dependent depolymerase on interpolar microtubules without significantly affecting kMT length and chromosome congression. CONCLUSIONS This study demonstrates that in addition to establishing the bipolar spindle, kinesin-5 regulates kMT length to facilitate chromosome congression in insect spindles. It expands on previous yeast studies, and it expands the role of kinesin-5 to include kMT assembly regulation in eukaryotic mitosis.
Collapse
Affiliation(s)
- Emily Tubman
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Yungui He
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 USA
| | - Thomas S. Hays
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 USA
| | - David J. Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
52
|
van Haren J, Charafeddine RA, Ettinger A, Wang H, Hahn KM, Wittmann T. Local control of intracellular microtubule dynamics by EB1 photodissociation. Nat Cell Biol 2018; 20:252-261. [PMID: 29379139 PMCID: PMC5826794 DOI: 10.1038/s41556-017-0028-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 12/13/2017] [Indexed: 12/18/2022]
Abstract
End-binding proteins, EBs, are adaptors that recruit functionally diverse +TIP proteins to growing microtubule plus ends. To test with high spatial and temporal accuracy how, when and where +TIP protein complexes contribute to dynamic cell biology, we developed a photo-inactivated EB1 variant (π-EB1) by inserting a blue light-sensitive protein-protein interaction module between the microtubule- and +TIP-binding domains of EB1. π-EB1 replaces endogenous EB1 function in the absence of blue light. In contrast, blue light-mediated π-EB1 photo-dissociation results in rapid +TIP complex disassembly, and acutely and reversibly attenuates microtubule growth independent of microtubule end association of the microtubule polymerase CKAP5 (ch-TOG, XMAP215). Local π-EB1 photo-dissociation allows subcellular microtubule dynamics control at the second and micrometre scale, and elicits aversive turning of migrating cancer cells. Importantly, light-mediated domain splitting can serve as template to optically control other intracellular protein activities.
Collapse
Affiliation(s)
- Jeffrey van Haren
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Rabab A Charafeddine
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Andreas Ettinger
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA.,Institute of Epigenetics and Stem Cells, Helmholtz Center Munich, München, Germany
| | - Hui Wang
- University of North Carolina, Chapel Hill, NC, USA
| | - Klaus M Hahn
- University of North Carolina, Chapel Hill, NC, USA
| | - Torsten Wittmann
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA.
| |
Collapse
|
53
|
Ayoub AT, Staelens M, Prunotto A, Deriu MA, Danani A, Klobukowski M, Tuszynski JA. Explaining the Microtubule Energy Balance: Contributions Due to Dipole Moments, Charges, van der Waals and Solvation Energy. Int J Mol Sci 2017; 18:ijms18102042. [PMID: 28937650 PMCID: PMC5666724 DOI: 10.3390/ijms18102042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/14/2022] Open
Abstract
Microtubules are the main components of mitotic spindles, and are the pillars of the cellular cytoskeleton. They perform most of their cellular functions by virtue of their unique dynamic instability processes which alternate between polymerization and depolymerization phases. This in turn is driven by a precise balance between attraction and repulsion forces between the constituents of microtubules (MTs)—tubulin dimers. Therefore, it is critically important to know what contributions result in a balance of the interaction energy among tubulin dimers that make up microtubules and what interactions may tip this balance toward or away from a stable polymerized state of tubulin. In this paper, we calculate the dipole–dipole interaction energy between tubulin dimers in a microtubule as part of the various contributions to the energy balance. We also compare the remaining contributions to the interaction energies between tubulin dimers and establish a balance between stabilizing and destabilizing components, including the van der Waals, electrostatic, and solvent-accessible surface area energies. The energy balance shows that the GTP-capped tip of the seam at the plus end of microtubules is stabilized only by −9 kcal/mol, which can be completely reversed by the hydrolysis of a single GTP molecule, which releases +14 kcal/mol and destabilizes the seam by an excess of +5 kcal/mol. This triggers the breakdown of microtubules and initiates a disassembly phase which is aptly called a catastrophe.
Collapse
Affiliation(s)
- Ahmed Taha Ayoub
- Medicinal Chemistry Department, Heliopolis University, Cairo-Belbeis Desert Rd, El-Nahda, El-Salam, Cairo Governorate 11777, Egypt.
| | - Michael Staelens
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Alessio Prunotto
- Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale Della Svizzera Italiana (SUPSI), Università Della Svizzera Italiana (USI), Centro Galleria 2, Manno CH-6928, Switzerland.
| | - Marco A Deriu
- Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale Della Svizzera Italiana (SUPSI), Università Della Svizzera Italiana (USI), Centro Galleria 2, Manno CH-6928, Switzerland.
| | - Andrea Danani
- Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale Della Svizzera Italiana (SUPSI), Università Della Svizzera Italiana (USI), Centro Galleria 2, Manno CH-6928, Switzerland.
| | - Mariusz Klobukowski
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| | | |
Collapse
|
54
|
Roostalu J, Surrey T. Microtubule nucleation: beyond the template. Nat Rev Mol Cell Biol 2017; 18:702-710. [PMID: 28831203 DOI: 10.1038/nrm.2017.75] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microtubules are cytoskeletal filaments central to a wide range of essential cellular functions in eukaryotic cells. Consequently, cells need to exert tight control over when, where and how many microtubules are being made. Whereas the regulation of microtubule dynamics is well studied, the molecular mechanisms of microtubule nucleation are still poorly understood. Next to the established master template of nucleation, the γ-tubulin ring complex, other microtubule-associated proteins that affect microtubule dynamic properties have recently been found to contribute to nucleation. It has begun to emerge that the nucleation efficiency is controlled not only by template activity but also by, either additionally or alternatively, the stabilization of the nascent microtubule 'nucleus'. This suggests a simple conceptual framework for the mechanisms regulating microtubule nucleation in cells.
Collapse
Affiliation(s)
| | - Thomas Surrey
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
55
|
Vleugel M, Kok M, Dogterom M. Understanding force-generating microtubule systems through in vitro reconstitution. Cell Adh Migr 2017; 10:475-494. [PMID: 27715396 PMCID: PMC5079405 DOI: 10.1080/19336918.2016.1241923] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Microtubules switch between growing and shrinking states, a feature known as dynamic instability. The biochemical parameters underlying dynamic instability are modulated by a wide variety of microtubule-associated proteins that enable the strict control of microtubule dynamics in cells. The forces generated by controlled growth and shrinkage of microtubules drive a large range of processes, including organelle positioning, mitotic spindle assembly, and chromosome segregation. In the past decade, our understanding of microtubule dynamics and microtubule force generation has progressed significantly. Here, we review the microtubule-intrinsic process of dynamic instability, the effect of external factors on this process, and how the resulting forces act on various biological systems. Recently, reconstitution-based approaches have strongly benefited from extensive biochemical and biophysical characterization of individual components that are involved in regulating or transmitting microtubule-driven forces. We will focus on the current state of reconstituting increasingly complex biological systems and provide new directions for future developments.
Collapse
Affiliation(s)
- Mathijs Vleugel
- a Department of Bionanoscience , Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft Institute of Technology , Delft , The Netherlands
| | - Maurits Kok
- a Department of Bionanoscience , Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft Institute of Technology , Delft , The Netherlands
| | - Marileen Dogterom
- a Department of Bionanoscience , Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft Institute of Technology , Delft , The Netherlands
| |
Collapse
|
56
|
Nehlig A, Molina A, Rodrigues-Ferreira S, Honoré S, Nahmias C. Regulation of end-binding protein EB1 in the control of microtubule dynamics. Cell Mol Life Sci 2017; 74:2381-2393. [PMID: 28204846 PMCID: PMC11107513 DOI: 10.1007/s00018-017-2476-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/13/2017] [Accepted: 01/24/2017] [Indexed: 12/14/2022]
Abstract
The regulation of microtubule dynamics is critical to ensure essential cell functions, such as proper segregation of chromosomes during mitosis or cell polarity and migration. End-binding protein 1 (EB1) is a plus-end-tracking protein (+TIP) that accumulates at growing microtubule ends and plays a pivotal role in the regulation of microtubule dynamics. EB1 autonomously binds an extended tubulin-GTP/GDP-Pi structure at growing microtubule ends and acts as a molecular scaffold that recruits a large number of regulatory +TIPs through interaction with CAP-Gly or SxIP motifs. While extensive studies have focused on the structure of EB1-interacting site at microtubule ends and its role as a molecular platform, the mechanisms involved in the negative regulation of EB1 have only started to emerge and remain poorly understood. In this review, we summarize recent studies showing that EB1 association with MT ends is regulated by post-translational modifications and affected by microtubule-targeting agents. We also present recent findings that structural MAPs, that have no tip-tracking activity, physically interact with EB1 to prevent its accumulation at microtubule plus ends. These observations point out a novel concept of "endogenous EB1 antagonists" and emphasize the importance of finely regulating EB1 function at growing microtubule ends.
Collapse
Affiliation(s)
- Anne Nehlig
- Inserm U981, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94800, Villejuif, France
- University Paris Saclay, 94800, Villejuif, France
| | - Angie Molina
- Inserm U981, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94800, Villejuif, France
- University Paris Saclay, 94800, Villejuif, France
- CBD, University of Toulouse-3, Toulouse, France
| | - Sylvie Rodrigues-Ferreira
- Inserm U981, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94800, Villejuif, France
- University Paris Saclay, 94800, Villejuif, France
| | - Stéphane Honoré
- Aix Marseille University, Inserm U-911, CRO2, Marseille, France
- Service Pharmacie, CHU Hôpital de La Timone, APHM, Marseille, France
| | - Clara Nahmias
- Inserm U981, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94800, Villejuif, France.
- University Paris Saclay, 94800, Villejuif, France.
| |
Collapse
|
57
|
Castle BT, McCubbin S, Prahl LS, Bernens JN, Sept D, Odde DJ. Mechanisms of kinetic stabilization by the drugs paclitaxel and vinblastine. Mol Biol Cell 2017; 28:1238-1257. [PMID: 28298489 PMCID: PMC5415019 DOI: 10.1091/mbc.e16-08-0567] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 02/21/2017] [Accepted: 02/28/2017] [Indexed: 12/20/2022] Open
Abstract
Chemotherapeutic agents that target microtubule dynamics promote a universal phenotype of kinetic stabilization. Integrated computational modeling and fluorescence microscopy identify the fundamental kinetic and thermodynamic mechanisms that result in kinetic stabilization, specifically by the drugs paclitaxel and vinblastine. Microtubule-targeting agents (MTAs), widely used as biological probes and chemotherapeutic drugs, bind directly to tubulin subunits and “kinetically stabilize” microtubules, suppressing the characteristic self-assembly process of dynamic instability. However, the molecular-level mechanisms of kinetic stabilization are unclear, and the fundamental thermodynamic and kinetic requirements for dynamic instability and its elimination by MTAs have yet to be defined. Here we integrate a computational model for microtubule assembly with nanometer-scale fluorescence microscopy measurements to identify the kinetic and thermodynamic basis of kinetic stabilization by the MTAs paclitaxel, an assembly promoter, and vinblastine, a disassembly promoter. We identify two distinct modes of kinetic stabilization in live cells, one that truly suppresses on-off kinetics, characteristic of vinblastine, and the other a “pseudo” kinetic stabilization, characteristic of paclitaxel, that nearly eliminates the energy difference between the GTP- and GDP-tubulin thermodynamic states. By either mechanism, the main effect of both MTAs is to effectively stabilize the microtubule against disassembly in the absence of a robust GTP cap.
Collapse
Affiliation(s)
- Brian T Castle
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
| | - Seth McCubbin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Louis S Prahl
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
| | - Jordan N Bernens
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
| | - David Sept
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - David J Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
58
|
Steady-state EB cap size fluctuations are determined by stochastic microtubule growth and maturation. Proc Natl Acad Sci U S A 2017; 114:3427-3432. [PMID: 28280102 DOI: 10.1073/pnas.1620274114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Growing microtubules are protected from depolymerization by the presence of a GTP or GDP/Pi cap. End-binding proteins of the EB1 family bind to the stabilizing cap, allowing monitoring of its size in real time. The cap size has been shown to correlate with instantaneous microtubule stability. Here we have quantitatively characterized the properties of cap size fluctuations during steady-state growth and have developed a theory predicting their timescale and amplitude from the kinetics of microtubule growth and cap maturation. In contrast to growth speed fluctuations, cap size fluctuations show a characteristic timescale, which is defined by the lifetime of the cap sites. Growth fluctuations affect the amplitude of cap size fluctuations; however, cap size does not affect growth speed, indicating that microtubules are far from instability during most of their time of growth. Our theory provides the basis for a quantitative understanding of microtubule stability fluctuations during steady-state growth.
Collapse
|
59
|
Nieuwburg R, Nashchekin D, Jakobs M, Carter AP, Khuc Trong P, Goldstein RE, St Johnston D. Localised dynactin protects growing microtubules to deliver oskar mRNA to the posterior cortex of the Drosophila oocyte. eLife 2017; 6:e27237. [PMID: 29035202 PMCID: PMC5643094 DOI: 10.7554/elife.27237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/19/2017] [Indexed: 11/13/2022] Open
Abstract
The localisation of oskar mRNA to the posterior of the Drosophila oocyte defines where the abdomen and germ cells form in the embryo. Kinesin 1 transports oskar mRNA to the oocyte posterior along a polarised microtubule cytoskeleton that grows from non-centrosomal microtubule organising centres (ncMTOCs) along the anterior/lateral cortex. Here, we show that the formation of this polarised microtubule network also requires the posterior regulation of microtubule growth. A missense mutation in the dynactin Arp1 subunit causes most oskar mRNA to localise in the posterior cytoplasm rather than cortically. oskar mRNA transport and anchoring are normal in this mutant, but the microtubules fail to reach the posterior pole. Thus, dynactin acts as an anti-catastrophe factor that extends microtubule growth posteriorly. Kinesin 1 transports dynactin to the oocyte posterior, creating a positive feedback loop that increases the length and persistence of the posterior microtubules that deliver oskar mRNA to the cortex.
Collapse
Affiliation(s)
- Ross Nieuwburg
- The Gurdon Institute and the Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Dmitry Nashchekin
- The Gurdon Institute and the Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Maximilian Jakobs
- The Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Andrew P Carter
- Division of Structural StudiesMedical Research Council, Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Philipp Khuc Trong
- Department of Applied Mathematics and Theoretical PhysicsUniversity of Cambridge, Centre for Mathematical SciencesCambridgeUnited Kingdom
| | - Raymond E Goldstein
- Department of Applied Mathematics and Theoretical PhysicsUniversity of Cambridge, Centre for Mathematical SciencesCambridgeUnited Kingdom
| | - Daniel St Johnston
- The Gurdon Institute and the Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
60
|
Dugina V, Alieva I, Khromova N, Kireev I, Gunning PW, Kopnin P. Interaction of microtubules with the actin cytoskeleton via cross-talk of EB1-containing +TIPs and γ-actin in epithelial cells. Oncotarget 2016; 7:72699-72715. [PMID: 27683037 PMCID: PMC5341938 DOI: 10.18632/oncotarget.12236] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/18/2016] [Indexed: 12/16/2022] Open
Abstract
Actin microfilaments and microtubules are both highly dynamic cytoskeleton components implicated in a wide range of intracellular processes as well as cell-cell and cell-substrate interactions. The interactions of actin filaments with the microtubule system play an important role in the assembly and maintenance of 3D cell structure. Here we demonstrate that cytoplasmic actins are differentially distributed in relation to the microtubule system. LSM, 3D-SIM, proximity ligation assay (PLA) and co-immunoprecipitation methods applied in combination with selective depletion of β- or γ-cytoplasmic actins revealed a selective interaction between microtubules and γ-, but not β-cytoplasmic actin via the microtubule +TIPs protein EB1. EB1-positive comet distribution analysis and quantification have shown more effective microtubule growth in the absence of β-actin. Our data represent the first demonstration that microtubule +TIPs protein EB1 interacts mainly with γ-cytoplasmic actin in epithelial cells.
Collapse
Affiliation(s)
- Vera Dugina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- School of Medical Science, The University of New South Wales, NSW, Sydney, Australia
| | - Irina Alieva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- School of Medical Science, The University of New South Wales, NSW, Sydney, Australia
| | | | - Igor Kireev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Peter W. Gunning
- School of Medical Science, The University of New South Wales, NSW, Sydney, Australia
| | - Pavel Kopnin
- Blokhin Russian Cancer Research Center, Moscow, Russia
| |
Collapse
|
61
|
Zakharov P, Gudimchuk N, Voevodin V, Tikhonravov A, Ataullakhanov FI, Grishchuk EL. Molecular and Mechanical Causes of Microtubule Catastrophe and Aging. Biophys J 2016; 109:2574-2591. [PMID: 26682815 DOI: 10.1016/j.bpj.2015.10.048] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/11/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022] Open
Abstract
Tubulin polymers, microtubules, can switch abruptly from the assembly to shortening. These infrequent transitions, termed "catastrophes", affect numerous cellular processes but the underlying mechanisms are elusive. We approached this complex stochastic system using advanced coarse-grained molecular dynamics modeling of tubulin-tubulin interactions. Unlike in previous simplified models of dynamic microtubules, the catastrophes in this model arise owing to fluctuations in the composition and conformation of a growing microtubule tip, most notably in the number of protofilament curls. In our model, dynamic evolution of the stochastic microtubule tip configurations over a long timescale, known as the system's "aging", gives rise to the nonexponential distribution of microtubule lifetimes, consistent with experiment. We show that aging takes place in the absence of visible changes in the microtubule wall or tip, as this complex molecular-mechanical system evolves slowly and asymptotically toward the steady-state level of the catastrophe-promoting configurations. This new, to our knowledge, theoretical basis will assist detailed mechanistic investigations of the mechanisms of action of different microtubule-binding proteins and drugs, thereby enabling accurate control over the microtubule dynamics to treat various pathologies.
Collapse
Affiliation(s)
- Pavel Zakharov
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nikita Gudimchuk
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia; Moscow State University, Moscow, Russia; Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | | | | - Fazoil I Ataullakhanov
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia; Moscow State University, Moscow, Russia; Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Ekaterina L Grishchuk
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
62
|
Guesdon A, Bazile F, Buey RM, Mohan R, Monier S, García RR, Angevin M, Heichette C, Wieneke R, Tampé R, Duchesne L, Akhmanova A, Steinmetz MO, Chrétien D. EB1 interacts with outwardly curved and straight regions of the microtubule lattice. Nat Cell Biol 2016; 18:1102-8. [PMID: 27617931 DOI: 10.1038/ncb3412] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 08/18/2016] [Indexed: 12/16/2022]
Abstract
EB1 is a microtubule plus-end tracking protein that recognizes GTP-tubulin dimers in microtubules and thus represents a unique probe to investigate the architecture of the GTP cap of growing microtubule ends. Here, we conjugated EB1 to gold nanoparticles (EB1-gold) and imaged by cryo-electron tomography its interaction with dynamic microtubules assembled in vitro from purified tubulin. EB1-gold forms comets at the ends of microtubules assembled in the presence of GTP, and interacts with the outer surface of curved and straight tubulin sheets as well as closed regions of the microtubule lattice. Microtubules assembled in the presence of GTP, different GTP analogues or cell extracts display similarly curved sheets at their growing ends, which gradually straighten as their protofilament number increases until they close into a tube. Together, our data provide unique structural information on the interaction of EB1 with growing microtubule ends. They further offer insights into the conformational changes that tubulin dimers undergo during microtubule assembly and the architecture of the GTP-cap region.
Collapse
Affiliation(s)
- Audrey Guesdon
- Institute of Genetics and Development of Rennes, UMR6290 CNRS, University of Rennes 1, Campus Universitaire de Beaulieu, 35042 Rennes Cédex, France
| | - Franck Bazile
- Institute of Genetics and Development of Rennes, UMR6290 CNRS, University of Rennes 1, Campus Universitaire de Beaulieu, 35042 Rennes Cédex, France
| | - Rubén M Buey
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland.,Metabolic Engineering Group, Department of Microbiology and Genetics, University of Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
| | - Renu Mohan
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Solange Monier
- Institute of Genetics and Development of Rennes, UMR6290 CNRS, University of Rennes 1, Campus Universitaire de Beaulieu, 35042 Rennes Cédex, France
| | - Ruddi Rodríguez García
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Morgane Angevin
- Institute of Genetics and Development of Rennes, UMR6290 CNRS, University of Rennes 1, Campus Universitaire de Beaulieu, 35042 Rennes Cédex, France
| | - Claire Heichette
- Institute of Genetics and Development of Rennes, UMR6290 CNRS, University of Rennes 1, Campus Universitaire de Beaulieu, 35042 Rennes Cédex, France
| | - Ralph Wieneke
- Institute of Biochemistry, Biocenter, and Cluster of Excellence-Macromolecular Complexes, Goethe-University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, and Cluster of Excellence-Macromolecular Complexes, Goethe-University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Laurence Duchesne
- Institute of Genetics and Development of Rennes, UMR6290 CNRS, University of Rennes 1, Campus Universitaire de Beaulieu, 35042 Rennes Cédex, France
| | - Anna Akhmanova
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Denis Chrétien
- Institute of Genetics and Development of Rennes, UMR6290 CNRS, University of Rennes 1, Campus Universitaire de Beaulieu, 35042 Rennes Cédex, France.,Microscopy Rennes Imaging Centre, and Biosit, UMS3480 CNRS, University of Rennes 1, Campus Santé de Villejean, 35043 Rennes Cédex, France
| |
Collapse
|
63
|
Insights into the process of EB1-dependent tip-tracking of kinesin-14 Ncd. The role of the microtubule. Eur J Cell Biol 2016; 95:521-530. [PMID: 27608966 DOI: 10.1016/j.ejcb.2016.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/11/2016] [Accepted: 08/29/2016] [Indexed: 01/13/2023] Open
Abstract
End-binding proteins are capable of tracking the plus-ends of growing microtubules (MTs). The motor protein Ncd, a member of the kinesin-14 family, interacts with EB1 protein and becomes a non-autonomous tip-tracker. Here, we attempted to find out whether at least for Ncd, the efficient EB1-mediated tip-tracking involves the interaction of the kinesin with the MT surface. We prepared a series of Ncd tail mutants in which the MT-binding sites were altered or eliminated. Using TIRF microscopy, we characterized their behavior as tip-trackers and measured the dwell times of single molecules of EB1 and Ncd tail or its mutated forms. The mutated forms of Ncd tail exhibited tip-tracking in the presence of EB1 and the effectiveness of this process was proportional to the affinity of the mutant's tail to MT. Even though the interaction of Ncd with EB1 was weak (Kd∼9μM) the half saturating concentration of EB1 for tip-tracking was 7nM. The dwell time of Ncd tail in the presence of EB1 was ∼1s. The dwell time of EB1 alone was shorter (∼0.3s) and increased considerably in the presence of a large excess of Ncd tail. We demonstrated that tip-tracking of kinesin-14 occurs through several concurrent mechanisms: binding of kinesin only to EB1 located at the MT end, interaction of the kinesin molecules with a composite site formed by EB1 and the MT tip, and probably surface diffusion of the tail along MT. The second mechanism seems to play a crucial role in efficient tip-tracking.
Collapse
|
64
|
Kent IA, Lele TP. Microtubule-based force generation. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27562344 DOI: 10.1002/wnan.1428] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/20/2016] [Accepted: 07/30/2016] [Indexed: 11/11/2022]
Abstract
Microtubules are vital to many important cell processes, such as cell division, transport of cellular cargo, organelle positioning, and cell migration. Owing to their diverse functions, understanding microtubule function is an important part of cell biological research that can help in combating various diseases. For example, microtubules are an important target of chemotherapeutic drugs such as paclitaxel because of their pivotal role in cell division. Many functions of microtubules relate to the generation of mechanical forces. These forces are generally either a direct result of microtubule polymerization/depolymerization or generated by motor proteins that move processively along microtubules. In this review, we summarize recent efforts to quantify and model force generation by microtubules in the context of microtubule function. WIREs Nanomed Nanobiotechnol 2017, 9:e1428. doi: 10.1002/wnan.1428 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Ian A Kent
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Tanmay P Lele
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
65
|
Duellberg C, Cade NI, Surrey T. Microtubule aging probed by microfluidics-assisted tubulin washout. Mol Biol Cell 2016; 27:3563-3573. [PMID: 27489342 PMCID: PMC5221588 DOI: 10.1091/mbc.e16-07-0548] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 11/24/2022] Open
Abstract
Microtubule aging—the decrease of stability with age—is an interesting but mechanistically not understood property of microtubules. It constrains possible mechanisms of catastrophe induction and is believed to be crucial for length regulation. New in vitro experiments and model fits provide insight into the origin of microtubule aging. Microtubules switch stochastically between phases of growth and shrinkage. The molecular mechanism responsible for the end of a growth phase, an event called catastrophe, is still not understood. The probability for a catastrophe to occur increases with microtubule age, putting constraints on the possible molecular mechanism of catastrophe induction. Here we used microfluidics-assisted fast tubulin washout experiments to induce microtubule depolymerization in a controlled manner at different times after the start of growth. We found that aging can also be observed in this assay, providing valuable new constraints against which theoretical models of catastrophe induction can be tested. We found that the data can be quantitatively well explained by a simple kinetic threshold model that assumes an age-dependent broadening of the protective cap at the microtubule end as a result of an evolving tapered end structure; this leads to a decrease of the cap density and its stability. This analysis suggests an intuitive picture of the role of morphological changes of the protective cap for the age dependence of microtubule stability.
Collapse
Affiliation(s)
- Christian Duellberg
- Lincoln's Inn Fields Laboratory, Francis Crick Institute, London WC2A 3LY, United Kingdom
| | - Nicholas Ian Cade
- Lincoln's Inn Fields Laboratory, Francis Crick Institute, London WC2A 3LY, United Kingdom
| | - Thomas Surrey
- Lincoln's Inn Fields Laboratory, Francis Crick Institute, London WC2A 3LY, United Kingdom
| |
Collapse
|
66
|
Duellberg C, Cade NI, Holmes D, Surrey T. The size of the EB cap determines instantaneous microtubule stability. eLife 2016; 5. [PMID: 27050486 PMCID: PMC4829430 DOI: 10.7554/elife.13470] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/23/2016] [Indexed: 12/24/2022] Open
Abstract
The function of microtubules relies on their ability to switch between phases of growth and shrinkage. A nucleotide-dependent stabilising cap at microtubule ends is thought to be lost before this switch can occur; however, the nature and size of this protective cap are unknown. Using a microfluidics-assisted multi-colour TIRF microscopy assay with close-to-nm and sub-second precision, we measured the sizes of the stabilizing cap of individual microtubules. We find that the protective caps are formed by the extended binding regions of EB proteins. Cap lengths vary considerably and longer caps are more stable. Nevertheless, the trigger of instability lies in a short region at the end of the cap, as a quantitative model of cap stability demonstrates. Our study establishes the spatial and kinetic characteristics of the protective cap and provides an insight into the molecular mechanism by which its loss leads to the switch from microtubule growth to shrinkage. DOI:http://dx.doi.org/10.7554/eLife.13470.001 Much like the skeleton supports the human body, a structure called the cytoskeleton provides support and structure to cells. Part of this cytoskeleton is made up of small tubes called microtubules that – unlike bones – can shrink and grow very quickly. This allows the cell to change shape, move and split into two new cells. Exactly how the microtubules switch between growing and shrinking was not clear. One suggestion is that a protective cap at the end of microtubule allows it to keep growing and prevents it from shrinking. However, the nature and size of this cap have been debated. Now, Duellberg et al. have measured the caps of microtubules with high precision by combining the techniques of microfluidics, TIRF microscopy and recently developed image analysis tools. This revealed that the cap sizes change, with longer caps being more stable. In addition, proteins called end-binding proteins can destabilize the cap by binding to it. This allows microtubules to switch from a growing to a shrinking state more often. Future work could now investigate how changes in cap length cause the microtubules to switch from growing to shrinking. It also remains to be seen whether other proteins also influence the cap to control this switching behaviour. DOI:http://dx.doi.org/10.7554/eLife.13470.002
Collapse
Affiliation(s)
- Christian Duellberg
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Nicholas I Cade
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, United Kingdom
| | - David Holmes
- London Centre of Nanotechnology, London, United Kingdom
| | - Thomas Surrey
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
67
|
Chimera proteins with affinity for membranes and microtubule tips polarize in the membrane of fission yeast cells. Proc Natl Acad Sci U S A 2016; 113:1811-6. [PMID: 26831106 DOI: 10.1073/pnas.1419248113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell polarity refers to a functional spatial organization of proteins that is crucial for the control of essential cellular processes such as growth and division. To establish polarity, cells rely on elaborate regulation networks that control the distribution of proteins at the cell membrane. In fission yeast cells, a microtubule-dependent network has been identified that polarizes the distribution of signaling proteins that restricts growth to cell ends and targets the cytokinetic machinery to the middle of the cell. Although many molecular components have been shown to play a role in this network, it remains unknown which molecular functionalities are minimally required to establish a polarized protein distribution in this system. Here we show that a membrane-binding protein fragment, which distributes homogeneously in wild-type fission yeast cells, can be made to concentrate at cell ends by attaching it to a cytoplasmic microtubule end-binding protein. This concentration results in a polarized pattern of chimera proteins with a spatial extension that is very reminiscent of natural polarity patterns in fission yeast. However, chimera levels fluctuate in response to microtubule dynamics, and disruption of microtubules leads to disappearance of the pattern. Numerical simulations confirm that the combined functionality of membrane anchoring and microtubule tip affinity is in principle sufficient to create polarized patterns. Our chimera protein may thus represent a simple molecular functionality that is able to polarize the membrane, onto which additional layers of molecular complexity may be built to provide the temporal robustness that is typical of natural polarity patterns.
Collapse
|
68
|
Lopez BJ, Valentine MT. The +TIP coordinating protein EB1 is highly dynamic and diffusive on microtubules, sensitive to GTP analog, ionic strength, and EB1 concentration. Cytoskeleton (Hoboken) 2016; 73:23-34. [PMID: 26663881 DOI: 10.1002/cm.21267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 12/04/2015] [Accepted: 12/04/2015] [Indexed: 01/06/2023]
Abstract
Using single-molecule fluorescence microscopy, we investigated the dynamics of dye-labeled EB1, a +TIP microtubule binding protein. To promote EB1 binding along the entire microtubule length, we formed microtubules using the nonhydrolyzable GTP analogs GMPCPP and GTPγS. Through precise tracking of the motions of individual dye-labeled proteins, we found EB1 to be highly dynamic and continuously diffusive while bound to a microtubule, with a diffusion coefficient and characteristic binding lifetime that were sensitive to both the choice of GTP analog and the buffer ionic strength. Using fluorescence-based equilibrium binding measurements, we found EB1 binding to be cooperative and also sensitive to GTP analog and ionic strength. By tracking the motion of a small number of individually-labeled EB1 proteins within a bath of unlabeled EB1 proteins, we determined the effects of increasing the total EB1 concentration on binding and dynamics. We found that the diffusion coefficient decreased with increasing EB1 concentration, which may be due at least in part, to the cooperativity of EB1 binding. Our results may have important consequences for the assembly and organization of the growing microtubule plus-end.
Collapse
Affiliation(s)
- Benjamin J Lopez
- Department of Mechanical Engineering and the Neuroscience Research Institute, University of California, Santa Barbara, California
| | - Megan T Valentine
- Department of Mechanical Engineering and the Neuroscience Research Institute, University of California, Santa Barbara, California
| |
Collapse
|
69
|
Harris JA, Liu Y, Yang P, Kner P, Lechtreck KF. Single-particle imaging reveals intraflagellar transport-independent transport and accumulation of EB1 in Chlamydomonas flagella. Mol Biol Cell 2015; 27:295-307. [PMID: 26631555 PMCID: PMC4713132 DOI: 10.1091/mbc.e15-08-0608] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/20/2015] [Indexed: 12/20/2022] Open
Abstract
The microtubule (MT) plus-end tracking protein EB1 is present at the tips of cilia and flagella; end-binding protein 1 (EB1) remains at the tip during flagellar shortening and in the absence of intraflagellar transport (IFT), the predominant protein transport system in flagella. To investigate how EB1 accumulates at the flagellar tip, we used in vivo imaging of fluorescent protein-tagged EB1 (EB1-FP) in Chlamydomonas reinhardtii. After photobleaching, the EB1 signal at the flagellar tip recovered within minutes, indicating an exchange with unbleached EB1 entering the flagella from the cell body. EB1 moved independent of IFT trains, and EB1-FP recovery did not require the IFT pathway. Single-particle imaging showed that EB1-FP is highly mobile along the flagellar shaft and displays a markedly reduced mobility near the flagellar tip. Individual EB1-FP particles dwelled for several seconds near the flagellar tip, suggesting the presence of stable EB1 binding sites. In simulations, the two distinct phases of EB1 mobility are sufficient to explain its accumulation at the tip. We propose that proteins uniformly distributed throughout the cytoplasm like EB1 accumulate locally by diffusion and capture; IFT, in contrast, might be required to transport proteins against cellular concentration gradients into or out of cilia.
Collapse
Affiliation(s)
- J Aaron Harris
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Yi Liu
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Pinfen Yang
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Peter Kner
- College of Engineering, University of Georgia, Athens, GA 30602
| | - Karl F Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| |
Collapse
|
70
|
Control of microtubule organization and dynamics: two ends in the limelight. Nat Rev Mol Cell Biol 2015; 16:711-26. [PMID: 26562752 DOI: 10.1038/nrm4084] [Citation(s) in RCA: 651] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microtubules have fundamental roles in many essential biological processes, including cell division and intracellular transport. They assemble and disassemble from their two ends, denoted the plus end and the minus end. Significant advances have been made in our understanding of microtubule plus-end-tracking proteins (+TIPs) such as end-binding protein 1 (EB1), XMAP215, selected kinesins and dynein. By contrast, information on microtubule minus-end-targeting proteins (-TIPs), such as the calmodulin-regulated spectrin-associated proteins (CAMSAPs) and Patronin, has only recently started to emerge. Here, we review our current knowledge of factors, including microtubule-targeting agents, that associate with microtubule ends to control the dynamics and function of microtubules during the cell cycle and development.
Collapse
|
71
|
Ferreira JG, Pereira AL, Maiato H. Microtubule plus-end tracking proteins and their roles in cell division. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 309:59-140. [PMID: 24529722 DOI: 10.1016/b978-0-12-800255-1.00002-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microtubules are cellular components that are required for a variety of essential processes such as cell motility, mitosis, and intracellular transport. This is possible because of the inherent dynamic properties of microtubules. Many of these properties are tightly regulated by a number of microtubule plus-end-binding proteins or +TIPs. These proteins recognize the distal end of microtubules and are thus in the right context to control microtubule dynamics. In this review, we address how microtubule dynamics are regulated by different +TIP families, focusing on how functionally diverse +TIPs spatially and temporally regulate microtubule dynamics during animal cell division.
Collapse
Affiliation(s)
- Jorge G Ferreira
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal; Cell Division Unit, Department of Experimental Biology, University of Porto, Porto, Portugal
| | - Ana L Pereira
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Helder Maiato
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal; Cell Division Unit, Department of Experimental Biology, University of Porto, Porto, Portugal.
| |
Collapse
|
72
|
Brownian dynamics of subunit addition-loss kinetics and thermodynamics in linear polymer self-assembly. Biophys J 2014; 105:2528-40. [PMID: 24314083 DOI: 10.1016/j.bpj.2013.10.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/23/2013] [Accepted: 10/16/2013] [Indexed: 11/23/2022] Open
Abstract
The structure and free energy of multistranded linear polymer ends evolves as individual subunits are added and lost. Thus, the energetic state of the polymer end is not constant, as assembly theory has assumed. Here we utilize a Brownian dynamics approach to simulate the addition and loss of individual subunits at the polymer tip. Using the microtubule as a primary example, we examined how the structure of the polymer tip dictates the rate at which units are added to and lost from individual protofilaments. We find that freely diffusing subunits arrive less frequently to lagging protofilaments but bind more efficiently, such that there is no kinetic difference between leading and lagging protofilaments within a tapered tip. However, local structure at the nanoscale has up to an order-of-magnitude effect on the rate of addition. Thus, the kinetic on-rate constant, integrated across the microtubule tip (kon,MT), is an ensemble average of the varying individual protofilament on-rate constants (kon,PF). Our findings have implications for both catastrophe and rescue of the dynamic microtubule end, and provide a subnanoscale framework for understanding the mechanism of action of microtubule-associated proteins and microtubule-directed drugs. Although we utilize the specific example of the microtubule here, the findings are applicable to multistranded polymers generally.
Collapse
|
73
|
Li C, Li J, Goodson HV, Alber MS. Microtubule dynamic instability: the role of cracks between protofilaments. SOFT MATTER 2014; 10:2069-2080. [PMID: 24652487 DOI: 10.1039/c3sm52892h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Microtubules (MTs) are cytoplasmic protein polymers that are essential for fundamental cellular processes including the maintenance of cell shape, organelle transport and formation of the mitotic spindle. Microtubule dynamic instability is critical for these processes, but it remains poorly understood, in part because the relationship between the structure of the MT tip and the growth/depolymerization transitions is enigmatic. In previous work, we used computational models of dynamic instability to provide evidence that cracks (laterally unbonded regions) between protofilaments play a key role in the regulation of dynamic instability. Here we use computational models to investigate the connection between cracks and dynamic instability in more detail. Our work indicates that while cracks contribute to dynamic instability in a fundamental way, it is not the depth of the cracks per se that governs MT dynamic instability. Instead, what matters more is whether the cracks terminate in GTP-rich or GDP-rich regions of the MT. Based on these observations, we suggest that a functional "GTP cap" (i.e., one capable of promoting MT growth) is one where the cracks terminate in pairs of GTP-bound subunits, and that the likelihood of catastrophe rises significantly with the fraction of crack-terminating subunits that contain GDP. In addition to helping clarify the mechanism of dynamic instability, this idea could also explain how MT stabilizers work: proteins that introduce lateral cross-links between protofilaments would produce islands of GDP-bound tubulin that mimic GTP-rich regions in having strong lateral bonds, thus reducing crack propagation, suppressing catastrophe and promoting rescue.
Collapse
Affiliation(s)
- Chunlei Li
- Department of Applied & Computational Mathematics and Statistics, University of Notre Dame, IN, USA.
| | | | | | | |
Collapse
|
74
|
Bouissou A, Vérollet C, de Forges H, Haren L, Bellaïche Y, Perez F, Merdes A, Raynaud-Messina B. γ-Tubulin Ring Complexes and EB1 play antagonistic roles in microtubule dynamics and spindle positioning. EMBO J 2014; 33:114-28. [PMID: 24421324 DOI: 10.1002/embj.201385967] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
γ-Tubulin is critical for microtubule (MT) assembly and organization. In metazoa, this protein acts in multiprotein complexes called γ-Tubulin Ring Complexes (γ-TuRCs). While the subunits that constitute γ-Tubulin Small Complexes (γ-TuSCs), the core of the MT nucleation machinery, are essential, mutation of γ-TuRC-specific proteins in Drosophila causes sterility and morphological abnormalities via hitherto unidentified mechanisms. Here, we demonstrate a role of γ-TuRCs in controlling spindle orientation independent of MT nucleation activity, both in cultured cells and in vivo, and examine a potential function for γ-TuRCs on astral MTs. γ-TuRCs locate along the length of astral MTs, and depletion of γ-TuRC-specific proteins increases MT dynamics and causes the plus-end tracking protein EB1 to redistribute along MTs. Moreover, suppression of MT dynamics through drug treatment or EB1 down-regulation rescues spindle orientation defects induced by γ-TuRC depletion. Therefore, we propose a role for γ-TuRCs in regulating spindle positioning by controlling the stability of astral MTs.
Collapse
Affiliation(s)
- Anaïs Bouissou
- Centre Biologie du Développement, UMR 5547 CNRS-UPS Toulouse 3, Toulouse Cedex 04, France
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Maurer SP, Cade NI, Bohner G, Gustafsson N, Boutant E, Surrey T. EB1 accelerates two conformational transitions important for microtubule maturation and dynamics. Curr Biol 2014; 24:372-84. [PMID: 24508171 PMCID: PMC3969257 DOI: 10.1016/j.cub.2013.12.042] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 11/26/2013] [Accepted: 12/19/2013] [Indexed: 11/23/2022]
Abstract
BACKGROUND The dynamic properties of microtubules depend on complex nanoscale structural rearrangements in their end regions. Members of the EB1 and XMAP215 protein families interact autonomously with microtubule ends. EB1 recruits several other proteins to growing microtubule ends and has seemingly antagonistic effects on microtubule dynamics: it induces catastrophes, and it increases growth velocity, as does the polymerase XMAP215. RESULTS Using a combination of in vitro reconstitution, time-lapse fluorescence microscopy, and subpixel-precision image analysis and convolved model fitting, we have studied the effects of EB1 on conformational transitions in growing microtubule ends and on the time course of catastrophes. EB1 density distributions at growing microtubule ends reveal two consecutive conformational transitions in the microtubule end region, which have growth-velocity-independent kinetics. EB1 binds to the microtubule after the first and before the second conformational transition has occurred, positioning it several tens of nanometers behind XMAP215, which binds to the extreme microtubule end. EB1 binding accelerates conformational maturation in the microtubule, most likely by promoting lateral protofilament interactions and by accelerating reactions of the guanosine triphosphate (GTP) hydrolysis cycle. The microtubule maturation time is directly linked to the duration of a growth pause just before microtubule depolymerization, indicating an important role of the maturation time for the control of dynamic instability. CONCLUSIONS These activities establish EB1 as a microtubule maturation factor and provide a mechanistic explanation for its effects on microtubule growth and catastrophe frequency, which cause microtubules to be more dynamic.
Collapse
Affiliation(s)
- Sebastian P Maurer
- London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Nicholas I Cade
- London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Gergő Bohner
- London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Nils Gustafsson
- London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Emmanuel Boutant
- London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Thomas Surrey
- London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK.
| |
Collapse
|
76
|
Dent EW, Baas PW. Microtubules in neurons as information carriers. J Neurochem 2013; 129:235-9. [PMID: 24266899 DOI: 10.1111/jnc.12621] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 10/23/2013] [Accepted: 11/20/2013] [Indexed: 11/28/2022]
Abstract
Microtubules in neurons consist of highly dynamic regions as well as stable regions, some of which persist after bouts of severing as short mobile polymers. Concentrated at the plus ends of the highly dynamic regions are microtubule plus end tracking proteins called +TIPs that can interact with an array of other proteins and structures relevant to the plasticity of the neuron. It is also provocative to ponder that short mobile microtubules might similarly convey information with them as they transit within the neuron. Thus, beyond their known conventional functions in supporting neuronal architecture and organelle transport, microtubules may act as 'information carriers' in the neuron.
Collapse
Affiliation(s)
- Erik W Dent
- Department of Neuroscience, University of Wisconsin, School of Medicine and Public Health, 1300 University Avenue, Madison, WI, USA
| | | |
Collapse
|
77
|
Abstract
The microtubule (MT) cytoskeleton supports a broad range of cellular functions, from providing tracks for intracellular transport, to supporting movement of cilia and flagella, to segregating chromosomes in mitosis. These functions are facilitated by the organizational and dynamic plasticity of MT networks. An important class of enzymes that alters MT dynamics is the depolymerizing kinesin-like proteins, which use their catalytic activities to regulate MT end dynamics. In this review, we discuss four topics surrounding these MT-depolymerizing kinesins. We provide a historical overview of studies focused on these motors and discuss their phylogeny. In the second half, we discuss their enzymology and biophysics and give an overview of their known cellular functions. This discussion highlights the fact that MT-depolymerizing kinesins exhibit a diverse range of design principles, which in turn increases their functional versatility in cells.
Collapse
Affiliation(s)
- Claire E Walczak
- Medical Sciences, Indiana University, Bloomington, Indiana 47405;
| | | | | |
Collapse
|
78
|
End-binding proteins sensitize microtubules to the action of microtubule-targeting agents. Proc Natl Acad Sci U S A 2013; 110:8900-5. [PMID: 23674690 DOI: 10.1073/pnas.1300395110] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microtubule-targeting agents (MTAs) are widely used for treatment of cancer and other diseases, and a detailed understanding of the mechanism of their action is important for the development of improved microtubule-directed therapies. Although there is a large body of data on the interactions of different MTAs with purified tubulin and microtubules, much less is known about how the effects of MTAs are modulated by microtubule-associated proteins. Among the regulatory factors with a potential to have a strong impact on MTA activity are the microtubule plus end-tracking proteins, which control multiple aspects of microtubule dynamic instability. Here, we reconstituted microtubule dynamics in vitro to investigate the influence of end-binding proteins (EBs), the core components of the microtubule plus end-tracking protein machinery, on the effects that MTAs exert on microtubule plus-end growth. We found that EBs promote microtubule catastrophe induction in the presence of all MTAs tested. Analysis of microtubule growth times supported the view that catastrophes are microtubule age dependent. This analysis indicated that MTAs affect microtubule aging in multiple ways: destabilizing MTAs, such as colchicine and vinblastine, accelerate aging in an EB-dependent manner, whereas stabilizing MTAs, such as paclitaxel and peloruside A, induce not only catastrophes but also rescues and can reverse the aging process.
Collapse
|
79
|
Alberico EO, Lyons DF, Murphy RJ, Philip JT, Duan AR, Correia JJ, Goodson HV. Biochemical evidence that human EB1 does not bind preferentially to the microtubule seam. Cytoskeleton (Hoboken) 2013; 70:317-27. [PMID: 23864329 DOI: 10.1002/cm.21108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/14/2013] [Accepted: 03/15/2013] [Indexed: 11/08/2022]
Abstract
EB1 is a highly conserved microtubule (MT) plus end tracking protein (+TIP) involved in regulating MT dynamics, but the mechanisms of its effects on MT polymerization remain undefined. Resolving this question requires understanding how EB1 interacts with MTs. Previous electron microscopy of the S. pombe EB1 homolog Mal3p suggested that Mal3p binds specifically to the MT seam, implying that EB1 family members promote MT polymerization by stabilizing the seam. However, more recent electron microscopy indicates that Mal3p binds everywhere except the seam. Neither set of experiments investigated the behavior of human EB1, or provided an explanation for why these studies arrived at different answers. To resolve these questions, we have used a combination of MT-binding assays and theoretical modeling with MTBindingSim. Our results indicate that human EB1 binds to the lattice, consistent with the recent Mal3p results, and show that Mal3p-binding assays that were previously interpreted as evidence for preferential seam binding are equally consistent with weak lattice binding. In addition, we used analytical ultracentrifugation to investigate the possibility that the EB1 monomer-dimer equilibrium might contribute to EB1 binding behavior, and determined that the EB1 dimerization dissociation constant is approximately 90 nM. We and others find that the cellular concentration of EB1 is on the order of 200 nM, suggesting that a portion of EB1 may be monomeric at physiological concentrations. These observations lead us to suggest that regulation of EB1 dimerization might play a role in controlling EB1 function.
Collapse
Affiliation(s)
- Emily O Alberico
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | | | | | |
Collapse
|
80
|
Abstract
The 'GTP cap' of the microtubule has long been postulated to exist, but a recent experiment gives us the first quantitative measurements of the cap size in the cell.
Collapse
Affiliation(s)
- Gary Brouhard
- Department of Biology, McGill University, Montréal, QC, H3A 1B1, Canada.
| | | |
Collapse
|
81
|
Bowne-Anderson H, Zanic M, Kauer M, Howard J. Microtubule dynamic instability: a new model with coupled GTP hydrolysis and multistep catastrophe. Bioessays 2013; 35:452-61. [PMID: 23532586 PMCID: PMC3677417 DOI: 10.1002/bies.201200131] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A key question in understanding microtubule dynamics is how GTP hydrolysis leads to catastrophe, the switch from slow growth to rapid shrinkage. We first provide a review of the experimental and modeling literature, and then present a new model of microtubule dynamics. We demonstrate that vectorial, random, and coupled hydrolysis mechanisms are not consistent with the dependence of catastrophe on tubulin concentration and show that, although single-protofilament models can explain many features of dynamics, they do not describe catastrophe as a multistep process. Finally, we present a new combined (coupled plus random hydrolysis) multiple-protofilament model that is a simple, analytically solvable generalization of a single-protofilament model. This model accounts for the observed lifetimes of growing microtubules, the delay to catastrophe following dilution and describes catastrophe as a multistep process.
Collapse
Affiliation(s)
- Hugo Bowne-Anderson
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | | |
Collapse
|
82
|
Duellberg C, Fourniol FJ, Maurer SP, Roostalu J, Surrey T. End-binding proteins and Ase1/PRC1 define local functionality of structurally distinct parts of the microtubule cytoskeleton. Trends Cell Biol 2013; 23:54-63. [PMID: 23103209 DOI: 10.1016/j.tcb.2012.10.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/25/2012] [Accepted: 10/02/2012] [Indexed: 12/27/2022]
Abstract
The microtubule cytoskeleton is crucial for the intracellular organization of eukaryotic cells. It is a dynamic scaffold that has to perform a variety of very different functions. This multitasking is achieved through the activity of numerous microtubule-associated proteins. Two prominent classes of proteins are central to the selective recognition of distinct transiently existing structural features of the microtubule cytoskeleton. They define local functionality through tightly regulated protein recruitment. Here we summarize the recent developments in elucidating the molecular mechanism underlying the action of microtubule end-binding proteins (EBs) and antiparallel microtubule crosslinkers of the Ase1/PRC1 family that represent the core of these two recruitment modules. Despite their fundamentally different activities, these conserved families share several common features.
Collapse
Affiliation(s)
- Christian Duellberg
- London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | | | | | | | |
Collapse
|
83
|
Gardner MK, Zanic M, Howard J. Microtubule catastrophe and rescue. Curr Opin Cell Biol 2012; 25:14-22. [PMID: 23092753 DOI: 10.1016/j.ceb.2012.09.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 09/25/2012] [Accepted: 09/27/2012] [Indexed: 11/28/2022]
Abstract
Microtubules are long cylindrical polymers composed of tubulin subunits. In cells, microtubules play an essential role in architecture and motility. For example, microtubules give shape to cells, serve as intracellular transport tracks, and act as key elements in important cellular structures such as axonemes and mitotic spindles. To accomplish these varied functions, networks of microtubules in cells are very dynamic, continuously remodeling through stochastic length fluctuations at the ends of individual microtubules. The dynamic behavior at the end of an individual microtubule is termed 'dynamic instability'. This behavior manifests itself by periods of persistent microtubule growth interrupted by occasional switching to rapid shrinkage (called microtubule 'catastrophe'), and then by switching back from shrinkage to growth (called microtubule 'rescue'). In this review, we summarize recent findings which provide new insights into the mechanisms of microtubule catastrophe and rescue, and discuss the impact of these findings in regards to the role of microtubule dynamics inside of cells.
Collapse
Affiliation(s)
- Melissa K Gardner
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|