51
|
Micheel J, Safrastyan A, Wollny D. Advances in Non-Coding RNA Sequencing. Noncoding RNA 2021; 7:70. [PMID: 34842804 PMCID: PMC8628893 DOI: 10.3390/ncrna7040070] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022] Open
Abstract
Non-coding RNAs (ncRNAs) comprise a set of abundant and functionally diverse RNA molecules. Since the discovery of the first ncRNA in the 1960s, ncRNAs have been shown to be involved in nearly all steps of the central dogma of molecular biology. In recent years, the pace of discovery of novel ncRNAs and their cellular roles has been greatly accelerated by high-throughput sequencing. Advances in sequencing technology, library preparation protocols as well as computational biology helped to greatly expand our knowledge of which ncRNAs exist throughout the kingdoms of life. Moreover, RNA sequencing revealed crucial roles of many ncRNAs in human health and disease. In this review, we discuss the most recent methodological advancements in the rapidly evolving field of high-throughput sequencing and how it has greatly expanded our understanding of ncRNA biology across a large number of different organisms.
Collapse
Affiliation(s)
| | | | - Damian Wollny
- RNA Bioinformatics/High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University, 07743 Jena, Germany; (J.M.); (A.S.)
| |
Collapse
|
52
|
Ide S, Sasaki A, Kawamoto Y, Bando T, Sugiyama H, Maeshima K. Telomere-specific chromatin capture using a pyrrole-imidazole polyamide probe for the identification of proteins and non-coding RNAs. Epigenetics Chromatin 2021; 14:46. [PMID: 34627342 PMCID: PMC8502363 DOI: 10.1186/s13072-021-00421-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022] Open
Abstract
Background Knowing chromatin components at a DNA regulatory element at any given time is essential for understanding how the element works during cellular proliferation, differentiation and development. A region-specific chromatin purification is an invaluable approach to dissecting the comprehensive chromatin composition at a particular region. Several methods (e.g., PICh, enChIP, CAPTURE and CLASP) have been developed for isolating and analyzing chromatin components. However, all of them have some shortcomings in identifying non-coding RNA associated with DNA regulatory elements. Results We have developed a new approach for affinity purification of specific chromatin segments employing an N-methyl pyrrole (P)-N-methylimidazole (I) (PI) polyamide probe, which binds to a specific sequence in double-stranded DNA via Watson–Crick base pairing as a minor groove binder. This new technique is called proteomics and RNA-omics of isolated chromatin segments (PI-PRICh). Using PI-PRICh to isolate mouse and human telomeric components, we found enrichments of shelterin proteins, the well-known telomerase RNA component (TERC) and telomeric repeat-containing RNA (TERRA). When PI-PRICh was performed for alternative lengthening of telomere (ALT) cells with highly recombinogenic telomeres, in addition to the conventional telomeric chromatin, we obtained chromatin regions containing telomeric repeat insertions scattered in the genome and their associated RNAs. Conclusion PI-PRICh reproducibly identified both the protein and RNA components of telomeric chromatin when targeting telomere repeats. PI polyamide is a promising alternative to simultaneously isolate associated proteins and RNAs of sequence-specific chromatin regions under native conditions, allowing better understanding of chromatin organization and functions within the cell. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00421-8.
Collapse
Affiliation(s)
- Satoru Ide
- Genome Dynamics Laboratory, National Institute of Genetics, ROIS, Mishima, Shizuoka, 411-8540, Japan. .,Department of Genetics, School of Life Science, SOKENDAI, Mishima, Shizuoka, 411-8540, Japan.
| | - Asuka Sasaki
- Genome Dynamics Laboratory, National Institute of Genetics, ROIS, Mishima, Shizuoka, 411-8540, Japan.,Department of Genetics, School of Life Science, SOKENDAI, Mishima, Shizuoka, 411-8540, Japan
| | - Yusuke Kawamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, ROIS, Mishima, Shizuoka, 411-8540, Japan.,Department of Genetics, School of Life Science, SOKENDAI, Mishima, Shizuoka, 411-8540, Japan
| |
Collapse
|
53
|
Li L, Luo H, Lim DH, Han L, Li Y, Fu XD, Qi Y. Global profiling of RNA-chromatin interactions reveals co-regulatory gene expression networks in Arabidopsis. NATURE PLANTS 2021; 7:1364-1378. [PMID: 34650265 DOI: 10.1038/s41477-021-01004-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
It is increasingly evident that various RNAs can bind chromatin to regulate gene expression and genome organization. Here we adapted a sequencing-based technique to profile RNA-chromatin interactions at a genome-wide scale in Arabidopsis seedlings. We identified more than 10,000 RNA-chromatin interactions mediated by protein-coding RNAs and non-coding RNAs. Cis and intra-chromosomal interactions are mainly mediated by protein-coding RNAs, whereas inter-chromosomal interactions are primarily mediated by non-coding RNAs. Many RNA-chromatin interactions tend to positively correlate with DNA-DNA interactions, suggesting their mutual influence and reinforcement. We further show that some RNA-chromatin interactions undergo alterations in response to biotic and abiotic stresses and that altered RNA-chromatin interactions form co-regulatory networks. Our study provides a global view on RNA-chromatin interactions in Arabidopsis and a rich resource for future investigations of regulatory roles of RNAs in gene expression and genome organization.
Collapse
Affiliation(s)
- Lanxia Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Haofei Luo
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Do-Hwan Lim
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Lu Han
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yan Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
54
|
Ogunleye AJ, Romanova E, Medvedeva YA. Genome-wide regulation of CpG methylation by ecCEBPα in acute myeloid leukemia. F1000Res 2021; 10:204. [PMID: 34557292 PMCID: PMC8444155 DOI: 10.12688/f1000research.28146.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Acute myeloid leukemia (AML) is a hematopoietic malignancy characterized by genetic and epigenetic aberrations that alter the differentiation capacity of myeloid progenitor cells. The transcription factor
CEBPα is frequently mutated in AML patients leading to an increase in DNA methylation in many genomic locations. Previously, it has been shown that
ecCEBPα (extra coding CEBP
α) - a lncRNA transcribed in the same direction as
CEBPα gene - regulates DNA methylation of
CEBPα promoter in
cis. Here, we hypothesize that
ecCEBPα could participate in the regulation of DNA methylation in
trans. Method: First, we retrieved the methylation profile of AML patients with mutated
CEBPα locus from The Cancer Genome Atlas (TCGA). We then predicted the
ecCEBPα secondary structure in order to check the potential of
ecCEBPα to form triplexes around CpG loci and checked if triplex formation influenced CpG methylation, genome-wide. Results: Using DNA methylation profiles of AML patients with a mutated
CEBPα locus, we show that
ecCEBPα could interact with DNA by forming DNA:RNA triple helices and protect regions near its binding sites from global DNA methylation. Further analysis revealed that triplex-forming oligonucleotides in
ecCEBPα are structurally unpaired supporting the DNA-binding potential of these regions.
ecCEBPα triplexes supported with the RNA-chromatin co-localization data are located in the promoters of leukemia-linked transcriptional factors such as MLF2. Discussion: Overall, these results suggest a novel regulatory mechanism for
ecCEBPα as a genome-wide epigenetic modulator through triple-helix formation which may provide a foundation for sequence-specific engineering of RNA for regulating methylation of specific genes.
Collapse
Affiliation(s)
- Adewale J Ogunleye
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russian Federation
| | - Ekaterina Romanova
- Research Center of Biotechnology, Institute of Bioengineering, Russian Academy of Sciences, Moscow, Russian Federation
| | - Yulia A Medvedeva
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russian Federation.,Research Center of Biotechnology, Institute of Bioengineering, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
55
|
Zhao Y, Liu X, Xiao K, Wang L, Li Y, Kan M, Jiang Z. Clinicopathological value of long non-coding RNA profiles in gastrointestinal stromal tumor. PeerJ 2021; 9:e11946. [PMID: 34557343 PMCID: PMC8420874 DOI: 10.7717/peerj.11946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) have been implicated in diagnosis and prognosis in various cancers. However, few lncRNA signatures have been established for prediction of gastrointestinal stromal tumors (GIST). We aimed to explore a lncRNA signature profile that associated with clinical relevance by mining data from Gene Expression Ominus (GEO) and Surveillance, Epidemiology, and End Results (SEER) Program. Methods Using a lncRNA-mining approach, we performed non-negative matrix factorization (NMF) consensus algorithm in Gastrointestinal stromal tumors (GISTs) cohorts (61 patients from GSE8167 and GSE17743) to cluster LncRNA expression profiles. Comparative markers selection, and Gene Set Enrichment Analysis (GSEA) algorithm were performed between distinct molecular subtypes of GIST. The survival rate of GIST patients from SEER stratified by gender were compared by Kaplan-Meier method and log-rank analysis. lncRNA-mRNA co-expression analysis was performed by Pearson correlation coefficients (PCC) using R package LINC. Somatic copy number alterations of GIST patients (GSE40966) were analyzed via web server GenePattern GISTIC2 algorithm. Results A total of four lncRNA molecular subtypes of GIST were identified with distinct biological pathways and clinical characteristics. LncRNA expression profiles well clustered the GIST samples into small size (<5 mm) and large size tumors (>5 mm), which is a fundamental index for GIST malignancy diagnosis. Several lncRNAs with abundant expression (LRRC75A-AS1, HYMAI, NEAT1, XIST and FTX) were closely associated with tumor size, which may suggest to be biomarkers for the GIST malignancy. Particularly, LRRC75A-AS1 was positively associated with tumor diameters and suggested an oncogene in GIST. Co-expression analysis suggested that chromosome region 17p11.2-p12 may contribute to the oncogenic process in malignant GIST. Interestingly, the gender had a strong influence on clustering by lncRNA expression profile. Data from the Surveillance, Epidemiology, and End Results (SEER) Program were further explored and 7983 patients who were diagnosed with GISTs from 1973 to 2014 were enrolled for analysis. The results also showed the favorable prognosis for female patients. The survival rate between male and female with GIST was statistically significant (P < 0.0001). Gene set enrichment analysis (GSEA) indicated distinct pathways between female and male, and malignant GIST was associated with several cancer metabolism and cell cycle associated pathways. Conclusions This lncRNAs-based classification for GISTs may provide a molecular classification applicable to individual GIST that has implications to influence lncRNA markers selection and prediction of tumor progression.
Collapse
Affiliation(s)
- Yan Zhao
- Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu Province, China
| | - Xinxin Liu
- Department of Gastrointestinal Surgery, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Keshuai Xiao
- Department of General Surgery, Yangzhou Hongquan Hospital, Yangzhou, Jiangsu Province, China
| | - Liwen Wang
- Department of Gastrointestinal Surgery, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Yuping Li
- Department of Gastrointestinal Surgery, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Mingyun Kan
- Department of Gastrointestinal Surgery, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Zhiwei Jiang
- Department of Gastrointestinal Surgery, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| |
Collapse
|
56
|
Bylino OV, Ibragimov AN, Pravednikova AE, Shidlovskii YV. Investigation of the Basic Steps in the Chromosome Conformation Capture Procedure. Front Genet 2021; 12:733937. [PMID: 34616432 PMCID: PMC8488379 DOI: 10.3389/fgene.2021.733937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/16/2021] [Indexed: 12/05/2022] Open
Abstract
A constellation of chromosome conformation capture methods (С-methods) are an important tool for biochemical analysis of the spatial interactions between DNA regions that are separated in the primary sequence. All these methods are based on the long sequence of basic steps of treating cells, nuclei, chromatin, and finally DNA, thus representing a significant technical challenge. Here, we present an in-depth study of the basic steps in the chromatin conformation capture procedure (3С), which was performed using Drosophila Schneider 2 cells as a model. We investigated the steps of cell lysis, nuclei washing, nucleoplasm extraction, chromatin treatment with SDS/Triton X-100, restriction enzyme digestion, chromatin ligation, reversion of cross-links, DNA extraction, treatment of a 3C library with RNases, and purification of the 3C library. Several options were studied, and optimal conditions were found. Our work contributes to the understanding of the 3C basic steps and provides a useful guide to the 3C procedure.
Collapse
Affiliation(s)
- Oleg V. Bylino
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Airat N. Ibragimov
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna E. Pravednikova
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Yulii V. Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
57
|
Subramaniam N, Nair R, Marsden PA. Epigenetic Regulation of the Vascular Endothelium by Angiogenic LncRNAs. Front Genet 2021; 12:668313. [PMID: 34512715 PMCID: PMC8427604 DOI: 10.3389/fgene.2021.668313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022] Open
Abstract
The functional properties of the vascular endothelium are diverse and heterogeneous between vascular beds. This is especially evident when new blood vessels develop from a pre-existing closed cardiovascular system, a process termed angiogenesis. Endothelial cells are key drivers of angiogenesis as they undergo a highly choreographed cascade of events that has both exogenous (e.g., hypoxia and VEGF) and endogenous regulatory inputs. Not surprisingly, angiogenesis is critical in health and disease. Diverse therapeutics target proteins involved in coordinating angiogenesis with varying degrees of efficacy. It is of great interest that recent work on non-coding RNAs, especially long non-coding RNAs (lncRNAs), indicates that they are also important regulators of the gene expression paradigms that underpin this cellular cascade. The protean effects of lncRNAs are dependent, in part, on their subcellular localization. For instance, lncRNAs enriched in the nucleus can act as epigenetic modifiers of gene expression in the vascular endothelium. Of great interest to genetic disease, they are undergoing rapid evolution and show extensive inter- and intra-species heterogeneity. In this review, we describe endothelial-enriched lncRNAs that have robust effects in angiogenesis.
Collapse
Affiliation(s)
- Noeline Subramaniam
- Marsden Lab, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Marsden Lab, Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
| | - Ranju Nair
- Marsden Lab, Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
- Marsden Lab, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Philip A. Marsden
- Marsden Lab, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Marsden Lab, Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
- Marsden Lab, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
58
|
Lange M, Begolli R, Giakountis A. Non-Coding Variants in Cancer: Mechanistic Insights and Clinical Potential for Personalized Medicine. Noncoding RNA 2021; 7:47. [PMID: 34449663 PMCID: PMC8395730 DOI: 10.3390/ncrna7030047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 12/11/2022] Open
Abstract
The cancer genome is characterized by extensive variability, in the form of Single Nucleotide Polymorphisms (SNPs) or structural variations such as Copy Number Alterations (CNAs) across wider genomic areas. At the molecular level, most SNPs and/or CNAs reside in non-coding sequences, ultimately affecting the regulation of oncogenes and/or tumor-suppressors in a cancer-specific manner. Notably, inherited non-coding variants can predispose for cancer decades prior to disease onset. Furthermore, accumulation of additional non-coding driver mutations during progression of the disease, gives rise to genomic instability, acting as the driving force of neoplastic development and malignant evolution. Therefore, detection and characterization of such mutations can improve risk assessment for healthy carriers and expand the diagnostic and therapeutic toolbox for the patient. This review focuses on functional variants that reside in transcribed or not transcribed non-coding regions of the cancer genome and presents a collection of appropriate state-of-the-art methodologies to study them.
Collapse
Affiliation(s)
- Marios Lange
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (M.L.); (R.B.)
| | - Rodiola Begolli
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (M.L.); (R.B.)
| | - Antonis Giakountis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (M.L.); (R.B.)
- Institute for Fundamental Biomedical Research, B.S.R.C “Alexander Fleming”, 34 Fleming Str., 16672 Vari, Greece
| |
Collapse
|
59
|
Razin SV, Gavrilov AA. Non-coding RNAs in chromatin folding and nuclear organization. Cell Mol Life Sci 2021; 78:5489-5504. [PMID: 34117518 PMCID: PMC11072467 DOI: 10.1007/s00018-021-03876-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/24/2021] [Accepted: 06/05/2021] [Indexed: 12/19/2022]
Abstract
One of the most intriguing questions facing modern biology concerns how the genome directs the construction of cells, tissues, and whole organisms. It is tempting to suggest that the part of the genome that does not encode proteins contains architectural plans. We are still far from understanding how these plans work at the level of building tissues and the body as a whole. However, the results of recent studies demonstrate that at the cellular level, special non-coding RNAs serve as scaffolds for the construction of various intracellular structures. The term "architectural RNAs" was proposed to designate this subset of non-coding RNAs. In this review, we discuss the role of architectural RNAs in the construction of the cell nucleus and maintenance of the three-dimensional organization of the genome.
Collapse
Affiliation(s)
- Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia.
- Faculty of Biology, M. V. Lomonosov Moscow State University, 119234, Moscow, Russia.
| | - Alexey A Gavrilov
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| |
Collapse
|
60
|
Decoding LncRNAs. Cancers (Basel) 2021; 13:cancers13112643. [PMID: 34072257 PMCID: PMC8199187 DOI: 10.3390/cancers13112643] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
Non-coding RNAs (ncRNAs) have been considered as unimportant additions to the transcriptome. Yet, in light of numerous studies, it has become clear that ncRNAs play important roles in development, health and disease. Long-ignored, long non-coding RNAs (lncRNAs), ncRNAs made of more than 200 nucleotides have gained attention due to their involvement as drivers or suppressors of a myriad of tumours. The detailed understanding of some of their functions, structures and interactomes has been the result of interdisciplinary efforts, as in many cases, new methods need to be created or adapted to characterise these molecules. Unlike most reviews on lncRNAs, we summarize the achievements on lncRNA studies by taking into consideration the approaches for identification of lncRNA functions, interactomes, and structural arrangements. We also provide information about the recent data on the involvement of lncRNAs in diseases and present applications of these molecules, especially in medicine.
Collapse
|
61
|
Cao H, Xu D, Cai Y, Han X, Tang L, Gao F, Qi Y, Cai D, Wang H, Ri M, Antonets D, Vyatkin Y, Chen Y, You X, Wang F, Nicolas E, Kapranov P. Very long intergenic non-coding (vlinc) RNAs directly regulate multiple genes in cis and trans. BMC Biol 2021; 19:108. [PMID: 34016118 PMCID: PMC8139166 DOI: 10.1186/s12915-021-01044-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/01/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The majority of the human genome is transcribed in the form of long non-coding (lnc) RNAs. While these transcripts have attracted considerable interest, their molecular mechanisms of function and biological significance remain controversial. One of the main reasons behind this lies in the significant challenges posed by lncRNAs requiring the development of novel methods and concepts to unravel their functionality. Existing methods often lack cross-validation and independent confirmation by different methodologies and therefore leave significant ambiguity as to the authenticity of the outcomes. Nonetheless, despite all the caveats, it appears that lncRNAs may function, at least in part, by regulating other genes via chromatin interactions. Therefore, the function of a lncRNA could be inferred from the function of genes it regulates. In this work, we present a genome-wide functional annotation strategy for lncRNAs based on identification of their regulatory networks via the integration of three distinct types of approaches: co-expression analysis, mapping of lncRNA-chromatin interactions, and assaying molecular effects of lncRNA knockdowns obtained using an inducible and highly specific CRISPR/Cas13 system. RESULTS We applied the strategy to annotate 407 very long intergenic non-coding (vlinc) RNAs belonging to a novel widespread subclass of lncRNAs. We show that vlincRNAs indeed appear to regulate multiple genes encoding proteins predominantly involved in RNA- and development-related functions, cell cycle, and cellular adhesion via a mechanism involving proximity between vlincRNAs and their targets in the nucleus. A typical vlincRNAs can be both a positive and negative regulator and regulate multiple genes both in trans and cis. Finally, we show vlincRNAs and their regulatory networks potentially represent novel components of DNA damage response and are functionally important for the ability of cancer cells to survive genotoxic stress. CONCLUSIONS This study provides strong evidence for the regulatory role of the vlincRNA class of lncRNAs and a potentially important role played by these transcripts in the hidden layer of RNA-based regulation in complex biological systems.
Collapse
Affiliation(s)
- Huifen Cao
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Dongyang Xu
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Ye Cai
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Xueer Han
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Lu Tang
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Fan Gao
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Yao Qi
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - DingDing Cai
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Huifang Wang
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Maxim Ri
- AcademGene Ltd., 6, Acad. Lavrentjev ave, Novosibirsk, 630090, Russia
| | - Denis Antonets
- AcademGene Ltd., 6, Acad. Lavrentjev ave, Novosibirsk, 630090, Russia
- SRC VB "Vector" Rospotrebnadzor, Novosibirsk, Koltsovo, 630559, Russia
| | - Yuri Vyatkin
- AcademGene Ltd., 6, Acad. Lavrentjev ave, Novosibirsk, 630090, Russia
| | - Yue Chen
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Xiang You
- School of Medicine, Xiamen University, Xiang'an Southern Road, Xiamen, 361102, China
| | - Fang Wang
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Estelle Nicolas
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Philipp Kapranov
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China.
| |
Collapse
|
62
|
Liu S, Zhao K. The Toolbox for Untangling Chromosome Architecture in Immune Cells. Front Immunol 2021; 12:670884. [PMID: 33995409 PMCID: PMC8120992 DOI: 10.3389/fimmu.2021.670884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
The code of life is not only encrypted in the sequence of DNA but also in the way it is organized into chromosomes. Chromosome architecture is gradually being recognized as an important player in regulating cell activities (e.g., controlling spatiotemporal gene expression). In the past decade, the toolbox for elucidating genome structure has been expanding, providing an opportunity to explore this under charted territory. In this review, we will introduce the recent advancements in approaches for mapping spatial organization of the genome, emphasizing applications of these techniques to immune cells, and trying to bridge chromosome structure with immune cell activities.
Collapse
Affiliation(s)
- Shuai Liu
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, United States
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, United States
| |
Collapse
|
63
|
Hennessy EJ, FitzGerald GA. Battle for supremacy: nucleic acid interactions between viruses and cells. J Clin Invest 2021; 131:144227. [PMID: 33290272 PMCID: PMC7843224 DOI: 10.1172/jci144227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Since the COVID-19 pandemic swept across the globe, researchers have been trying to understand its origin, life cycle, and pathogenesis. There is a striking variability in the phenotypic response to infection with SARS-CoV-2 that may reflect differences in host genetics and/or immune response. It is known that the human epigenome is influenced by ethnicity, age, lifestyle, and environmental factors, including previous viral infections. This Review examines the influence of viruses on the host epigenome. We describe general lessons and methodologies that can be used to understand how the virus evades the host immune response. We consider how variation in the epigenome may contribute to heterogeneity in the response to SARS-CoV-2 and may identify a precision medicine approach to treatment.
Collapse
|
64
|
Ramírez-Colmenero A, Oktaba K, Fernandez-Valverde SL. Evolution of Genome-Organizing Long Non-coding RNAs in Metazoans. Front Genet 2020; 11:589697. [PMID: 33329735 PMCID: PMC7734150 DOI: 10.3389/fgene.2020.589697] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/09/2020] [Indexed: 12/28/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have important regulatory functions across eukarya. It is now clear that many of these functions are related to gene expression regulation through their capacity to recruit epigenetic modifiers and establish chromatin interactions. Several lncRNAs have been recently shown to participate in modulating chromatin within the spatial organization of the genome in the three-dimensional space of the nucleus. The identification of lncRNA candidates is challenging, as it is their functional characterization. Conservation signatures of lncRNAs are different from those of protein-coding genes, making identifying lncRNAs under selection a difficult task, and the homology between lncRNAs may not be readily apparent. Here, we review the evidence for these higher-order genome organization functions of lncRNAs in animals and the evolutionary signatures they display.
Collapse
Affiliation(s)
- América Ramírez-Colmenero
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, México
| | - Katarzyna Oktaba
- Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, México
| | - Selene L Fernandez-Valverde
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, México
| |
Collapse
|
65
|
Pinkney HR, Wright BM, Diermeier SD. The lncRNA Toolkit: Databases and In Silico Tools for lncRNA Analysis. Noncoding RNA 2020; 6:E49. [PMID: 33339309 PMCID: PMC7768357 DOI: 10.3390/ncrna6040049] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a rapidly expanding field of research, with many new transcripts identified each year. However, only a small subset of lncRNAs has been characterized functionally thus far. To aid investigating the mechanisms of action by which new lncRNAs act, bioinformatic tools and databases are invaluable. Here, we review a selection of computational tools and databases for the in silico analysis of lncRNAs, including tissue-specific expression, protein coding potential, subcellular localization, structural conformation, and interaction partners. The assembled lncRNA toolkit is aimed primarily at experimental researchers as a useful starting point to guide wet-lab experiments, mainly containing multi-functional, user-friendly interfaces. With more and more new lncRNA analysis tools available, it will be essential to provide continuous updates and maintain the availability of key software in the future.
Collapse
Affiliation(s)
| | | | - Sarah D. Diermeier
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand; (H.R.P.); (B.M.W.)
| |
Collapse
|
66
|
Antonov I, Medvedeva Y. Direct Interactions with Nascent Transcripts Is Potentially a Common Targeting Mechanism of Long Non-Coding RNAs. Genes (Basel) 2020; 11:genes11121483. [PMID: 33321875 PMCID: PMC7764144 DOI: 10.3390/genes11121483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 11/16/2022] Open
Abstract
Although thousands of mammalian long non-coding RNAs (lncRNAs) have been reported in the last decade, their functional annotation remains limited. A wet-lab approach to detect functions of a novel lncRNA usually includes its knockdown followed by RNA sequencing and identification of the deferentially expressed genes. However, identification of the molecular mechanism(s) used by the lncRNA to regulate its targets frequently becomes a challenge. Previously, we developed the ASSA algorithm that detects statistically significant inter-molecular RNA-RNA interactions. Here we designed a workflow that uses ASSA predictions to estimate the ability of an lncRNA to function via direct base pairing with the target transcripts (co- or post-transcriptionally). The workflow was applied to 300+ lncRNA knockdown experiments from the FANTOM6 pilot project producing statistically significant predictions for 71 unique lncRNAs (104 knockdowns). Surprisingly, the majority of these lncRNAs were likely to function co-transcriptionally, i.e., hybridize with the nascent transcripts of the target genes. Moreover, a number of the obtained predictions were supported by independent iMARGI experimental data on co-localization of lncRNA and chromatin. We detected an evolutionarily conserved lncRNA CHASERR (AC013394.2 or LINC01578) that could regulate target genes co-transcriptionally via interaction with a nascent transcript by directing CHD2 helicase. The obtained results suggested that this nuclear lncRNA may be able to activate expression of the target genes in trans by base-pairing with the nascent transcripts and directing the CHD2 helicase to the regulated promoters leading to open the chromatin and active transcription. Our study highlights the possible importance of base-pairing between nuclear lncRNAs and nascent transcripts for the regulation of gene expression.
Collapse
Affiliation(s)
- Ivan Antonov
- Research Center of Biotechnology, Institute of Bioengineering, Russian Academy of Science, 119071 Moscow, Russia;
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, 141701 Moscow Region, Russia
| | - Yulia Medvedeva
- Research Center of Biotechnology, Institute of Bioengineering, Russian Academy of Science, 119071 Moscow, Russia;
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, 141701 Moscow Region, Russia
- Correspondence:
| |
Collapse
|
67
|
Grosch M, Ittermann S, Shaposhnikov D, Drukker M. Chromatin-Associated Membraneless Organelles in Regulation of Cellular Differentiation. Stem Cell Reports 2020; 15:1220-1232. [PMID: 33217325 PMCID: PMC7724471 DOI: 10.1016/j.stemcr.2020.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Membrane-free intracellular biocondensates are enclosures of proteins and nucleic acids that form by phase separation. Extensive ensembles of nuclear "membraneless organelles" indicate their involvement in genome regulation. Indeed, nuclear bodies have been linked to regulation of gene expression by formation of condensates made of chromatin and RNA processing factors. Important questions pertain to the involvement of membraneless organelles in determining cell identity through their cell-type-specific composition and function. Paraspeckles provide a prism to these questions because they exhibit striking cell-type-specific patterns and since they are crucial in embryogenesis. Here, we outline known interactions between paraspeckles and chromatin, and postulate how such interactions may be important in regulation of cell fate transitions. Moreover, we propose long non-coding RNAs (lncRNAs) as candidates for similar regulation because many form foci that resemble biocondensates and exhibit dynamic patterns during differentiation. Finally, we outline approaches that could ascertain how chromatin-associated membraneless organelles regulate cellular differentiation.
Collapse
Affiliation(s)
- Markus Grosch
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Sebastian Ittermann
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Dmitry Shaposhnikov
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Micha Drukker
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany; Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Gorlaeus Building, Einsteinweg 55, 2333 CC RA Leiden, The Netherlands.
| |
Collapse
|
68
|
Ouyang W, Xiong D, Li G, Li X. Unraveling the 3D Genome Architecture in Plants: Present and Future. MOLECULAR PLANT 2020; 13:1676-1693. [PMID: 33065269 DOI: 10.1016/j.molp.2020.10.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/09/2020] [Accepted: 10/08/2020] [Indexed: 05/02/2023]
Abstract
The eukaryotic genome has a hierarchical three-dimensional (3D) organization with functional implications for DNA replication, DNA repair, and transcriptional regulation. Over the past decade, scientists have endeavored to elucidate the spatial characteristics and functions of plant genome architecture using high-throughput chromatin conformation capturing technologies such as Hi-C, ChIA-PET, and HiChIP. Here, we systematically review current understanding of chromatin organization in plants at multiple scales. We also discuss the emerging opinions and concepts in 3D genome research, focusing on state-of-the-art 3D genome techniques, RNA-chromatin interactions, liquid-liquid phase separation, and dynamic chromatin alterations. We propose the application of single-cell/single-molecule multi-omics, multiway (DNA-DNA, DNA-RNA, and RNA-RNA interactions) chromatin conformation capturing methods, and proximity ligation-independent 3D genome-mapping technologies to explore chromatin organization structure and function in plants. Such methods could reveal the spatial interactions between trait-related SNPs and their target genes at various spatiotemporal resolutions, and elucidate the molecular mechanisms of the interactions among DNA elements, RNA molecules, and protein factors during the formation of key traits in plants.
Collapse
Affiliation(s)
- Weizhi Ouyang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Dan Xiong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
69
|
Stress-induced RNA-chromatin interactions promote endothelial dysfunction. Nat Commun 2020; 11:5211. [PMID: 33060583 PMCID: PMC7566596 DOI: 10.1038/s41467-020-18957-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/11/2020] [Indexed: 01/06/2023] Open
Abstract
Chromatin-associated RNA (caRNA) has been proposed as a type of epigenomic modifier. Here, we test whether environmental stress can induce cellular dysfunction through modulating RNA-chromatin interactions. We induce endothelial cell (EC) dysfunction with high glucose and TNFα (H + T), that mimic the common stress in diabetes mellitus. We characterize the H + T-induced changes in gene expression by single cell (sc)RNA-seq, DNA interactions by Hi-C, and RNA-chromatin interactions by iMARGI. H + T induce inter-chromosomal RNA-chromatin interactions, particularly among the super enhancers. To test the causal relationship between H + T-induced RNA-chromatin interactions and the expression of EC dysfunction-related genes, we suppress the LINC00607 RNA. This suppression attenuates the expression of SERPINE1, a critical pro-inflammatory and pro-fibrotic gene. Furthermore, the changes of the co-expression gene network between diabetic and healthy donor-derived ECs corroborate the H + T-induced RNA-chromatin interactions. Taken together, caRNA-mediated dysregulation of gene expression modulates EC dysfunction, a crucial mechanism underlying numerous diseases. Global interaction of chromatin-associated RNAs and DNA can be identified in situ. Here the authors report the genome-wide increase of interchromosomal RNA-DNA interactions and demonstrate the importance of such RNA-DNA contacts exemplified by LINC00607 RNA and SERPINE1 gene’s super enhancer in dysfunctional endothelial cell models.
Collapse
|
70
|
Ouyang W, Cao Z, Xiong D, Li G, Li X. Decoding the plant genome: From epigenome to 3D organization. J Genet Genomics 2020; 47:425-435. [PMID: 33023833 DOI: 10.1016/j.jgg.2020.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 12/25/2022]
Abstract
The linear genome of eukaryotes is partitioned into diverse chromatin states and packaged into a three-dimensional (3D) structure, which has functional implications in DNA replication, DNA repair, and transcriptional regulation. Over the past decades, research on plant functional genomics and epigenomics has made great progress, with thousands of genes cloned and molecular mechanisms of diverse biological processes elucidated. Recently, 3D genome research has gradually attracted great attention of many plant researchers. Herein, we briefly review the progress in genomic and epigenomic research in plants, with a focus on Arabidopsis and rice, and summarize the currently used technologies and advances in plant 3D genome organization studies. We also discuss the relationships between one-dimensional linear genome sequences, epigenomic states, and the 3D chromatin architecture. This review provides basis for future research on plant 3D genomics.
Collapse
Affiliation(s)
- Weizhi Ouyang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhilin Cao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China; Department of Resources and Environment, Henan University of Engineering, Zhengzhou, 451191, China
| | - Dan Xiong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
71
|
Kantidze OL, Razin SV. Weak interactions in higher-order chromatin organization. Nucleic Acids Res 2020; 48:4614-4626. [PMID: 32313950 PMCID: PMC7229822 DOI: 10.1093/nar/gkaa261] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
The detailed principles of the hierarchical folding of eukaryotic chromosomes have been revealed during the last two decades. Along with structures composing three-dimensional (3D) genome organization (chromatin compartments, topologically associating domains, chromatin loops, etc.), the molecular mechanisms that are involved in their establishment and maintenance have been characterized. Generally, protein-protein and protein-DNA interactions underlie the spatial genome organization in eukaryotes. However, it is becoming increasingly evident that weak interactions, which exist in biological systems, also contribute to the 3D genome. Here, we provide a snapshot of our current understanding of the role of the weak interactions in the establishment and maintenance of the 3D genome organization. We discuss how weak biological forces, such as entropic forces operating in crowded solutions, electrostatic interactions of the biomolecules, liquid-liquid phase separation, DNA supercoiling, and RNA environment participate in chromosome segregation into structural and functional units and drive intranuclear functional compartmentalization.
Collapse
Affiliation(s)
- Omar L Kantidze
- Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Sergey V Razin
- Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
72
|
Gavrilov AA, Zharikova AA, Galitsyna AA, Luzhin A, Rubanova NM, Golov AK, Petrova NV, Logacheva M, Kantidze OL, Ulianov SV, Magnitov MD, Mironov AA, Razin SV. Studying RNA-DNA interactome by Red-C identifies noncoding RNAs associated with various chromatin types and reveals transcription dynamics. Nucleic Acids Res 2020; 48:6699-6714. [PMID: 32479626 PMCID: PMC7337940 DOI: 10.1093/nar/gkaa457] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022] Open
Abstract
Non-coding RNAs (ncRNAs) participate in various biological processes, including regulating transcription and sustaining genome 3D organization. Here, we present a method termed Red-C that exploits proximity ligation to identify contacts with the genome for all RNA molecules present in the nucleus. Using Red-C, we uncovered the RNA-DNA interactome of human K562 cells and identified hundreds of ncRNAs enriched in active or repressed chromatin, including previously undescribed RNAs. Analysis of the RNA-DNA interactome also allowed us to trace the kinetics of messenger RNA production. Our data support the model of co-transcriptional intron splicing, but not the hypothesis of the circularization of actively transcribed genes.
Collapse
Affiliation(s)
- Alexey A Gavrilov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anastasiya A Zharikova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- National Medical Research Center for Preventive Medicine, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Aleksandra A Galitsyna
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - Artem V Luzhin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Arkadiy K Golov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Mental Health Research Center, Moscow, Russia
| | | | | | - Omar L Kantidze
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergey V Ulianov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail D Magnitov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey A Mironov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Faculty of Computer Science, Higher School of Economics, Moscow, Russia
| | - Sergey V Razin
- To whom correspondence should be addressed. Tel: +7 499 135 3092; Fax: +7 499 135 4105;
| |
Collapse
|
73
|
Fort V, Khelifi G, Hussein SMI. Long non-coding RNAs and transposable elements: A functional relationship. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118837. [PMID: 32882261 DOI: 10.1016/j.bbamcr.2020.118837] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/29/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022]
Abstract
Long non-coding RNAs (lncRNAs) have become increasingly important in the past decade. They are known to regulate gene expression and to interact with chromatin, proteins and other coding and non-coding RNAs. The study of lncRNAs has been challenging due to their low expression and the lack of tools developed to adapt to their particular features. Studies on lncRNAs performed to date have largely focused on cellular functions, whereas details on the mechanism of action has only been thoroughly investigated for a small number of lncRNAs. Nevertheless, some studies have highlighted the potential of these transcripts to contain functional domains, following the same accepted trend as proteins. Interestingly, many of these identified "domains" are attributed to functional units derived from transposable elements. Here, we review several types of functions of lncRNAs and relate these functions to lncRNA-embedded transposable elements.
Collapse
Affiliation(s)
- Victoire Fort
- Laval University Cancer Research Centre, Canada; Research Center of the CHU of Québec, Laval University, Québec G1R 3S3, Canada
| | - Gabriel Khelifi
- Laval University Cancer Research Centre, Canada; Research Center of the CHU of Québec, Laval University, Québec G1R 3S3, Canada
| | - Samer M I Hussein
- Laval University Cancer Research Centre, Canada; Research Center of the CHU of Québec, Laval University, Québec G1R 3S3, Canada.
| |
Collapse
|
74
|
Ramilowski JA, Yip CW, Agrawal S, Chang JC, Ciani Y, Kulakovskiy IV, Mendez M, Ooi JLC, Ouyang JF, Parkinson N, Petri A, Roos L, Severin J, Yasuzawa K, Abugessaisa I, Akalin A, Antonov IV, Arner E, Bonetti A, Bono H, Borsari B, Brombacher F, Cameron CJF, Cannistraci CV, Cardenas R, Cardon M, Chang H, Dostie J, Ducoli L, Favorov A, Fort A, Garrido D, Gil N, Gimenez J, Guler R, Handoko L, Harshbarger J, Hasegawa A, Hasegawa Y, Hashimoto K, Hayatsu N, Heutink P, Hirose T, Imada EL, Itoh M, Kaczkowski B, Kanhere A, Kawabata E, Kawaji H, Kawashima T, Kelly ST, Kojima M, Kondo N, Koseki H, Kouno T, Kratz A, Kurowska-Stolarska M, Kwon ATJ, Leek J, Lennartsson A, Lizio M, López-Redondo F, Luginbühl J, Maeda S, Makeev VJ, Marchionni L, Medvedeva YA, Minoda A, Müller F, Muñoz-Aguirre M, Murata M, Nishiyori H, Nitta KR, Noguchi S, Noro Y, Nurtdinov R, Okazaki Y, Orlando V, Paquette D, Parr CJC, Rackham OJL, Rizzu P, Sánchez Martinez DF, Sandelin A, Sanjana P, Semple CAM, Shibayama Y, Sivaraman DM, Suzuki T, Szumowski SC, Tagami M, Taylor MS, Terao C, Thodberg M, Thongjuea S, Tripathi V, Ulitsky I, Verardo R, Vorontsov IE, Yamamoto C, et alRamilowski JA, Yip CW, Agrawal S, Chang JC, Ciani Y, Kulakovskiy IV, Mendez M, Ooi JLC, Ouyang JF, Parkinson N, Petri A, Roos L, Severin J, Yasuzawa K, Abugessaisa I, Akalin A, Antonov IV, Arner E, Bonetti A, Bono H, Borsari B, Brombacher F, Cameron CJF, Cannistraci CV, Cardenas R, Cardon M, Chang H, Dostie J, Ducoli L, Favorov A, Fort A, Garrido D, Gil N, Gimenez J, Guler R, Handoko L, Harshbarger J, Hasegawa A, Hasegawa Y, Hashimoto K, Hayatsu N, Heutink P, Hirose T, Imada EL, Itoh M, Kaczkowski B, Kanhere A, Kawabata E, Kawaji H, Kawashima T, Kelly ST, Kojima M, Kondo N, Koseki H, Kouno T, Kratz A, Kurowska-Stolarska M, Kwon ATJ, Leek J, Lennartsson A, Lizio M, López-Redondo F, Luginbühl J, Maeda S, Makeev VJ, Marchionni L, Medvedeva YA, Minoda A, Müller F, Muñoz-Aguirre M, Murata M, Nishiyori H, Nitta KR, Noguchi S, Noro Y, Nurtdinov R, Okazaki Y, Orlando V, Paquette D, Parr CJC, Rackham OJL, Rizzu P, Sánchez Martinez DF, Sandelin A, Sanjana P, Semple CAM, Shibayama Y, Sivaraman DM, Suzuki T, Szumowski SC, Tagami M, Taylor MS, Terao C, Thodberg M, Thongjuea S, Tripathi V, Ulitsky I, Verardo R, Vorontsov IE, Yamamoto C, Young RS, Baillie JK, Forrest ARR, Guigó R, Hoffman MM, Hon CC, Kasukawa T, Kauppinen S, Kere J, Lenhard B, Schneider C, Suzuki H, Yagi K, de Hoon MJL, Shin JW, Carninci P. Functional annotation of human long noncoding RNAs via molecular phenotyping. Genome Res 2020; 30:1060-1072. [PMID: 32718982 PMCID: PMC7397864 DOI: 10.1101/gr.254219.119] [Show More Authors] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 06/24/2020] [Indexed: 12/12/2022]
Abstract
Long noncoding RNAs (lncRNAs) constitute the majority of transcripts in the mammalian genomes, and yet, their functions remain largely unknown. As part of the FANTOM6 project, we systematically knocked down the expression of 285 lncRNAs in human dermal fibroblasts and quantified cellular growth, morphological changes, and transcriptomic responses using Capped Analysis of Gene Expression (CAGE). Antisense oligonucleotides targeting the same lncRNAs exhibited global concordance, and the molecular phenotype, measured by CAGE, recapitulated the observed cellular phenotypes while providing additional insights on the affected genes and pathways. Here, we disseminate the largest-to-date lncRNA knockdown data set with molecular phenotyping (over 1000 CAGE deep-sequencing libraries) for further exploration and highlight functional roles for ZNF213-AS1 and lnc-KHDC3L-2.
Collapse
Affiliation(s)
- Jordan A Ramilowski
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Chi Wai Yip
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Saumya Agrawal
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Jen-Chien Chang
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Yari Ciani
- Laboratorio Nazionale Consorzio Interuniversitario Biotecnologie (CIB), Trieste 34127, Italy
| | - Ivan V Kulakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.,Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Mickaël Mendez
- Department of Computer Science, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | | | - John F Ouyang
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Nick Parkinson
- Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, United Kingdom
| | - Andreas Petri
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen 9220, Denmark
| | - Leonie Roos
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom.,Computational Regulatory Genomics, MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom
| | - Jessica Severin
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Kayoko Yasuzawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Imad Abugessaisa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Altuna Akalin
- Berlin Institute for Medical Systems Biology, Max Delbrük Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Ivan V Antonov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 117312, Russia
| | - Erik Arner
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Alessandro Bonetti
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Hidemasa Bono
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima City 739-0046, Japan
| | - Beatrice Borsari
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08003, Spain
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), University of Cape Town, Cape Town 7925, South Africa.,Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Christopher JF Cameron
- School of Computer Science, McGill University, Montréal, Québec H3G 1Y6, Canada.,Department of Biochemistry, Rosalind and Morris Goodman Cancer Research Center, McGill University, Montréal, Québec H3G 1Y6, Canada.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510, USA
| | - Carlo Vittorio Cannistraci
- Biomedical Cybernetics Group, Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Center for Systems Biology Dresden (CSBD), Cluster of Excellence Physics of Life (PoL), Department of Physics, Technische Universität Dresden, Dresden 01062, Germany.,Center for Complex Network Intelligence (CCNI) at the Tsinghua Laboratory of Brain and Intelligence (THBI), Department of Bioengineering, Tsinghua University, Beijing 100084, China
| | - Ryan Cardenas
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Melissa Cardon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Howard Chang
- Center for Personal Dynamic Regulome, Stanford University, Stanford, California 94305, USA
| | - Josée Dostie
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Research Center, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Luca Ducoli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, Zurich 8093, Switzerland
| | - Alexander Favorov
- Department of Computational Systems Biology, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia.,Department of Oncology, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Alexandre Fort
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Diego Garrido
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08003, Spain
| | - Noa Gil
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Juliette Gimenez
- Epigenetics and Genome Reprogramming Laboratory, IRCCS Fondazione Santa Lucia, Rome 00179, Italy
| | - Reto Guler
- International Centre for Genetic Engineering and Biotechnology (ICGEB), University of Cape Town, Cape Town 7925, South Africa.,Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Lusy Handoko
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Jayson Harshbarger
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Akira Hasegawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Yuki Hasegawa
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Kosuke Hashimoto
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Norihito Hayatsu
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Peter Heutink
- Genome Biology of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Tübingen 72076, Germany
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Eddie L Imada
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Masayoshi Itoh
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Preventive Medicine and Diagnosis Innovation Program (PMI), Saitama 351-0198, Japan
| | - Bogumil Kaczkowski
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Aditi Kanhere
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Emily Kawabata
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Hideya Kawaji
- RIKEN Preventive Medicine and Diagnosis Innovation Program (PMI), Saitama 351-0198, Japan
| | - Tsugumi Kawashima
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - S Thomas Kelly
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Miki Kojima
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Naoto Kondo
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Haruhiko Koseki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Tsukasa Kouno
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Anton Kratz
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Mariola Kurowska-Stolarska
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, Scotland G12 8QQ, United Kingdom
| | - Andrew Tae Jun Kwon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Jeffrey Leek
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Andreas Lennartsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 14157, Sweden
| | - Marina Lizio
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Fernando López-Redondo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Joachim Luginbühl
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Shiori Maeda
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Vsevolod J Makeev
- Department of Computational Systems Biology, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Luigi Marchionni
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Yulia A Medvedeva
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 117312, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Aki Minoda
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Ferenc Müller
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Manuel Muñoz-Aguirre
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08003, Spain
| | - Mitsuyoshi Murata
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Hiromi Nishiyori
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Kazuhiro R Nitta
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Shuhei Noguchi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Yukihiko Noro
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Ramil Nurtdinov
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08003, Spain
| | - Yasushi Okazaki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Valerio Orlando
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Denis Paquette
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Research Center, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Callum J C Parr
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Owen J L Rackham
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Patrizia Rizzu
- Genome Biology of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Tübingen 72076, Germany
| | | | - Albin Sandelin
- Department of Biology and BRIC, University of Copenhagen, Denmark, Copenhagen N DK2200, Denmark
| | - Pillay Sanjana
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Colin A M Semple
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Youtaro Shibayama
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Divya M Sivaraman
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Takahiro Suzuki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | | | - Michihira Tagami
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Martin S Taylor
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Chikashi Terao
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Malte Thodberg
- Department of Biology and BRIC, University of Copenhagen, Denmark, Copenhagen N DK2200, Denmark
| | - Supat Thongjuea
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Vidisha Tripathi
- National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Roberto Verardo
- Laboratorio Nazionale Consorzio Interuniversitario Biotecnologie (CIB), Trieste 34127, Italy
| | - Ilya E Vorontsov
- Department of Computational Systems Biology, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Chinatsu Yamamoto
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Robert S Young
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh EH8 9AG, United Kingdom
| | - J Kenneth Baillie
- Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, United Kingdom
| | - Alistair R R Forrest
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan.,Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, Western Australia 6009, Australia
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Catalonia 08002, Spain
| | | | - Chung Chau Hon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Takeya Kasukawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Sakari Kauppinen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen 9220, Denmark
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 14157, Sweden.,Stem Cells and Metabolism Research Program, University of Helsinki and Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Boris Lenhard
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom.,Computational Regulatory Genomics, MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen N-5008, Norway
| | - Claudio Schneider
- Laboratorio Nazionale Consorzio Interuniversitario Biotecnologie (CIB), Trieste 34127, Italy.,Department of Medicine and Consorzio Interuniversitario Biotecnologie p.zle Kolbe 1 University of Udine, Udine 33100, Italy
| | - Harukazu Suzuki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Ken Yagi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Michiel J L de Hoon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Jay W Shin
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
75
|
Mapping Transcriptome-Wide and Genome-Wide RNA-DNA Contacts with Chromatin-Associated RNA Sequencing (ChAR-seq). Methods Mol Biol 2020. [PMID: 32681510 DOI: 10.1007/978-1-0716-0680-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
RNAs play key roles in the cell as molecular intermediates for protein synthesis and as regulators of nuclear processes such as splicing, posttranscriptional regulation, or chromatin remodeling. Various classes of non-coding RNAs, including long non-coding RNAs (lncRNAs), can bind chromatin either directly or via interaction with chromatin binding proteins. It has been proposed that lncRNAs regulate cell-state-specific genes by coordinating the locus-dependent activity of chromatin-modifying complexes. Yet, the vast majority of lncRNAs have unknown functions, and we know little about the specific loci they regulate. A key step toward understanding chromatin regulation by RNAs is to map the genomic loci with which every nuclear RNA interacts and, reciprocally, to identify all RNAs that target a given locus. Our ability to generate such data has been limited, until recently, by the lack of methods to probe the genomic localization of more than a few RNAs at a time. Here, we describe a protocol for ChAR-seq, an RNA-DNA proximity ligation method that maps the binding loci for thousands of RNAs at once and without the need for specific RNA or DNA probe sequences. The ChAR-seq approach generates chimeric RNA-DNA molecules in situ and then converts those chimeras to DNA for next-generation sequencing. Using ChAR-seq we detect many types of chromatin-associated RNA, both coding and non-coding. Understanding the RNA-DNA interactome and its changes during differentiation or disease with ChAR-seq will likely provide key insights into chromatin and RNA biology.
Collapse
|
76
|
Khelifi G, Hussein SMI. A New View of Genome Organization Through RNA Directed Interactions. Front Cell Dev Biol 2020; 8:517. [PMID: 32760716 PMCID: PMC7371936 DOI: 10.3389/fcell.2020.00517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/02/2020] [Indexed: 12/30/2022] Open
Affiliation(s)
- Gabriel Khelifi
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC, Canada.,Université Laval Cancer Research Center, Université Laval, Québec, QC, Canada.,Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Québec, QC, Canada
| | - Samer M I Hussein
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC, Canada.,Université Laval Cancer Research Center, Université Laval, Québec, QC, Canada.,Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Québec, QC, Canada
| |
Collapse
|
77
|
Papanicolaou N, Bonetti A. The New Frontier of Functional Genomics: From Chromatin Architecture and Noncoding RNAs to Therapeutic Targets. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2020; 25:568-580. [PMID: 32486876 PMCID: PMC7309355 DOI: 10.1177/2472555220926158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
Common diseases are complex, multifactorial disorders whose pathogenesis is influenced by the interplay of genetic predisposition and environmental factors. Genome-wide association studies have interrogated genetic polymorphisms across genomes of individuals to test associations between genotype and susceptibility to specific disorders, providing insights into the genetic architecture of several complex disorders. However, genetic variants associated with the susceptibility to common diseases are often located in noncoding regions of the genome, such as tissue-specific enhancers or long noncoding RNAs, suggesting that regulatory elements might play a relevant role in human diseases. Enhancers are cis-regulatory genomic sequences that act in concert with promoters to regulate gene expression in a precise spatiotemporal manner. They can be located at a considerable distance from their cognate target promoters, increasing the difficulty of their identification. Genomes are organized in domains of chromatin folding, namely topologically associating domains (TADs). Identification of enhancer-promoter interactions within TADs has revealed principles of cell-type specificity across several organisms and tissues. The vast majority of mammalian genomes are pervasively transcribed, accounting for a previously unappreciated complexity of the noncoding RNA fraction. Particularly, long noncoding RNAs have emerged as key players for the establishment of chromatin architecture and regulation of gene expression. In this perspective, we describe the new advances in the fields of transcriptomics and genome organization, focusing on the role of noncoding genomic variants in the predisposition of common diseases. Finally, we propose a new framework for the identification of the next generation of pharmacological targets for common human diseases.
Collapse
Affiliation(s)
- Natali Papanicolaou
- Division of Biomaterials, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Alessandro Bonetti
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| |
Collapse
|
78
|
Corless S, Höcker S, Erhardt S. Centromeric RNA and Its Function at and Beyond Centromeric Chromatin. J Mol Biol 2020; 432:4257-4269. [DOI: 10.1016/j.jmb.2020.03.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/21/2022]
|
79
|
Arun G, Aggarwal D, Spector DL. MALAT1 Long Non-Coding RNA: Functional Implications. Noncoding RNA 2020; 6:E22. [PMID: 32503170 PMCID: PMC7344863 DOI: 10.3390/ncrna6020022] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
The mammalian genome is pervasively transcribed and the functional significance of many long non-coding RNA (lncRNA) transcripts are gradually being elucidated. Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1) is one of the most well-studied lncRNAs. MALAT1 is a highly conserved nuclear retained lncRNA that is abundantly expressed in cells and tissues and has been shown to play a role in regulating genes at both the transcriptional and post-transcriptional levels in a context-dependent manner. However, Malat1 has been shown to be dispensable for normal development and viability in mice. Interestingly, accumulating evidence suggests that MALAT1 plays an important role in numerous diseases including cancer. Here, we discuss the current state-of-knowledge in regard to MALAT1 with respect to its function, role in diseases, and the potential therapeutic opportunities for targeting MALAT1 using antisense oligonucleotides and small molecules.
Collapse
Affiliation(s)
- Gayatri Arun
- Envisagenics, 101 Avenue of the Americas, New York, NY 10013, USA;
| | - Disha Aggarwal
- Graduate Program in Genetics, Stony Brook University, Stony Brook, New York, NY 11794, USA;
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA
| | - David L. Spector
- Graduate Program in Genetics, Stony Brook University, Stony Brook, New York, NY 11794, USA;
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA
| |
Collapse
|
80
|
Guh CY, Hsieh YH, Chu HP. Functions and properties of nuclear lncRNAs-from systematically mapping the interactomes of lncRNAs. J Biomed Sci 2020; 27:44. [PMID: 32183863 PMCID: PMC7079490 DOI: 10.1186/s12929-020-00640-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
Protein and DNA have been considered as the major components of chromatin. But beyond that, an increasing number of studies show that RNA occupies a large amount of chromatin and acts as a regulator of nuclear architecture. A significant fraction of long non-coding RNAs (lncRNAs) prefers to stay in the nucleus and cooperate with protein complexes to modulate epigenetic regulation, phase separation, compartment formation, and nuclear organization. An RNA strand also can invade into double-stranded DNA to form RNA:DNA hybrids (R-loops) in living cells, contributing to the regulation of gene expression and genomic instability. In this review, we discuss how nuclear lncRNAs orchestrate cellular processes through their interactions with proteins and DNA and summarize the recent genome-wide techniques to study the functions of lncRNAs by revealing their interactomes in vivo.
Collapse
Affiliation(s)
- Chia-Yu Guh
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, Taiwan, Republic of China
| | - Yu-Hung Hsieh
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, Taiwan, Republic of China
| | - Hsueh-Ping Chu
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, Taiwan, Republic of China.
| |
Collapse
|
81
|
Bonetti A, Agostini F, Suzuki AM, Hashimoto K, Pascarella G, Gimenez J, Roos L, Nash AJ, Ghilotti M, Cameron CJF, Valentine M, Medvedeva YA, Noguchi S, Agirre E, Kashi K, Samudyata, Luginbühl J, Cazzoli R, Agrawal S, Luscombe NM, Blanchette M, Kasukawa T, Hoon MD, Arner E, Lenhard B, Plessy C, Castelo-Branco G, Orlando V, Carninci P. RADICL-seq identifies general and cell type-specific principles of genome-wide RNA-chromatin interactions. Nat Commun 2020; 11:1018. [PMID: 32094342 PMCID: PMC7039879 DOI: 10.1038/s41467-020-14337-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/18/2019] [Indexed: 12/18/2022] Open
Abstract
Mammalian genomes encode tens of thousands of noncoding RNAs. Most noncoding transcripts exhibit nuclear localization and several have been shown to play a role in the regulation of gene expression and chromatin remodeling. To investigate the function of such RNAs, methods to massively map the genomic interacting sites of multiple transcripts have been developed; however, these methods have some limitations. Here, we introduce RNA And DNA Interacting Complexes Ligated and sequenced (RADICL-seq), a technology that maps genome-wide RNA-chromatin interactions in intact nuclei. RADICL-seq is a proximity ligation-based methodology that reduces the bias for nascent transcription, while increasing genomic coverage and unique mapping rate efficiency compared with existing methods. RADICL-seq identifies distinct patterns of genome occupancy for different classes of transcripts as well as cell type-specific RNA-chromatin interactions, and highlights the role of transcription in the establishment of chromatin structure.
Collapse
Affiliation(s)
- Alessandro Bonetti
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | | | - Ana Maria Suzuki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
- Department of Medicine (H7), Karolinska Institutet, Stockholm, 141 86, Sweden
| | - Kosuke Hashimoto
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Giovanni Pascarella
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Juliette Gimenez
- Epigenetics and Genome Reprogramming Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Leonie Roos
- Faculty of Medicine, Imperial College London, Institute of Clinical Sciences, London, W12 0NN, UK
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
| | - Alex J Nash
- Faculty of Medicine, Imperial College London, Institute of Clinical Sciences, London, W12 0NN, UK
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
| | - Marco Ghilotti
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Christopher J F Cameron
- School of Computer Science, McGill University, Montréal, QC, Canada
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
| | - Matthew Valentine
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Yulia A Medvedeva
- Institute of Bioengineering, Research Centre of Biotechnology, Russian Academy of Science, 117312, Moscow, Russia
- Department of Computational Biology, Vavilov Institute of General Genetics, Russian Academy of Science, 119991, Moscow, Russia
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Moscow Region, Russia
| | - Shuhei Noguchi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Eneritz Agirre
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Kaori Kashi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Samudyata
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Joachim Luginbühl
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Riccardo Cazzoli
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Saumya Agrawal
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Nicholas M Luscombe
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- UCL Genetics Institute, University College London, London, WC1E 6BT, UK
- Okinawa Institute of Science and Technology, Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | | | - Takeya Kasukawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Michiel de Hoon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Erik Arner
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Boris Lenhard
- Faculty of Medicine, Imperial College London, Institute of Clinical Sciences, London, W12 0NN, UK
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5008, Bergen, Norway
| | - Charles Plessy
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Valerio Orlando
- Epigenetics and Genome Reprogramming Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy.
- KAUST Environmental Epigenetics Program, King Abdullah University of Science and Technology (KAUST), Division of Biological Environmental Sciences and Engineering, 23955-6900, Thuwal, Saudi Arabia.
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
82
|
Short Tandem Repeat-Enriched Architectural RNAs in Nuclear Bodies: Functions and Associated Diseases. Noncoding RNA 2020; 6:ncrna6010006. [PMID: 32093161 PMCID: PMC7151548 DOI: 10.3390/ncrna6010006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/31/2020] [Accepted: 02/19/2020] [Indexed: 12/16/2022] Open
Abstract
Nuclear bodies are membraneless, phase-separated compartments that concentrate specific proteins and RNAs in the nucleus. They are believed to serve as sites for the modification, sequestration, and storage of specific factors, and to act as organizational hubs of chromatin structure to control gene expression and cellular function. Architectural (arc) RNA, a class of long noncoding RNA (lncRNA), plays essential roles in the formation of nuclear bodies. Herein, we focus on specific arcRNAs containing short tandem repeat-enriched sequences and introduce their biological functions and recently elucidated underlying molecular mechanism. In various neurodegenerative diseases, abnormal nuclear and cytoplasmic bodies are built on disease-causing RNAs or toxic RNAs with aberrantly expanded short tandem repeat-enriched sequences. We discuss the possible analogous functions of natural arcRNAs and toxic RNAs with short tandem repeat-enriched sequences. Finally, we describe the technical utility of short tandem repeat-enriched arcRNAs as a model for exploring the structures and functions of nuclear bodies, as well as the pathogenic mechanisms of neurodegenerative diseases.
Collapse
|
83
|
Matveishina E, Antonov I, Medvedeva YA. Practical Guidance in Genome-Wide RNA:DNA Triple Helix Prediction. Int J Mol Sci 2020; 21:E830. [PMID: 32012884 PMCID: PMC7037363 DOI: 10.3390/ijms21030830] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/21/2020] [Accepted: 01/25/2020] [Indexed: 12/15/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play a key role in many cellular processes including chromatin regulation. To modify chromatin, lncRNAs often interact with DNA in a sequence-specific manner forming RNA:DNA triple helices. Computational tools for triple helix search do not always provide genome-wide predictions of sufficient quality. Here, we used four human lncRNAs (MEG3, DACOR1, TERC and HOTAIR) and their experimentally determined binding regions for evaluating triplex parameters that provide the highest prediction accuracy. Additionally, we combined triplex prediction with the lncRNA secondary structure and demonstrated that considering only single-stranded fragments of lncRNA can further improve DNA-RNA triplexes prediction.
Collapse
Affiliation(s)
- Elena Matveishina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Science, 117312 Moscow, Russia
| | - Ivan Antonov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Science, 117312 Moscow, Russia
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Yulia A Medvedeva
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Science, 117312 Moscow, Russia
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
- Department of Computational Biology, Vavilov Institute of General Genetics, Russian Academy of Science, 117971 Moscow, Russia
| |
Collapse
|
84
|
Lin Y, Liu T, Cui T, Wang Z, Zhang Y, Tan P, Huang Y, Yu J, Wang D. RNAInter in 2020: RNA interactome repository with increased coverage and annotation. Nucleic Acids Res 2020; 48:D189-D197. [PMID: 31906603 PMCID: PMC6943043 DOI: 10.1093/nar/gkz804] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/03/2019] [Accepted: 09/10/2019] [Indexed: 01/23/2023] Open
Abstract
Research on RNA-associated interactions has exploded in recent years, and increasing numbers of studies are not limited to RNA-RNA and RNA-protein interactions but also include RNA-DNA/compound interactions. To facilitate the development of the interactome and promote understanding of the biological functions and molecular mechanisms of RNA, we updated RAID v2.0 to RNAInter (RNA Interactome Database), a repository for RNA-associated interactions that is freely accessible at http://www.rna-society.org/rnainter/ or http://www.rna-society.org/raid/. Compared to RAID v2.0, new features in RNAInter include (i) 8-fold more interaction data and 94 additional species; (ii) more definite annotations organized, including RNA editing/localization/modification/structure and homology interaction; (iii) advanced functions including fuzzy/batch search, interaction network and RNA dynamic expression and (iv) four embedded RNA interactome tools: RIscoper, IntaRNA, PRIdictor and DeepBind. Consequently, RNAInter contains >41 million RNA-associated interaction entries, involving more than 450 thousand unique molecules, including RNA, protein, DNA and compound. Overall, RNAInter provides a comprehensive RNA interactome resource for researchers and paves the way to investigate the regulatory landscape of cellular RNAs.
Collapse
Affiliation(s)
- Yunqing Lin
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Tianyuan Liu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tianyu Cui
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhao Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yuncong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Puwen Tan
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yan Huang
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528308, China
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100730, China
| | - Dong Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528308, China
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
- To whom correspondence should be addressed. Tel: +86 20 61648279; Fax: +86 20 61648279; or
| |
Collapse
|
85
|
Fang J, Ma Q, Chu C, Huang B, Li L, Cai P, Batista PJ, Tolentino KEM, Xu J, Li R, Du P, Qu K, Chang HY. PIRCh-seq: functional classification of non-coding RNAs associated with distinct histone modifications. Genome Biol 2019; 20:292. [PMID: 31862000 PMCID: PMC6924075 DOI: 10.1186/s13059-019-1880-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/05/2019] [Indexed: 01/10/2023] Open
Abstract
We develop PIRCh-seq, a method which enables a comprehensive survey of chromatin-associated RNAs in a histone modification-specific manner. We identify hundreds of chromatin-associated RNAs in several cell types with substantially less contamination by nascent transcripts. Non-coding RNAs are found enriched on chromatin and are classified into functional groups based on the patterns of their association with specific histone modifications. We find single-stranded RNA bases are more chromatin-associated, and we discover hundreds of allele-specific RNA-chromatin interactions. These results provide a unique resource to globally study the functions of chromatin-associated lncRNAs and elucidate the basic mechanisms of chromatin-RNA interactions.
Collapse
Affiliation(s)
- Jingwen Fang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Sciences, Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Qing Ma
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of Medicine, CCSR 2155c, 269 Campus Drive, Stanford, CA, 94305-5168, USA
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ci Chu
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of Medicine, CCSR 2155c, 269 Campus Drive, Stanford, CA, 94305-5168, USA
| | - Beibei Huang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Sciences, Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Lingjie Li
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of Medicine, CCSR 2155c, 269 Campus Drive, Stanford, CA, 94305-5168, USA
| | - Pengfei Cai
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Sciences, Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Pedro J Batista
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of Medicine, CCSR 2155c, 269 Campus Drive, Stanford, CA, 94305-5168, USA
- Present Address: Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Karen Erisse Martin Tolentino
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of Medicine, CCSR 2155c, 269 Campus Drive, Stanford, CA, 94305-5168, USA
| | - Jin Xu
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of Medicine, CCSR 2155c, 269 Campus Drive, Stanford, CA, 94305-5168, USA
| | - Rui Li
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of Medicine, CCSR 2155c, 269 Campus Drive, Stanford, CA, 94305-5168, USA
| | - Pengcheng Du
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Sciences, Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Kun Qu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Sciences, Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of Medicine, CCSR 2155c, 269 Campus Drive, Stanford, CA, 94305-5168, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
86
|
Mishra K, Kanduri C. Understanding Long Noncoding RNA and Chromatin Interactions: What We Know So Far. Noncoding RNA 2019; 5:ncrna5040054. [PMID: 31817041 PMCID: PMC6958424 DOI: 10.3390/ncrna5040054] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022] Open
Abstract
With the evolution of technologies that deal with global detection of RNAs to probing of lncRNA-chromatin interactions and lncRNA-chromatin structure regulation, we have been updated with a comprehensive repertoire of chromatin interacting lncRNAs, their genome-wide chromatin binding regions and mode of action. Evidence from these new technologies emphasize that chromatin targeting of lncRNAs is a prominent mechanism and that these chromatin targeted lncRNAs exert their functionality by fine tuning chromatin architecture resulting in an altered transcriptional readout. Currently, there are no unifying principles that define chromatin association of lncRNAs, however, evidence from a few chromatin-associated lncRNAs show presence of a short common sequence for chromatin targeting. In this article, we review how technological advancements contributed in characterizing chromatin associated lncRNAs, and discuss the potential mechanisms by which chromatin associated lncRNAs execute their functions.
Collapse
Affiliation(s)
- Kankadeb Mishra
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden;
- Department of Cell Biology, Memorial Sloan Kettering Cancer Centre, Rockefeller Research Laboratory, 430 East 67th Street, RRL 445, New York, NY 10065, USA
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden;
- Correspondence:
| |
Collapse
|
87
|
Smith KN, Miller SC, Varani G, Calabrese JM, Magnuson T. Multimodal Long Noncoding RNA Interaction Networks: Control Panels for Cell Fate Specification. Genetics 2019; 213:1093-1110. [PMID: 31796550 PMCID: PMC6893379 DOI: 10.1534/genetics.119.302661] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/03/2019] [Indexed: 12/20/2022] Open
Abstract
Lineage specification in early development is the basis for the exquisitely precise body plan of multicellular organisms. It is therefore critical to understand cell fate decisions in early development. Moreover, for regenerative medicine, the accurate specification of cell types to replace damaged/diseased tissue is strongly dependent on identifying determinants of cell identity. Long noncoding RNAs (lncRNAs) have been shown to regulate cellular plasticity, including pluripotency establishment and maintenance, differentiation and development, yet broad phenotypic analysis and the mechanistic basis of their function remains lacking. As components of molecular condensates, lncRNAs interact with almost all classes of cellular biomolecules, including proteins, DNA, mRNAs, and microRNAs. With functions ranging from controlling alternative splicing of mRNAs, to providing scaffolding upon which chromatin modifiers are assembled, it is clear that at least a subset of lncRNAs are far from the transcriptional noise they were once deemed. This review highlights the diversity of lncRNA interactions in the context of cell fate specification, and provides examples of each type of interaction in relevant developmental contexts. Also highlighted are experimental and computational approaches to study lncRNAs.
Collapse
Affiliation(s)
- Keriayn N Smith
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Sarah C Miller
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, Washington 98195
| | - J Mauro Calabrese
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Terry Magnuson
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
88
|
Simon MD, Machyna M. Principles and Practices of Hybridization Capture Experiments to Study Long Noncoding RNAs That Act on Chromatin. Cold Spring Harb Perspect Biol 2019; 11:11/11/a032276. [PMID: 31676573 DOI: 10.1101/cshperspect.a032276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The diverse roles of cellular RNAs can be studied by purifying RNAs of interest together with the biomolecules they bind. Biotinylated antisense oligonucleotides that hybridize specifically to the RNA of interest provide a general approach to develop affinity reagents for these experiments. Such oligonucleotides can be used to enrich endogenous RNAs from cross-linked chromatin extracts to study the genomic binding sites of RNAs. These hybridization capture protocols are evolving modular experiments that are compatible with a range of cross-linkers and conditions. This review discusses the principles of these hybridization capture experiments as well as considerations and controls necessary to interpret the resulting data without being misled by artifactual signals.
Collapse
Affiliation(s)
- Matthew D Simon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511.,Chemical Biology Institute, Yale University, West Haven, Connecticut 06516
| | - Martin Machyna
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511.,Chemical Biology Institute, Yale University, West Haven, Connecticut 06516
| |
Collapse
|
89
|
Wu W, Yan Z, Nguyen TC, Bouman Chen Z, Chien S, Zhong S. Mapping RNA-chromatin interactions by sequencing with iMARGI. Nat Protoc 2019; 14:3243-3272. [PMID: 31619811 PMCID: PMC7314528 DOI: 10.1038/s41596-019-0229-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
RNA-chromatin interactions represent an important aspect of the transcriptional regulation of genes and transposable elements. However, analyses of chromatin-associated RNAs (caRNAs) are often limited to one caRNA at a time. Here, we describe the iMARGI (in situ mapping of RNA-genome interactome) technique, which is used to discover caRNAs and reveal their respective genomic interaction loci. iMARGI starts with in situ crosslinking and genome fragmentation, followed by converting each proximal RNA-DNA pair into an RNA-linker-DNA chimeric sequence. These chimeric sequences are subsequently converted into a sequencing library suitable for paired-end sequencing. A standardized bioinformatic software package, iMARGI-Docker, is provided to decode the paired-end sequencing data into caRNA-DNA interactions. Compared to its predecessor MARGI (mapping RNA-genome interactions), the number of input cells for iMARGI is 3-5 million (a 100-fold reduction), experimental time is reduced, and clear checkpoints have been established. It takes a few hours a day and a total of 8 d to complete the construction of an iMARGI sequencing library and 1 d to carry out data processing with iMARGI-Docker.
Collapse
Affiliation(s)
- Weixin Wu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Zhangming Yan
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Tri C Nguyen
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Zhen Bouman Chen
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Sheng Zhong
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
90
|
Sentürk Cetin N, Kuo CC, Ribarska T, Li R, Costa IG, Grummt I. Isolation and genome-wide characterization of cellular DNA:RNA triplex structures. Nucleic Acids Res 2019; 47:2306-2321. [PMID: 30605520 PMCID: PMC6411930 DOI: 10.1093/nar/gky1305] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/18/2018] [Accepted: 12/27/2018] [Indexed: 12/21/2022] Open
Abstract
RNA can directly bind to purine-rich DNA via Hoogsteen base pairing, forming a DNA:RNA triple helical structure that anchors the RNA to specific sequences and allows guiding of transcription regulators to distinct genomic loci. To unravel the prevalence of DNA:RNA triplexes in living cells, we have established a fast and cost-effective method that allows genome-wide mapping of DNA:RNA triplex interactions. In contrast to previous approaches applied for the identification of chromatin-associated RNAs, this method uses protein-free nucleic acids isolated from chromatin. High-throughput sequencing and computational analysis of DNA-associated RNA revealed a large set of RNAs which originate from non-coding and coding loci, including super-enhancers and repeat elements. Combined analysis of DNA-associated RNA and RNA-associated DNA identified genomic DNA:RNA triplex structures. The results suggest that triplex formation is a general mechanism of RNA-mediated target-site recognition, which has major impact on biological functions.
Collapse
Affiliation(s)
- Nevcin Sentürk Cetin
- Division of Molecular Biology of the Cell II, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Chao-Chung Kuo
- Institute for Computational Genomics, RWTH University Medical School Aachen, Germany
| | - Teodora Ribarska
- Division of Molecular Biology of the Cell II, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Ronghui Li
- Institute for Computational Genomics, RWTH University Medical School Aachen, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, RWTH University Medical School Aachen, Germany
| | - Ingrid Grummt
- Division of Molecular Biology of the Cell II, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
91
|
Abstract
Mammalian genomes are extensively transcribed, which produces a large number of both coding and non-coding transcripts. Various RNAs are physically associated with chromatin, through being either retained in cis at their site of transcription or recruited in trans to other genomic regions. Driven by recent technological innovations for detecting chromatin-associated RNAs, diverse roles are being revealed for these RNAs and associated RNA-binding proteins (RBPs) in gene regulation and genome function. Such functions include locus-specific roles in gene activation and silencing, as well as emerging roles in higher-order genome organization, such as involvement in long-range enhancer-promoter interactions, transcription hubs, heterochromatin, nuclear bodies and phase transitions.
Collapse
Affiliation(s)
- Xiao Li
- Department of Cellular and Molecular Medicine and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
92
|
Kimchi O, Cragnolini T, Brenner MP, Colwell LJ. A Polymer Physics Framework for the Entropy of Arbitrary Pseudoknots. Biophys J 2019; 117:520-532. [PMID: 31353036 PMCID: PMC6697467 DOI: 10.1016/j.bpj.2019.06.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 06/21/2019] [Accepted: 06/27/2019] [Indexed: 11/18/2022] Open
Abstract
The accurate prediction of RNA secondary structure from primary sequence has had enormous impact on research from the past 40 years. Although many algorithms are available to make these predictions, the inclusion of non-nested loops, termed pseudoknots, still poses challenges arising from two main factors: 1) no physical model exists to estimate the loop entropies of complex intramolecular pseudoknots, and 2) their NP-complete enumeration has impeded their study. Here, we address both challenges. First, we develop a polymer physics model that can address arbitrarily complex pseudoknots using only two parameters corresponding to concrete physical quantities-over an order of magnitude fewer than the sparsest state-of-the-art phenomenological methods. Second, by coupling this model to exhaustive enumeration of the set of possible structures, we compute the entire free energy landscape of secondary structures resulting from a primary RNA sequence. We demonstrate that for RNA structures of ∼80 nucleotides, with minimal heuristics, the complete enumeration of possible secondary structures can be accomplished quickly despite the NP-complete nature of the problem. We further show that despite our loop entropy model's parametric sparsity, it performs better than or on par with previously published methods in predicting both pseudoknotted and non-pseudoknotted structures on a benchmark data set of RNA structures of ≤80 nucleotides. We suggest ways in which the accuracy of the model can be further improved.
Collapse
Affiliation(s)
- Ofer Kimchi
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, Massachusetts.
| | - Tristan Cragnolini
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Michael P Brenner
- School of Engineering and Applied Sciences, Cambridge, Massachusetts; Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, Massachusetts
| | - Lucy J Colwell
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
93
|
Samudyata, Amaral PP, Engström PG, Robson SC, Nielsen ML, Kouzarides T, Castelo-Branco G. Interaction of Sox2 with RNA binding proteins in mouse embryonic stem cells. Exp Cell Res 2019; 381:129-138. [PMID: 31077711 PMCID: PMC6994247 DOI: 10.1016/j.yexcr.2019.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 01/08/2023]
Abstract
Sox2 is a master transcriptional regulator of embryonic development. In this study, we determined the protein interactome of Sox2 in the chromatin and nucleoplasm of mouse embryonic stem (mES) cells. Apart from canonical interactions with pluripotency-regulating transcription factors, we identified interactions with several chromatin modulators, including members of the heterochromatin protein 1 (HP1) family, suggesting a role for Sox2 in chromatin-mediated transcriptional repression. Sox2 was also found to interact with RNA binding proteins (RBPs), including proteins involved in RNA processing. RNA immunoprecipitation followed by sequencing revealed that Sox2 associates with different messenger RNAs, as well as small nucleolar RNA Snord34 and the non-coding RNA 7SK. 7SK has been shown to regulate transcription at gene regulatory regions, which could suggest a functional interaction with Sox2 for chromatin recruitment. Nevertheless, we found no evidence of Sox2 modulating recruitment of 7SK to chromatin when examining 7SK chromatin occupancy by Chromatin Isolation by RNA Purification (ChIRP) in Sox2 depleted mES cells. In addition, knockdown of 7SK in mES cells did not lead to any change in Sox2 occupancy at 7SK-regulated genes. Thus, our results show that Sox2 extensively interacts with RBPs, and suggest that Sox2 and 7SK co-exist in a ribonucleoprotein complex whose function is not to regulate chromatin recruitment, but could rather regulate other processes in the nucleoplasm.
Collapse
Affiliation(s)
- Samudyata
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Paulo P Amaral
- The Gurdon Institute, University of Cambridge, United Kingdom
| | - Pär G Engström
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Samuel C Robson
- School of Pharmacy and Biomedical Science, University of Portsmouth, United Kingdom
| | - Michael L Nielsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Tony Kouzarides
- The Gurdon Institute, University of Cambridge, United Kingdom
| | - Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; Ming Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
94
|
Antonov IV, Mazurov E, Borodovsky M, Medvedeva YA. Prediction of lncRNAs and their interactions with nucleic acids: benchmarking bioinformatics tools. Brief Bioinform 2019; 20:551-564. [PMID: 29697742 DOI: 10.1093/bib/bby032] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 03/26/2018] [Indexed: 01/22/2023] Open
Abstract
The genomes of mammalian species are pervasively transcribed producing as many noncoding as protein-coding RNAs. There is a growing body of evidence supporting their functional role. Long noncoding RNA (lncRNA) can bind both nucleic acids and proteins through several mechanisms. A reliable computational prediction of the most probable mechanism of lncRNA interaction can facilitate experimental validation of its function. In this study, we benchmarked computational tools capable to discriminate lncRNA from mRNA and predict lncRNA interactions with other nucleic acids. We assessed the performance of 9 tools for distinguishing protein-coding from noncoding RNAs, as well as 19 tools for prediction of RNA-RNA and RNA-DNA interactions. Our conclusions about the considered tools were based on their performances on the entire genome/transcriptome level, as it is the most common task nowadays. We found that FEELnc and CPAT distinguish between coding and noncoding mammalian transcripts in the most accurate manner. ASSA, RIBlast and LASTAL, as well as Triplexator, turned out to be the best predictors of RNA-RNA and RNA-DNA interactions, respectively. We showed that the normalization of the predicted interaction strength to the transcript length and GC content may improve the accuracy of inferring RNA interactions. Yet, all the current tools have difficulties to make accurate predictions of short-trans RNA-RNA interactions-stretches of sparse contacts. All over, there is still room for improvement in each category, especially for predictions of RNA interactions.
Collapse
Affiliation(s)
- Ivan V Antonov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Science, Moscow, Russian Federation.,Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
| | | | - Mark Borodovsky
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
| | - Yulia A Medvedeva
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Science, Moscow, Russian Federation.,Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation.,Department of Computational Biology, Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russian Federation
| |
Collapse
|
95
|
Zhang S, Wang Y, Jia L, Wen X, Du Z, Wang C, Hao Y, Yu D, Zhou L, Chen N, Chen J, Chen H, Zhang H, Celik I, Gülsoy G, Luo J, Qin B, Cui X, Liu Z, Zhang S, Esteban MA, Ay F, Xu W, Chen R, Li W, Hoffman AR, Hu JF, Cui J. Profiling the long noncoding RNA interaction network in the regulatory elements of target genes by chromatin in situ reverse transcription sequencing. Genome Res 2019; 29:1521-1532. [PMID: 31315906 PMCID: PMC6724666 DOI: 10.1101/gr.244996.118] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 07/10/2019] [Indexed: 12/27/2022]
Abstract
Long noncoding RNAs (lncRNAs) can regulate the activity of target genes by participating in the organization of chromatin architecture. We have devised a “chromatin-RNA in situ reverse transcription sequencing” (CRIST-seq) approach to profile the lncRNA interaction network in gene regulatory elements by combining the simplicity of RNA biotin labeling with the specificity of the CRISPR/Cas9 system. Using gene-specific gRNAs, we describe a pluripotency-specific lncRNA interacting network in the promoters of Sox2 and Pou5f1, two critical stem cell factors that are required for the maintenance of pluripotency. The promoter-interacting lncRNAs were specifically activated during reprogramming into pluripotency. Knockdown of these lncRNAs caused the stem cells to exit from pluripotency. In contrast, overexpression of the pluripotency-associated lncRNA activated the promoters of core stem cell factor genes and enhanced fibroblast reprogramming into pluripotency. These CRIST-seq data suggest that the Sox2 and Pou5f1 promoters are organized within a unique lncRNA interaction network that determines the fate of pluripotency during reprogramming. This CRIST approach may be broadly used to map lncRNA interaction networks at target loci across the genome.
Collapse
Affiliation(s)
- Shilin Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Yichen Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Lin Jia
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Xue Wen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Zhonghua Du
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Cong Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, California 94304, USA
| | - Yajing Hao
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Dehai Yu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Lei Zhou
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Naifei Chen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Jingcheng Chen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, California 94304, USA
| | - Huiling Chen
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hui Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, P.R. China
| | - Ilkay Celik
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, California 94304, USA
| | - Günhan Gülsoy
- Google Incorporated, Mountain View, California 94043, USA
| | - Jianjun Luo
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Baoming Qin
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, P.R. China
| | - Xueling Cui
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhonghui Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Songling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Miguel A Esteban
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, P.R. China
| | - Ferhat Ay
- La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| | - Wei Xu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Runsheng Chen
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Wei Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Andrew R Hoffman
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, California 94304, USA
| | - Ji-Fan Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, California 94304, USA
| | - Jiuwei Cui
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| |
Collapse
|
96
|
GRID-seq for comprehensive analysis of global RNA-chromatin interactions. Nat Protoc 2019; 14:2036-2068. [PMID: 31175345 DOI: 10.1038/s41596-019-0172-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 04/02/2019] [Indexed: 01/29/2023]
Abstract
Chromatin in higher eukaryotic nuclei is extensively bound by various RNA species. We recently developed a method for in situ capture of global RNA interactions with DNA by deep sequencing (GRID-seq) of fixed permeabilized nuclei that allows identification of the entire repertoire of chromatin-associated RNAs in an unbiased manner. The experimental design of GRID-seq is related to those of two recently published strategies (MARGI (mapping RNA-genome interactions) and ChAR-seq (chromatin-associated RNA sequencing)), which also use a bivalent linker to ligate RNA and DNA in proximity. Importantly, however, GRID-seq also implements a combined experimental and computational approach to control nonspecific RNA-DNA interactions that are likely to occur during library construction, which is critical for accurate interpretation of detected RNA-DNA interactions. GRID-seq typically finds both coding and non-coding RNAs (ncRNAs) that interact with tissue-specific promoters and enhancers, especially super-enhancers, from which a global promoter-enhancer connectivity map can be deduced. Here, we provide a detailed protocol for GRID-seq that includes nuclei preparation, chromatin fragmentation, RNA and DNA in situ ligation with a bivalent linker, PCR amplification and high-throughput sequencing. To further enhance the utility of GRID-seq, we include a pipeline for data analysis, called GridTools, into which key steps such as background correction and inference of genomic element proximity are integrated. For researchers experienced in molecular biology with minimal bioinformatics skills, the protocol typically takes 4-5 d from cell fixation to library construction and 2-3 d for data processing.
Collapse
|
97
|
Krumm A, Duan Z. Understanding the 3D genome: Emerging impacts on human disease. Semin Cell Dev Biol 2019; 90:62-77. [PMID: 29990539 PMCID: PMC6329682 DOI: 10.1016/j.semcdb.2018.07.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/03/2018] [Indexed: 12/13/2022]
Abstract
Recent burst of new technologies that allow for quantitatively delineating chromatin structure has greatly expanded our understanding of how the genome is organized in the three-dimensional (3D) space of the nucleus. It is now clear that the hierarchical organization of the eukaryotic genome critically impacts nuclear activities such as transcription, replication, as well as cellular and developmental events such as cell cycle, cell fate decision and embryonic development. In this review, we discuss new insights into how the structural features of the 3D genome hierarchy are established and maintained, how this hierarchy undergoes dynamic rearrangement during normal development and how its perturbation will lead to human disease, highlighting the accumulating evidence that links the diverse 3D genome architecture components to a multitude of human diseases and the emerging mechanisms by which 3D genome derangement causes disease phenotypes.
Collapse
Affiliation(s)
- Anton Krumm
- Department of Microbiology, University of Washington, USA.
| | - Zhijun Duan
- Institute for Stem Cell and Regenerative Medicine, University of Washington, USA; Division of Hematology, Department of Medicine, University of Washington, USA.
| |
Collapse
|
98
|
Abstract
A diverse catalog of long noncoding RNAs (lncRNAs), which lack protein-coding potential, are transcribed from the mammalian genome. They are emerging as important regulators in gene expression networks by controlling nuclear architecture and transcription in the nucleus and by modulating mRNA stability, translation and post-translational modifications in the cytoplasm. In this Review, we highlight recent progress in cellular functions of lncRNAs at the molecular level in mammalian cells.
Collapse
|
99
|
Shields EJ, Petracovici AF, Bonasio R. lncRedibly versatile: biochemical and biological functions of long noncoding RNAs. Biochem J 2019; 476:1083-1104. [PMID: 30971458 PMCID: PMC6745715 DOI: 10.1042/bcj20180440] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/28/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) are transcripts that do not code for proteins, but nevertheless exert regulatory effects on various biochemical pathways, in part via interactions with proteins, DNA, and other RNAs. LncRNAs are thought to regulate transcription and other biological processes by acting, for example, as guides that target proteins to chromatin, scaffolds that facilitate protein-protein interactions and complex formation, and orchestrators of phase-separated compartments. The study of lncRNAs has reached an exciting time, as recent advances in experimental and computational methods allow for genome-wide interrogation of biochemical and biological mechanisms of these enigmatic transcripts. A better appreciation for the biochemical versatility of lncRNAs has allowed us to begin closing gaps in our knowledge of how they act in diverse cellular and organismal contexts, including development and disease.
Collapse
Affiliation(s)
- Emily J Shields
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, U.S.A
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, U.S.A
| | - Ana F Petracovici
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, U.S.A
- Graduate Group in Genetics and Epigenetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, U.S.A
| | - Roberto Bonasio
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, U.S.A.
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, U.S.A
| |
Collapse
|
100
|
Jukam D, Limouse C, Smith OK, Risca VI, Bell JC, Straight AF. Chromatin-Associated RNA Sequencing (ChAR-seq). CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2019; 126:e87. [PMID: 30786161 PMCID: PMC7670654 DOI: 10.1002/cpmb.87] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
RNA is a fundamental component of chromatin. Noncoding RNAs (ncRNAs) can associate with chromatin to influence gene expression and chromatin state; many also act at long distances from their transcriptional origin. Yet we know almost nothing about the functions or sites of action for most ncRNAs. Current methods to identify sites of RNA interaction with the genome are limited to the study of a single RNA at a time. Here we describe a protocol for ChAR-seq, a strategy to identify all chromatin-associated RNAs and map their DNA contacts genome-wide. In ChAR-seq, proximity ligation of RNA and DNA to a linker molecule is used to construct a chimeric RNA-DNA molecule that is converted to DNA for sequencing. In a single assay, ChAR-seq can discover de novo chromatin interactions of distinct RNAs, including nascent transcripts, splicing RNAs, and long noncoding RNAs (lncRNAs). Resulting "maps" of genome-bound RNAs should provide new insights into RNA biology. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- David Jukam
- Department of Biology, Stanford University, Stanford, California
| | - Charles Limouse
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California
| | - Owen K. Smith
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California
| | - Viviana I. Risca
- Department of Genetics, Stanford University School of Medicine, Stanford, California
- Present Address: Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, New York
| | - Jason C. Bell
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California
- Present Address: 10X Genomics, Pleasanton, California
| | - Aaron F. Straight
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|