51
|
Manea E, Bianchelli S, Fanelli E, Danovaro R, Gissi E. Towards an Ecosystem-Based Marine Spatial Planning in the deep Mediterranean Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136884. [PMID: 32018103 DOI: 10.1016/j.scitotenv.2020.136884] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/08/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
The deep sea covers about 79% of the Mediterranean basin, including habitats potentially able to deliver multiple ecosystem services and numerous resources of high economic value. Thus, the deep Mediterranean Sea represents an important frontier for marine resources exploitation, which is embedded within the European Blue Growth Strategy goals and agendas. The deep sea is crucial for the ecological functioning of the entire basin. For this reason, the deep Mediterranean deserves protection from the potential cumulative impacts derived from existent and developing human activities. Marine Spatial Planning (MSP) has been identified as key instrument for spatially allocating maritime uses in the sea space avoiding spatial conflicts between activities, and between activities and the environment. Indeed, MSP incorporates the ecosystem-based approach (EB-MSP) to balance both socio-economic and environmental objectives, in line with the Maritime Spatial Planning Directive and the Marine Strategy Framework Directive. Despite MSP is under implementation in Europe, the Directive is not applied yet for the managing and monitoring of the environmental status of the deep sea. In the Mediterranean, deep areas fall both in internal and territorial waters, and in High Seas, and its management framework turns out to be complicated. Moreover, a certain level of cumulative impacts in the deep Mediterranean has been already identified and likely underestimated because of paucity of knowledge related with deep-sea ecosystems. Thus, the implementation of scientific knowledge and the establishment of a sustainable management regime of deep-sea resources and space are urgent. This study aims at reflecting on the best available ecological knowledge on the deep Mediterranean to incorporate conservation objectives in EB-MSP. We propose a framework to include key ecological principles in the relevant phases of any EB-MSP processes taking in consideration existing socio-economic and conservation scenarios in the region. We add the uncertainty principle to reflect on the still unexplored and missing knowledge related to the deep Mediterranean. Here, we resume some guidelines to overcome limits and bottlenecks while ensuring protection of deep-sea ecosystems and resources in the Mediterranean Sea.
Collapse
Affiliation(s)
- E Manea
- Department of Architecture and Arts, University Iuav of Venice, Tolentini, Santa Croce 191, 30135 Venice, Italy.
| | - S Bianchelli
- Department of Environmental and Life Science, Polytechnique University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - E Fanelli
- Department of Environmental and Life Science, Polytechnique University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - R Danovaro
- Department of Environmental and Life Science, Polytechnique University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - E Gissi
- Department of Architecture and Arts, University Iuav of Venice, Tolentini, Santa Croce 191, 30135 Venice, Italy
| |
Collapse
|
52
|
Jroundi F, Martinez-Ruiz F, Merroun ML, Gonzalez-Muñoz MT. Exploring bacterial community composition in Mediterranean deep-sea sediments and their role in heavy metal accumulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:135660. [PMID: 31791772 DOI: 10.1016/j.scitotenv.2019.135660] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
The role of microbial processes in bioaccumulation of major and trace elements has been broadly demonstrated. However, microbial communities from marine sediments have been poorly investigated to this regard. In marine environments, particularly under high anthropogenic pressure, heavy metal accumulation increases constantly, which may lead to significant environmental issues. A better knowledge of bacterial diversity and its capability to bioaccumulate metals is essential to face environmental quality assessment. The oligotrophic westernmost Mediterranean, which is highly sensitive to environmental changes and subjected to increasing anthropogenic pressure, was selected for this study. A sediment core spanning the last two millennia was sampled at two intervals, with ages corresponding to 140 (S1) and 1400 (S2) yr BP. High-throughput sequencing showed an abundance of Bacillus, Micrococcus, unclassified members of Planococcaceae, Anaerolineaceae, Planctomycetaceae, Microlunatus, and Microbacterium in both intervals, with slight differences in their abundance, along with newly detected ones in S2, i.e., Propionibacterium, Fictibacillus, Thalassobacillus, and Bacteroides. Canonical correspondence analysis (CCA) and co-occurrence patterns confirmed strong correlations among the taxa and the environmental parameters, suggesting either shared and preferred environmental conditions, or the performance of functions similar to or complementary to each other. These results were further confirmed using culture-dependent methods. The diversity of the culturable bacterial community revealed a predominance of Bacillus, and Micrococcus or Kocuria. The interaction of these bacterial communities with selected heavy metals (Cu, Cr, Zn and Pb) was also investigated, and their capacity of bioaccumulating metals within the cells and/or in the extracellular polymeric substances (EPS) is demonstrated. Interestingly, biomineralization of Pb resulted in the precipitation of Pb phosphates (pyromorphite). Our study supports that remnants of marine bacterial communities can survive in deep-sea sediments over thousands of years. This is extremely important in terms of bioremediation, in particular when considering possible environmentally friendly strategies to bioremediate inorganic contaminants.
Collapse
Affiliation(s)
- Fadwa Jroundi
- Department of Microbiology, Faculty of Science, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain.
| | - Francisca Martinez-Ruiz
- Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Av. de las Palmeras 4, 18100 (Armilla) Granada, Spain.
| | - Mohamed L Merroun
- Department of Microbiology, Faculty of Science, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain.
| | - María Teresa Gonzalez-Muñoz
- Department of Microbiology, Faculty of Science, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain.
| |
Collapse
|
53
|
Varrella S, Tangherlini M, Corinaldesi C. Deep Hypersaline Anoxic Basins as Untapped Reservoir of Polyextremophilic Prokaryotes of Biotechnological Interest. Mar Drugs 2020; 18:md18020091. [PMID: 32019162 PMCID: PMC7074082 DOI: 10.3390/md18020091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/18/2022] Open
Abstract
Deep-sea hypersaline anoxic basins (DHABs) are considered to be among the most extreme ecosystems on our planet, allowing only the life of polyextremophilic organisms. DHABs’ prokaryotes exhibit extraordinary metabolic capabilities, representing a hot topic for microbiologists and biotechnologists. These are a source of enzymes and new secondary metabolites with valuable applications in different biotechnological fields. Here, we review the current knowledge on prokaryotic diversity in DHABs, highlighting the biotechnological applications of identified taxa and isolated species. The discovery of new species and molecules from these ecosystems is expanding our understanding of life limits and is expected to have a strong impact on biotechnological applications.
Collapse
Affiliation(s)
- Stefano Varrella
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, 60131 Ancona, Italy;
| | | | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, 60131 Ancona, Italy;
- Correspondence:
| |
Collapse
|
54
|
Li M, Chen H, Wang M, Zhong Z, Zhou L, Li C. Identification and characterization of endosymbiosis-related immune genes in deep-sea mussels Gigantidas platifrons. JOURNAL OF OCEANOLOGY AND LIMNOLOGY 2020; 38:1292-1303. [PMID: 32834906 PMCID: PMC7377973 DOI: 10.1007/s00343-020-0040-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/18/2020] [Indexed: 05/15/2023]
Abstract
Deep-sea mussels of the subfamily Bathymodiolinae are common and numerically dominant species widely distributed in cold seeps and hydrothermal vents. During long-time evolution, deep-sea mussels have evolved to be well adapted to the local environment of cold seeps and hydrothermal vents by various ways, especially by establishing endosymbiosis with chemotrophic bacteria. However, biological processes underlying the establishment and maintenance of symbiosis between host mussels and symbionts are largely unclear. In the present study, Gigantidas platifrons genes possibly involved in the symbiosis with methane oxidation symbionts were identified and characterized by Lipopolysaccharide (LPS) pull-down and in situ hybridization. Five immune related proteins including Toll-like receptor 2 (TLR2), integrin, vacuolar sorting protein (VSP), matrix metalloproteinase 1 (MMP1), and leucine-rich repeat (LRR-1) were identified by LPS pull-down assay. These five proteins were all conserved in either molecular sequences or functional domains and known to be key molecules in host immune recognition, phagocytosis, and lysosome-mediated digestion. Furthermore, in situ hybridization of LRR-1, TLR2 and VSP genes was conducted to investigate their expression patterns in gill tissues of G. platifrons. Consequently, LRR-1, TLR2, and VSP genes were found expressed exclusively in the bacteriocytes of G. platifrons. Therefore, it was suggested that TLR2, integrin, VSP, MMP1, and LRR-1 might be crucial molecules in the symbiosis between G. platifrons and methane oxidation bacteria by participating in symbiosis-related immune processes.
Collapse
Affiliation(s)
- Mengna Li
- Center of Deep Sea Research and Key Laboratory of Marine Ecology & Environmental Sciences (CODR and KLMEES), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Hao Chen
- Center of Deep Sea Research and Key Laboratory of Marine Ecology & Environmental Sciences (CODR and KLMEES), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Minxiao Wang
- Center of Deep Sea Research and Key Laboratory of Marine Ecology & Environmental Sciences (CODR and KLMEES), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Zhaoshan Zhong
- Center of Deep Sea Research and Key Laboratory of Marine Ecology & Environmental Sciences (CODR and KLMEES), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Li Zhou
- Center of Deep Sea Research and Key Laboratory of Marine Ecology & Environmental Sciences (CODR and KLMEES), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Chaolun Li
- Center of Deep Sea Research and Key Laboratory of Marine Ecology & Environmental Sciences (CODR and KLMEES), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
55
|
Rilov G, Fraschetti S, Gissi E, Pipitone C, Badalamenti F, Tamburello L, Menini E, Goriup P, Mazaris AD, Garrabou J, Benedetti‐Cecchi L, Danovaro R, Loiseau C, Claudet J, Katsanevakis S. A fast-moving target: achieving marine conservation goals under shifting climate and policies. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02009. [PMID: 31549453 PMCID: PMC7027527 DOI: 10.1002/eap.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/15/2019] [Accepted: 09/04/2019] [Indexed: 05/20/2023]
Abstract
In the Anthropocene, marine ecosystems are rapidly shifting to new ecological states. Achieving effective conservation of marine biodiversity has become a fast-moving target because of both global climate change and continuous shifts in marine policies. How prepared are we to deal with this crisis? We examined EU Member States Programs of Measures designed for the implementation of EU marine environmental policies, as well as recent European Marine Spatial Plans, and discovered that climate change is rarely considered operationally. Further, our analysis revealed that monitoring programs in marine protected areas are often insufficient to clearly distinguish between impacts of local and global stressors. Finally, we suggest that while the novel global Blue Growth approach may jeopardize previous marine conservation efforts, it can also provide new conservation opportunities. Adaptive management is the way forward (e.g., preserving ecosystem functions in climate change hotspots, and identifying and targeting climate refugia areas for protection) using Marine Spatial Planning as a framework for action, especially given the push for Blue Growth.
Collapse
Affiliation(s)
- Gil Rilov
- Israel Oceanographic and Limnological ResearchNational Institute of OceanographyP.O. Box 8030Haifa31080Israel
| | - Simonetta Fraschetti
- Department of BiologyUniversity of Naples Federico IINaples80926Italy
- CoNISMaPiazzale Flaminio 9Roma00196Italy
- Stazione Zoologica Anton DohrnNaples80121Italy
| | - Elena Gissi
- University Iuav of VeniceTolentini 191Venice30135Italy
| | - Carlo Pipitone
- CNR‐IASvia Giovanni da Verrazzano 17Castellammare del Golfo91014Italy
| | - Fabio Badalamenti
- Stazione Zoologica Anton DohrnNaples80121Italy
- CNR‐IASvia Giovanni da Verrazzano 17Castellammare del Golfo91014Italy
| | - Laura Tamburello
- CoNISMaPiazzale Flaminio 9Roma00196Italy
- Stazione Zoologica Anton DohrnNaples80121Italy
| | - Elisabetta Menini
- Department of Life & Environmental SciencePolytechnic University of MarcheAncona60131Italy
| | - Paul Goriup
- NatureBureau, Votec HouseHambridge RoadNewburyRG14 5TNUnited Kingdom
| | - Antonios D. Mazaris
- Department of EcologySchool of BiologyAristotle University of ThessalonikiThessaloniki54124Greece
| | - Joaquim Garrabou
- Institute of Marine SciencesCSICPasseig Marítim de la BarcelonetaBarcelona37‐49 08003Spain
- Aix Marseille Université, Université de ToulonCNRS, IRD, MIOMarseilleFrance
| | - Lisandro Benedetti‐Cecchi
- CoNISMaPiazzale Flaminio 9Roma00196Italy
- Stazione Zoologica Anton DohrnNaples80121Italy
- Department of BiologyUniversity of PisaPisaItaly
| | - Roberto Danovaro
- Stazione Zoologica Anton DohrnNaples80121Italy
- Department of Life & Environmental SciencePolytechnic University of MarcheAncona60131Italy
| | - Charles Loiseau
- National Center for Scientific ResearchPSL Université Paris, CRIOBE, USR 3278 CNRS‐EPHE‐UPVDMaison des Océans, 195 rue Saint‐JacquesParis75005France
| | - Joachim Claudet
- National Center for Scientific ResearchPSL Université Paris, CRIOBE, USR 3278 CNRS‐EPHE‐UPVDMaison des Océans, 195 rue Saint‐JacquesParis75005France
- Laboratoire d'Excellence CORAILMooreaFrench Polynesia
| | | |
Collapse
|
56
|
Zain ul Arifeen M, Ma YN, Xue YR, Liu CH. Deep-Sea Fungi Could Be the New Arsenal for Bioactive Molecules. Mar Drugs 2019; 18:E9. [PMID: 31861953 PMCID: PMC7024341 DOI: 10.3390/md18010009] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/15/2019] [Accepted: 12/15/2019] [Indexed: 12/20/2022] Open
Abstract
Growing microbial resistance to existing drugs and the search for new natural products of pharmaceutical importance have forced researchers to investigate unexplored environments, such as extreme ecosystems. The deep-sea (>1000 m below water surface) has a variety of extreme environments, such as deep-sea sediments, hydrothermal vents, and deep-sea cold region, which are considered to be new arsenals of natural products. Organisms living in the extreme environments of the deep-sea encounter harsh conditions, such as high salinity, extreme pH, absence of sun light, low temperature and oxygen, high hydrostatic pressure, and low availability of growth nutrients. The production of secondary metabolites is one of the strategies these organisms use to survive in such harsh conditions. Fungi growing in such extreme environments produce unique secondary metabolites for defense and communication, some of which also have clinical significance. Despite being the producer of many important bioactive molecules, deep-sea fungi have not been explored thoroughly. Here, we made a brief review of the structure, biological activity, and distribution of secondary metabolites produced by deep-sea fungi in the last five years.
Collapse
Affiliation(s)
| | | | | | - Chang-Hong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; (M.Z.u.A.); (Y.-N.M.); (Y.-R.X.)
| |
Collapse
|
57
|
Rastelli E, Corinaldesi C, Dell'Anno A, Tangherlini M, Lo Martire M, Nishizawa M, Nomaki H, Nunoura T, Danovaro R. Drivers of Bacterial α- and β-Diversity Patterns and Functioning in Subsurface Hadal Sediments. Front Microbiol 2019; 10:2609. [PMID: 31798555 PMCID: PMC6868121 DOI: 10.3389/fmicb.2019.02609] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/28/2019] [Indexed: 12/28/2022] Open
Abstract
Oceanic trenches at hadal (>6,000 m) depths are hot spots of organic matter deposition and mineralization and can host abundant and active bacterial assemblages. However, the factors able to shape their biodiversity and functioning remain largely unexplored, especially in subsurface sediments. Here, we investigated the patterns and drivers of benthic bacterial α- and β-diversity (i.e., OTU richness and turnover diversity) along the vertical profile down to 1.5 m sediment depth in the Izu-Bonin Trench (at ~10,000 m water depth). The protease and glucosidase enzymatic activity rates were also determined, as a proxy of organic matter degradation potential in the different sediment layers. Molecular fingerprinting based on automated ribosomal intergenic spacer analysis (ARISA) indicated that the α-diversity of bacterial assemblages remained high throughout the vertical profile and that the turnover (β-) diversity among sediment horizons reached values up to 90% of dissimilarity. Multivariate distance-based linear modeling (DISTLM) pointed out that the diversity and functioning of the hadal bacterial assemblages were influenced by the variability of environmental conditions (including the availability of organic resources and electron donors/acceptors) and of viral production rates along the sediment vertical profile. Based on our results, we can argue that the heterogeneity of physical-chemical features of the hadal sediments of the Izu-Bonin Trench contribute to increase the niches availability for different bacterial taxa, while viruses contribute to maintain high levels of bacterial turnover diversity and to enhance organic matter cycling in these extremely remote and isolated ecosystems.
Collapse
Affiliation(s)
- Eugenio Rastelli
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Ancona, Italy
| | - Antonio Dell'Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Michael Tangherlini
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Marco Lo Martire
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Manabu Nishizawa
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Hidetaka Nomaki
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Roberto Danovaro
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.,Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
58
|
Saeedi H, Reimer JD, Brandt MI, Dumais PO, Jażdżewska AM, Jeffery NW, Thielen PM, Costello MJ. Global marine biodiversity in the context of achieving the Aichi Targets: ways forward and addressing data gaps. PeerJ 2019; 7:e7221. [PMID: 31681508 PMCID: PMC6824330 DOI: 10.7717/peerj.7221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/31/2019] [Indexed: 01/13/2023] Open
Abstract
In 2010, the Conference of the Parties of the Convention on Biological Diversity agreed on the Strategic Plan for Biodiversity 2011–2020 in Aichi Prefecture, Japan. As this plan approaches its end, we discussed whether marine biodiversity and prediction studies were nearing the Aichi Targets during the 4th World Conference on Marine Biodiversity held in Montreal, Canada in June 2018. This article summarises the outcome of a five-day group discussion on how global marine biodiversity studies should be focused further to better understand the patterns of biodiversity. We discussed and reviewed seven fundamental biodiversity priorities related to nine Aichi Targets focusing on global biodiversity discovery and predictions to improve and enhance biodiversity data standards (quantity and quality), tools and techniques, spatial and temporal scale framing, and stewardship and dissemination. We discuss how identifying biodiversity knowledge gaps and promoting efforts have and will reduce such gaps, including via the use of new databases, tools and technology, and how these resources could be improved in the future. The group recognised significant progress toward Target 19 in relation to scientific knowledge, but negligible progress with regard to Targets 6 to 13 which aimed to safeguard and reduce human impacts on biodiversity.
Collapse
Affiliation(s)
- Hanieh Saeedi
- Senckenberg Research Institute and Natural History Museum, Frankfurt am Main, Germany.,FB 15 Biological Sciences Institute for Ecology, Diversity and Evolution Biologicum, Goethe University of Frankfurt, Frankfurt am Main, Germany.,Senckenberg Research Institute and Natural History Museum, OBIS Data Manager, Deep-sea Node, Frankfurt am Main, Germany
| | - James Davis Reimer
- Marine Invertebrate Systematics & Ecology Laboratory, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | | | | | - Anna Maria Jażdżewska
- Laboratory of Polar Biology and Oceanobiology, Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Nicholas W Jeffery
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada
| | - Peter M Thielen
- Research and Exploratory Development Department, Johns Hopkins Applied Physics Laboratory, Laurel, MD, United States of America
| | - Mark John Costello
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
59
|
Chen H, Wang M, Zhang H, Wang H, Lv Z, Zhou L, Zhong Z, Lian C, Cao L, Li C. An LRR-domain containing protein identified in Bathymodiolus platifrons serves as intracellular recognition receptor for the endosymbiotic methane-oxidation bacteria. FISH & SHELLFISH IMMUNOLOGY 2019; 93:354-360. [PMID: 31306759 DOI: 10.1016/j.fsi.2019.07.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/03/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
As domain species in seep and vent ecosystem, Bathymodioline mussels has been regarded as a model organism in investigating deep sea chemosymbiosis. However, mechanisms underlying their symbiosis with chemosynthetic bacteria, especially how the host recognizes symbionts, have remained largely unsolved. In the present study, a modified pull-down assay was conducted using enriched symbiotic methane-oxidation bacteria as bait and gill proteins of Bathymodiolus platifrons as a target to isolate pattern recognition receptors involved in the immune recognition of symbionts. As a result, a total of 47 proteins including BpLRR-1 were identified from the pull-down assay. It was found that complete cDNA sequence of BpLRR-1 contained an open reading frame of 1479 bp and could encode a protein of 492 amino acid residues with no signal peptide or transmembrane region but eight LRR motif and two EFh motif. The binding patterns of BpLRR-1 against microbial associated molecular patterns were subsequently investigated by surface plasmon resonance analysis and LPS pull-down assay. Consequently, BpLRR-1 was found with high binding affinity with LPS and suggested as a key molecule in recognizing symbionts. Besides, transcripts of BpLRR-1 were found decreased significantly during symbiont depletion assay yet increased rigorously during symbionts or nonsymbiotic Vibrio alginolyticus challenge, further demonstrating its participation in the chemosynthetic symbiosis. Collectively, these results suggest that BpLRR-1 could serve as an intracellular recognition receptor for the endosymbionts, providing new hints for understanding the immune recognition in symbiosis of B. platifrons.
Collapse
Affiliation(s)
- Hao Chen
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Minxiao Wang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Huan Zhang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Hao Wang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Zhao Lv
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Li Zhou
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Zhaoshan Zhong
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Chao Lian
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Lei Cao
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Chaolun Li
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 10049, China.
| |
Collapse
|
60
|
Boos H, Rodrigues C, Araujo PB. A retrospective analysis of scientific publications on the deep sea from 1987 to 2016. AN ACAD BRAS CIENC 2019; 91:e20180414. [PMID: 31411255 DOI: 10.1590/0001-3765201920180414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/13/2018] [Indexed: 11/22/2022] Open
Abstract
The deep sea remains the least known biome. Despite this fact, anthropic activities have affected these regions in various ways. The objective of this study was to outline the scientific production scenario based on deep sea research and to analyze trends present in the literature. For this, the bibliographical resources available from the Web of Science (WoS) were surveyed. Between 1987 and 2016, 11,079 articles on the deep sea were published. Growth was over 100% from the first to second decade and 75% from the second to third. The most productive countries were the USA, Germany, France, England and Japan. Of the 404 journals that published articles on the deep sea, 10% accounted for approximately 60% of the total published articles. The keyword with the highest occurrence was "diversity". In the first two decades, the keywords with the greatest "strength" were related to research on mining, especially for hydrocarbons. The description of new species and the analysis of the effects of climate change appear to be emerging trends in deep sea research. Mining continues to be primarily responsible for driving the development of deep sea research.
Collapse
Affiliation(s)
- Harry Boos
- Centro Nacional de Pesquisa e Conservação da Biodiversidade Marinha do Sudeste e Sul/CEPSUL/ICMBio, Av. Carlos Ely Castro, 195, 88301-445 Itajaí, SC, Brazil.,Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul/UFRGS, Av. Bento Gonçalves, 9500, Prédio 43435, 91501-970 Porto Alegre, RS, Brazil
| | - Charles Rodrigues
- Biblioteca Pública Municipal e Escolar Norberto Candido Silveira Júnior, Rua Heitor Liberato, 1100, 88304-101 Itajaí, SC, Brazil
| | - Paula B Araujo
- Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul/UFRGS, Av. Bento Gonçalves, 9500, Prédio 43435, 91501-970 Porto Alegre, RS, Brazil
| |
Collapse
|
61
|
Marine Fungi: Biotechnological Perspectives from Deep-Hypersaline Anoxic Basins. DIVERSITY 2019. [DOI: 10.3390/d11070113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Deep-sea hypersaline anoxic basins (DHABs) are one of the most hostile environments on Earth. Even though DHABs have hypersaline conditions, anoxia and high hydrostatic pressure, they host incredible microbial biodiversity. Among eukaryotes inhabiting these systems, recent studies demonstrated that fungi are a quantitatively relevant component. Here, fungi can benefit from the accumulation of large amounts of organic material. Marine fungi are also known to produce bioactive molecules. In particular, halophilic and halotolerant fungi are a reservoir of enzymes and secondary metabolites with valuable applications in industrial, pharmaceutical, and environmental biotechnology. Here we report that among the fungal taxa identified from the Mediterranean and Red Sea DHABs, halotolerant halophilic species belonging to the genera Aspergillus and Penicillium can be used or screened for enzymes and bioactive molecules. Fungi living in DHABs can extend our knowledge about the limits of life, and the discovery of new species and molecules from these environments can have high biotechnological potential.
Collapse
|
62
|
Pinheiro M, Caetano M, Neuparth T, Barros S, Soares J, Raimundo J, Vale C, Coimbra J, Castro LFC, Santos MM. Ecotoxicology of deep-sea environments: Functional and biochemical effects of suspended sediments in the model species Mytilus galloprovincialis under hyperbaric conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:218-225. [PMID: 30903895 DOI: 10.1016/j.scitotenv.2019.03.196] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
The deep-sea is the biggest ecosystem in the world and is characterized by extreme conditions such as high pressure, low temperatures and absence or limited light. Despite the scarce studies due to inaccessibility, these ecosystems are considered highly biodiverse. The deep-sea is subjected to anthropogenic stressors with deep-sea mining being a likely new form of disruption. Understanding how it affects the surrounding environments is paramount to develop guidelines to protect sensitive habitats and allow for responsible exploitation of resources. One of the potential stressors associated with deep-sea mining are the sediment laden plumes that can be generated during the mining process. The present study examined, for the first time, the effects of suspended sediments (0, 1, 2 and 4 g/L) in the model mussel species, Mytilus galloprovincialis, under hyperbaric conditions (1, 4 and 50 Bar). Functional endpoints, i.e. feeding assays, together with biochemical biomarkers of oxidative stress [catalase (CAT), lipid peroxidation (LPO), glutathione-s-transferase (GST) and superoxide dismutase (SOD)] were studied in juvenile mussels. The filtration rate (FR) of M. galloprovincialis decreased with the increment in the sediment concentrations, for all tested pressure conditions (1, 4 and 50 Bar). Significant alterations were also observed for all tested biomarkers, being sediment and pressure-dependent. Interestingly, pressure had an effect in GST activity, that increased in the 4 and 50 Bar experiments in comparison with the results at 1 Bar. Remarkably, filtration rates were significantly affected by pressure. These findings will support the filling of the knowledge gaps related with the hazard assessment of deep-sea mining associated stressors.
Collapse
Affiliation(s)
- Marlene Pinheiro
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Miguel Caetano
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; IPMA - Portuguese Institute for Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-006 Lisboa, Portugal
| | - Teresa Neuparth
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Susana Barros
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Joana Soares
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Joana Raimundo
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; IPMA - Portuguese Institute for Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-006 Lisboa, Portugal
| | - Carlos Vale
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - João Coimbra
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - L Filipe C Castro
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal
| | - Miguel M Santos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal.
| |
Collapse
|
63
|
Stefanoudis PV, Rivers M, Ford H, Yashayaev IM, Rogers AD, Woodall LC. Changes in zooplankton communities from epipelagic to lower mesopelagic waters. MARINE ENVIRONMENTAL RESEARCH 2019; 146:1-11. [PMID: 30879698 DOI: 10.1016/j.marenvres.2019.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/19/2019] [Accepted: 02/28/2019] [Indexed: 06/09/2023]
Abstract
Zooplankton form a trophic link between primary producers and higher trophic levels, and exert significant influence on the vertical transport of carbon through the water column ('biological carbon pump'). Using a MultiNet we sampled and studied mesozooplankton communities (i.e. >0.2 mm) from six locations around Bermuda targeting four depth zones: ∼0-200 m, ∼200-400 m, ∼400-600 m (deep-scattering layer), and ∼600-800 m. Copepoda, our focal taxonomic group, consistently dominated samples (∼80% relative abundance). We report declines in zooplankton and copepod abundance with depth, concurrent with decreases in food availability. Taxonomic richness was lowest at depth and below the deep-scattering layer. In contrast, copepod diversity peaked at these depths, suggesting lower competitive displacement in these more food-limited waters. Finally, omnivory and carnivory, were the dominant trophic traits, each one affecting the biological carbon pump in a different way. This highlights the importance of incorporating data on zooplankton food web structure in future modelling of global ocean carbon cycling.
Collapse
Affiliation(s)
- Paris V Stefanoudis
- Nekton Foundation, Begbroke Science Park, Begbroke Hill, Woodstock Road, Begbroke, Oxfordshire, OX5 1PF, UK; Department of Zoology, University of Oxford, South Parks Road, Oxford, OX3 1PS, UK.
| | - Molly Rivers
- Nekton Foundation, Begbroke Science Park, Begbroke Hill, Woodstock Road, Begbroke, Oxfordshire, OX5 1PF, UK
| | - Helen Ford
- Nekton Foundation, Begbroke Science Park, Begbroke Hill, Woodstock Road, Begbroke, Oxfordshire, OX5 1PF, UK; School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, UK
| | - Igor M Yashayaev
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, B2Y 4A2, Canada
| | - Alex D Rogers
- Nekton Foundation, Begbroke Science Park, Begbroke Hill, Woodstock Road, Begbroke, Oxfordshire, OX5 1PF, UK; Department of Zoology, University of Oxford, South Parks Road, Oxford, OX3 1PS, UK
| | - Lucy C Woodall
- Nekton Foundation, Begbroke Science Park, Begbroke Hill, Woodstock Road, Begbroke, Oxfordshire, OX5 1PF, UK; Department of Zoology, University of Oxford, South Parks Road, Oxford, OX3 1PS, UK
| |
Collapse
|
64
|
Invasive biota in the deep-sea Mediterranean: an emerging issue in marine conservation and management. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1826-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
65
|
Danovaro R. Oceans: going deep into their past to understand their future. Curr Biol 2018. [DOI: 10.1016/j.cub.2018.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
66
|
Castilla IA, Woods DF, Reen FJ, O'Gara F. Harnessing Marine Biocatalytic Reservoirs for Green Chemistry Applications through Metagenomic Technologies. Mar Drugs 2018; 16:E227. [PMID: 29973493 PMCID: PMC6071119 DOI: 10.3390/md16070227] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/13/2018] [Accepted: 06/22/2018] [Indexed: 01/24/2023] Open
Abstract
In a demanding commercial world, large-scale chemical processes have been widely utilised to satisfy consumer related needs. Chemical industries are key to promoting economic growth and meeting the requirements of a sustainable industrialised society. The market need for diverse commodities produced by the chemical industry is rapidly expanding globally. Accompanying this demand is an increased threat to the environment and to human health, due to waste produced by increased industrial production. This increased demand has underscored the necessity to increase reaction efficiencies, in order to reduce costs and increase profits. The discovery of novel biocatalysts is a key method aimed at combating these difficulties. Metagenomic technology, as a tool for uncovering novel biocatalysts, has great potential and applicability and has already delivered many successful achievements. In this review we discuss, recent developments and achievements in the field of biocatalysis. We highlight how green chemistry principles through the application of biocatalysis, can be successfully promoted and implemented in various industrial sectors. In addition, we demonstrate how two novel lipases/esterases were mined from the marine environment by metagenomic analysis. Collectively these improvements can result in increased efficiency, decreased energy consumption, reduced waste and cost savings for the chemical industry.
Collapse
Affiliation(s)
- Ignacio Abreu Castilla
- BIOMERIT Research Centre, School of Microbiology, University College Cork, T12 K8AF Cork, Ireland.
| | - David F Woods
- BIOMERIT Research Centre, School of Microbiology, University College Cork, T12 K8AF Cork, Ireland.
| | - F Jerry Reen
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland.
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork, T12 K8AF Cork, Ireland.
- Telethon Kids Institute, Perth, WA 6008, Australia.
- Human Microbiome Programme, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| |
Collapse
|
67
|
Climate change impacts on the biota and on vulnerable habitats of the deep Mediterranean Sea. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2018. [DOI: 10.1007/s12210-018-0725-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
68
|
Know the distribution to assess the changes: Mediterranean cold-water coral bioconstructions. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2018. [DOI: 10.1007/s12210-018-0718-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
69
|
|
70
|
Denton JSS. Diversification Patterns of Lanternfishes Reveal Multiple Rate Shifts in a Critical Mesopelagic Clade Targeted for Human Exploitation. Curr Biol 2018. [PMID: 29526592 DOI: 10.1016/j.cub.2018.01.082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mesopelagic (midwater) and deep-sea environments together comprise over 90% of the volume of the world ocean [1] and provide services that are only recently becoming recognized [2]. One of the most significant of these services relates to midwater fish biomass, recently estimated to be two orders of magnitude larger than the current worldwide fisheries catch [3, 4]. Calls to exploit midwater fish biomass have increased despite warnings about the unknown recovery potential of such organisms [2] and despite existing data suggesting that deep-sea fishes could be classified as endangered [5]. Here, to provide a null model for the respondability of midwater fishes, I use lanternfishes-which comprise the majority of worldwide midwater fish biomass [6]-to examine the diversification response of a critical midwater clade to oceanic changes over evolutionary timescales, including several extinction and turnover events. Using a time-calibrated molecular phylogeny based on seven autosomal protein-coding loci, with over 50% species sampling and three ingroup node calibrations, I show that lanternfishes exhibit a continuously increasing diversification rate, consistent with nonequilibrium speciation dynamics, and three major evolutionary rate shift locations with timing that is similar to those of marine clades in more well-known environments. These results suggest that lanternfish diversification patterns overlapped with major events in the physical partitioning of the ocean volume and that the clade has responded positively to a range of pre-Anthropocene extinction drivers [7]. However, lanternfish respondability to modern extinction drivers-habitat loss and overexploitation-is best addressed with populational and ecological data and remains largely unknown.
Collapse
Affiliation(s)
- John S S Denton
- Department of Vertebrate Paleontology, American Museum of Natural History, Central Park West @ 79th Street, New York, NY 10024, USA.
| |
Collapse
|
71
|
Danovaro R, Corinaldesi C, Dell'Anno A, Rastelli E. Potential impact of global climate change on benthic deep-sea microbes. FEMS Microbiol Lett 2018; 364:4553516. [PMID: 29045616 DOI: 10.1093/femsle/fnx214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/12/2017] [Indexed: 11/12/2022] Open
Abstract
Benthic deep-sea environments are the largest ecosystem on Earth, covering ∼65% of the Earth surface. Microbes inhabiting this huge biome at all water depths represent the most abundant biological components and a relevant portion of the biomass of the biosphere, and play a crucial role in global biogeochemical cycles. Increasing evidence suggests that global climate changes are affecting also deep-sea ecosystems, both directly (causing shifts in bottom-water temperature, oxygen concentration and pH) and indirectly (through changes in surface oceans' productivity and in the consequent export of organic matter to the seafloor). However, the responses of the benthic deep-sea biota to such shifts remain largely unknown. This applies particularly to deep-sea microbes, which include bacteria, archaea, microeukaryotes and their viruses. Understanding the potential impacts of global change on the benthic deep-sea microbial assemblages and the consequences on the functioning of the ocean interior is a priority to better forecast the potential consequences at global scale. Here we explore the potential changes in the benthic deep-sea microbiology expected in the coming decades using case studies on specific systems used as test models.
Collapse
Affiliation(s)
- Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.,Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Cinzia Corinaldesi
- Department of Sciences and Engineering of Materials, Environment and Urbanistics, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Antonio Dell'Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Eugenio Rastelli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.,Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
72
|
Abstract
People have an enduring fascination with the biology of the oceans. When the BBC's 'Blue Planet' series first aired on British television almost a quarter of the nation tuned in. As the diversity of science in this special issue of Current Biology attests, the ocean presents a challenging environment for study while also exhibiting some of the most profound and disruptive symptoms of global change. Marine science has made major advances in the past few decades, which were primarily made possible through important technological innovations. This progress notwithstanding, there are persistent challenges in achieving an understanding of marine processes at appropriate scales and delivering meaningful insights to guide ocean policy and management. Naturally, the examples chosen below betray my ecological leanings, but I hope that many of the issues raised resonate with readers in many different disciplines.
Collapse
Affiliation(s)
- Peter J Mumby
- Marine Spatial Ecology Lab, School of Biological Sciences & ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
73
|
Costello MJ, Chaudhary C. Marine Biodiversity, Biogeography, Deep-Sea Gradients, and Conservation. Curr Biol 2017; 27:R511-R527. [DOI: 10.1016/j.cub.2017.04.060] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|