51
|
Mylnikov AP, Tikhonenkov DV, Karpov SA, Wylezich C. Microscopical Studies on Ministeria vibrans Tong, 1997 (Filasterea) Highlight the Cytoskeletal Structure of the Common Ancestor of Filasterea, Metazoa and Choanoflagellata. Protist 2019; 170:385-396. [DOI: 10.1016/j.protis.2019.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 06/22/2019] [Accepted: 07/23/2019] [Indexed: 01/06/2023]
|
52
|
Southworth J, Armitage P, Fallon B, Dawson H, Bryk J, Carr M. Patterns of Ancestral Animal Codon Usage Bias Revealed through Holozoan Protists. Mol Biol Evol 2019; 35:2499-2511. [PMID: 30169693 PMCID: PMC6188563 DOI: 10.1093/molbev/msy157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Choanoflagellates and filastereans are the closest known single celled relatives of Metazoa within Holozoa and provide insight into how animals evolved from their unicellular ancestors. Codon usage bias has been extensively studied in metazoans, with both natural selection and mutation pressure playing important roles in different species. The disparate nature of metazoan codon usage patterns prevents the reconstruction of ancestral traits. However, traits conserved across holozoan protists highlight characteristics in the unicellular ancestors of Metazoa. Presented here are the patterns of codon usage in the choanoflagellates Monosiga brevicollis and Salpingoeca rosetta, as well as the filasterean Capsaspora owczarzaki. Codon usage is shown to be remarkably conserved. Highly biased genes preferentially use GC-ending codons, however there is limited evidence this is driven by local mutation pressure. The analyses presented provide strong evidence that natural selection, for both translational accuracy and efficiency, dominates codon usage bias in holozoan protists. In particular, the signature of selection for translational accuracy can be detected even in the most weakly biased genes. Biased codon usage is shown to have coevolved with the tRNA species, with optimal codons showing complementary binding to the highest copy number tRNA genes. Furthermore, tRNA modification is shown to be a common feature for amino acids with higher levels of degeneracy and highly biased genes show a strong preference for using modified tRNAs in translation. The translationally optimal codons defined here will be of benefit to future transgenics work in holozoan protists, as their use should maximise protein yields from edited transgenes.
Collapse
Affiliation(s)
- Jade Southworth
- Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Paul Armitage
- Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Brandon Fallon
- Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Holly Dawson
- Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Jaroslaw Bryk
- Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Martin Carr
- Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, United Kingdom
| |
Collapse
|
53
|
Khadka B, Gupta RS. Novel Molecular Signatures in the PIP4K/PIP5K Family of Proteins Specific for Different Isozymes and Subfamilies Provide Important Insights into the Evolutionary Divergence of this Protein Family. Genes (Basel) 2019; 10:genes10040312. [PMID: 31010098 PMCID: PMC6523245 DOI: 10.3390/genes10040312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023] Open
Abstract
Members of the PIP4K/PIP5K family of proteins, which generate the highly important secondary messenger phosphatidylinositol-4,5-bisphosphate, play central roles in regulating diverse signaling pathways. In eukaryotic organisms, multiple isozymes and subfamilies of PIP4K/PIP5K proteins are found and it is of much interest to understand their evolution and species distribution and what unique molecular and biochemical characteristics distinguish specific isozymes and subfamilies of proteins. We report here the species distribution of different PIP4K/PIP5K family of proteins in eukaryotic organisms and phylogenetic analysis based on their protein sequences. Our results indicate that the distinct homologs of both PIP4K and PIP5K are found in different organisms belonging to the Holozoa clade of eukaryotes, which comprises of various metazoan phyla as well as their close unicellular relatives Choanoflagellates and Filasterea. In contrast, the deeper-branching eukaryotic lineages, as well as plants and fungi, contain only a single homolog of the PIP4K/PIP5K proteins. In parallel, our comparative analyses of PIP4K/PIP5K protein sequences have identified six highly-specific molecular markers consisting of conserved signature indels (CSIs) that are uniquely shared by either the PIP4K or PIP5K proteins, or both, or specific subfamilies of these proteins. Of these molecular markers, 2 CSIs are distinctive characteristics of all PIP4K homologs, 1 CSI distinguishes the PIP4K and PIP5K homologs from the Holozoa clade of species from the ancestral form of PIP4K/PIP5K found in deeper-branching eukaryotic lineages. The remaining three CSIs are specific for the PIP5Kα, PIP5Kβ, and PIP4Kγ subfamilies of proteins from vertebrate species. These molecular markers provide important means for distinguishing different PIP4K/PIP5K isozymes as well as some of their subfamilies. In addition, the distribution patterns of these markers in different isozymes provide important insights into the evolutionary divergence of PIP4K/PIP5K proteins. Our results support the view that the Holozoa clade of eukaryotic organisms shared a common ancestor exclusive of the other eukaryotic lineages and that the initial gene duplication event leading to the divergence of distinct types of PIP4K and PIP5K homologs occurred in a common ancestor of this clade. Based on the results gleaned from different studies presented here, a model for the evolutionary divergence of the PIP4K/PIP5K family of proteins is presented.
Collapse
Affiliation(s)
- Bijendra Khadka
- Department of Biochemistry and Biomedical Sciences McMaster University, Hamilton, ON L8N 3Z5, Canada.
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences McMaster University, Hamilton, ON L8N 3Z5, Canada.
| |
Collapse
|
54
|
Humphries JD, Chastney MR, Askari JA, Humphries MJ. Signal transduction via integrin adhesion complexes. Curr Opin Cell Biol 2019; 56:14-21. [PMID: 30195153 DOI: 10.1016/j.ceb.2018.08.004] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/19/2022]
Abstract
Integrin adhesion complexes (IACs) have evolved over millions of years to integrate metazoan cells physically with their microenvironment. It is presumed that the simultaneous interaction of thousands of integrin receptors to binding sites in anisotropic extracellular matrix (ECM) networks enables cells to assemble a topological description of the chemical and mechanical properties of their surroundings. This information is then converted into intracellular signals that influence cell positioning, differentiation and growth, but may also influence other fundamental processes, such as protein synthesis and energy regulation. In this way, changes in the microenvironment can influence all aspects of cell phenotype. Current concepts envisage cell fate decisions being controlled by the integrated signalling output of myriad receptor clusters, but the mechanisms are not understood. Analyses of the adhesome, the complement of proteins attracted to the vicinity of IACs, are now providing insights into some of the primordial links connecting these processes. This article reviews recent advances in our understanding of the composition of IACs, the mechanisms used to transduce signals through these junctions, and the links between IACs and cell phenotype.
Collapse
Affiliation(s)
- Jonathan D Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Megan R Chastney
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Janet A Askari
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Martin J Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
55
|
Irwin NA, Tikhonenkov DV, Hehenberger E, Mylnikov AP, Burki F, Keeling PJ. Phylogenomics supports the monophyly of the Cercozoa. Mol Phylogenet Evol 2019; 130:416-423. [DOI: 10.1016/j.ympev.2018.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/06/2018] [Indexed: 01/09/2023]
|
56
|
Denbo S, Aono K, Kai T, Yagasaki R, Ruiz-Trillo I, Suga H. Revision of the Capsaspora genome using read mating information adjusts the view on premetazoan genome. Dev Growth Differ 2018; 61:34-42. [PMID: 30585312 DOI: 10.1111/dgd.12587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 11/30/2022]
Abstract
The genome sequences of unicellular holozoans, the closest relatives to animals, are shedding light on the evolution of animal multicellularity, shaping the genetic contents of the putative premetazoans. However, the assembly quality of the genomes remains poor compared to the major model organisms such as human and fly. Improving the assembly is critical for precise comparative genomics studies and further molecular biological studies requiring accurate sequence information such as enhancer analysis and genome editing. In this report, we present a new strategy to improve the assembly by fully exploiting the information of Illumina mate-pair reads. By visualizing the distance and orientation of the mapped read pairs, we could highlight the regions where possible assembly errors exist in the genome sequence of Capsaspora, a lineage of unicellular holozoans. Manual modification of these errors repaired 590 assembly problems in total and reassembled 84 supercontigs into 55. Our telomere prediction analysis using the read pairs containing the pan-eukaryotic telomere-like sequence identified at least 13 chromosomes. The resulting new assembly posed us a re-annotation of 112 genes, including 15 putative receptor protein tyrosine kinases. Our strategy thus provides a useful approach for improving assemblies of draft genomes, and the new Capsaspora genome offers us an opportunity to adjust the view on the genome of the unicellular animal ancestor.
Collapse
Affiliation(s)
- Seitaro Denbo
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Japan
| | - Katsutoshi Aono
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Japan
| | - Takaaki Kai
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Japan
| | - Rei Yagasaki
- Department of Zoology, Division of Biological Sciences, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain.,Departament de Genètica, Microbiologia i Estadística, Facultat de Bilogia, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain.,ICREA, Barcelona, Spain
| | - Hiroshi Suga
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Japan
| |
Collapse
|
57
|
Torruella G, Grau-Bové X, Moreira D, Karpov SA, Burns JA, Sebé-Pedrós A, Völcker E, López-García P. Global transcriptome analysis of the aphelid Paraphelidium tribonemae supports the phagotrophic origin of fungi. Commun Biol 2018; 1:231. [PMID: 30588510 PMCID: PMC6299283 DOI: 10.1038/s42003-018-0235-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/22/2018] [Indexed: 01/20/2023] Open
Abstract
Aphelids are little-known phagotrophic parasites of algae whose life cycle and morphology resemble those of the parasitic rozellids (Cryptomycota, Rozellomycota). In previous phylogenetic analyses of RNA polymerase and rRNA genes, aphelids, rozellids and Microsporidia (parasites of animals) formed a clade, named Opisthosporidia, which appeared as the sister group to Fungi. However, the statistical support for the Opisthosporidia was always moderate. Here, we generated full life-cycle transcriptome data for the aphelid species Paraphelidium tribonemae. In-depth multi-gene phylogenomic analyses using several protein datasets place this aphelid as the closest relative of fungi to the exclusion of rozellids and Microsporidia. In contrast with the comparatively reduced Rozella allomycis genome, we infer a rich, free-living-like aphelid proteome, with a metabolism similar to fungi, including cellulases likely involved in algal cell-wall penetration and enzymes involved in chitin biosynthesis. Our results suggest that fungi evolved from complex aphelid-like ancestors that lost phagotrophy and became osmotrophic.
Collapse
Affiliation(s)
- Guifré Torruella
- Unité d’Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France
| | - Xavier Grau-Bové
- Institut de Biologia Evolutiva, Universitat Pompeu Fabra-CSIC, 08003 Barcelona, Catalonia Spain
| | - David Moreira
- Unité d’Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France
| | - Sergey A. Karpov
- Unité d’Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France
- Zoological Institute, Russian Academy of Sciences and St. Petersburg State University, St. Petersburg, Russian Federation 199134
| | - John A. Burns
- Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, 10024-5192 NY USA
| | | | | | - Purificación López-García
- Unité d’Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France
| |
Collapse
|
58
|
Arroyo AS, López-Escardó D, Kim E, Ruiz-Trillo I, Najle SR. Novel Diversity of Deeply Branching Holomycota and Unicellular Holozoans Revealed by Metabarcoding in Middle Paraná River, Argentina. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00099] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
59
|
Hernandez AM, Ryan JF. Horizontally transferred genes in the ctenophore Mnemiopsis leidyi. PeerJ 2018; 6:e5067. [PMID: 29922518 PMCID: PMC6005172 DOI: 10.7717/peerj.5067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 06/04/2018] [Indexed: 12/16/2022] Open
Abstract
Horizontal gene transfer (HGT) has had major impacts on the biology of a wide range of organisms from antibiotic resistance in bacteria to adaptations to herbivory in arthropods. A growing body of literature shows that HGT between non-animals and animals is more commonplace than previously thought. In this study, we present a thorough investigation of HGT in the ctenophore Mnemiopsis leidyi. We applied tests of phylogenetic incongruence to identify nine genes that were likely transferred horizontally early in ctenophore evolution from bacteria and non-metazoan eukaryotes. All but one of these HGTs (an uncharacterized protein) are homologous to characterized enzymes, supporting previous observations that genes encoding enzymes are more likely to be retained after HGT events. We found that the majority of these nine horizontally transferred genes were expressed during development, suggesting that they are active and play a role in the biology of M. leidyi. This is the first report of HGT in ctenophores, and contributes to an ever-growing literature on the prevalence of genetic information flowing between non-animals and animals.
Collapse
Affiliation(s)
- Alexandra M Hernandez
- Whitney Laboratory for Marine Bioscience, St. Augustine, FL, USA.,Department of Biology, University of Florida, Gainesville, FL, USA
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, St. Augustine, FL, USA.,Department of Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
60
|
Paps J. What Makes an Animal? The Molecular Quest for the Origin of the Animal Kingdom. Integr Comp Biol 2018; 58:654-665. [DOI: 10.1093/icb/icy036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jordi Paps
- School of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| |
Collapse
|
61
|
Abstract
Creolimax fragrantissima is a member of the ichthyosporean clade, the earliest branching holozoan lineage. The kinome of Creolimax is markedly reduced as compared to those of metazoans. In particular, Creolimax possesses a single non-receptor tyrosine kinase: CfrSrc, the homolog of c-Src kinase. CfrSrc is an active tyrosine kinase, and it is expressed throughout the lifecycle of Creolimax. In animal cells, the regulatory mechanism for Src involves tyrosine phosphorylation at a C-terminal site by Csk kinase. The lack of Csk in Creolimax suggests that a different mode of negative regulation must exist for CfrSrc. We demonstrate that CfrPTP-3, one of the 7 tyrosine-specific phosphatases (PTPs) in Creolimax, suppresses CfrSrc activity in vitro and in vivo. Transcript levels of CfrPTP-3 and two other PTPs are significantly higher than that of CfrSrc in the motile amoeboid and sessile multinucleate stages of the Creolimax life cycle. Thus, in the context of a highly reduced kinome, a pre-existing PTP may have been co-opted for the role of Src regulation. Creolimax represents a unique model system to study the adaptation of tyrosine kinase signaling and regulatory mechanisms.
Collapse
|
62
|
Heger TJ, Giesbrecht IJW, Gustavsen J, Del Campo J, Kellogg CTE, Hoffman KM, Lertzman K, Mohn WW, Keeling PJ. High-throughput environmental sequencing reveals high diversity of litter and moss associated protist communities along a gradient of drainage and tree productivity. Environ Microbiol 2018; 20:1185-1203. [PMID: 29417706 DOI: 10.1111/1462-2920.14061] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 11/29/2022]
Abstract
Although previous studies, mostly based on microscopy analyses of a few groups of protists, have suggested that protists are abundant and diverse in litter and moss habitats, the overall diversity of moss and litter associated protists remains elusive. Here, high-throughput environmental sequencing was used to characterize the diversity and community structure of litter- and moss-associated protists along a gradient of soil drainage and forest primary productivity in a temperate rainforest in British Columbia. We identified 3262 distinct protist OTUs from 36 sites. Protists were strongly structured along the landscape gradient, with a significant increase in alpha diversity from the blanket bog ecosystem to the zonal forest ecosystem. Among all investigated environmental variables, calcium content was the most strongly associated with the community composition of protists, but substrate composition, plant cover and other edaphic factors were also significantly correlated with these communities. Furthermore, a detailed phylogenetic analysis of unicellular opisthokonts identified OTUs covering most lineages, including novel OTUs branching with Discicristoidea, the sister group of Fungi, and with Filasterea, one of the closest unicellular relatives to animals. Altogether, this study provides unprecedented insight into the community composition of moss- and litter-associated protists.
Collapse
Affiliation(s)
- Thierry J Heger
- Soil Science Group, CHANGINS, University of Applied Sciences and Arts Western Switzerland, Delémont, Switzerland.,Botany Department, University of British Columbia, Vancouver, BC, Canada.,Hakai Institute, Heriot Bay, BC, Canada
| | - Ian J W Giesbrecht
- Hakai Institute, Heriot Bay, BC, Canada.,School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC, Canada
| | - Julia Gustavsen
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Javier Del Campo
- Botany Department, University of British Columbia, Vancouver, BC, Canada.,Hakai Institute, Heriot Bay, BC, Canada
| | - Colleen T E Kellogg
- Hakai Institute, Heriot Bay, BC, Canada.,Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Kira M Hoffman
- Hakai Institute, Heriot Bay, BC, Canada.,School of Environmental Studies, University of Victoria, Victoria, BC, Canada
| | - Ken Lertzman
- Hakai Institute, Heriot Bay, BC, Canada.,School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC, Canada
| | - William W Mohn
- Hakai Institute, Heriot Bay, BC, Canada.,Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Patrick J Keeling
- Botany Department, University of British Columbia, Vancouver, BC, Canada.,Hakai Institute, Heriot Bay, BC, Canada
| |
Collapse
|
63
|
Schenkelaars Q, Pratlong M, Kodjabachian L, Fierro-Constain L, Vacelet J, Le Bivic A, Renard E, Borchiellini C. Animal multicellularity and polarity without Wnt signaling. Sci Rep 2017; 7:15383. [PMID: 29133828 PMCID: PMC5684314 DOI: 10.1038/s41598-017-15557-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/30/2017] [Indexed: 12/24/2022] Open
Abstract
Acquisition of multicellularity is a central event in the evolution of Eukaryota. Strikingly, animal multicellularity coincides with the emergence of three intercellular communication pathways - Notch, TGF-β and Wnt - all considered as hallmarks of metazoan development. By investigating Oopsacas minuta and Aphrocallistes vastus, we show here that the emergence of a syncytium and plugged junctions in glass sponges coincides with the loss of essential components of the Wnt signaling (i.e. Wntless, Wnt ligands and Disheveled), whereas core components of the TGF-β and Notch modules appear unaffected. This suggests that Wnt signaling is not essential for cell differentiation, polarity and morphogenesis in glass sponges. Beyond providing a comparative study of key developmental toolkits, we define here the first case of a metazoan phylum that maintained a level of complexity similar to its relatives despite molecular degeneration of Wnt pathways.
Collapse
Affiliation(s)
- Quentin Schenkelaars
- Aix Marseille Université, CNRS, IRD, IMBE UMR 7263, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Station Marine d'Endoume, Marseille, France.
- Department of Genetics and Evolution, University of Geneva, Sciences III, 30 Quai Ernest Ansermet, CH-1211, Geneva 4, Switzerland.
| | - Marine Pratlong
- Aix Marseille Université, CNRS, IRD, IMBE UMR 7263, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Station Marine d'Endoume, Marseille, France
- Aix Marseille Université, CNRS, Centrale Marseille, I2M, Equipe Evolution Biologique et Modélisation, Marseille, France
| | - Laurent Kodjabachian
- Aix Marseille Université, CNRS, Institute of Developmental Biology of Marseille (IBDM), case 907, 13288, Marseille cedex 09, France
| | - Laura Fierro-Constain
- Aix Marseille Université, CNRS, IRD, IMBE UMR 7263, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Station Marine d'Endoume, Marseille, France
| | - Jean Vacelet
- Aix Marseille Université, CNRS, IRD, IMBE UMR 7263, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Station Marine d'Endoume, Marseille, France
| | - André Le Bivic
- Aix Marseille Université, CNRS, Institute of Developmental Biology of Marseille (IBDM), case 907, 13288, Marseille cedex 09, France.
| | - Emmanuelle Renard
- Aix Marseille Université, CNRS, IRD, IMBE UMR 7263, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Station Marine d'Endoume, Marseille, France
| | - Carole Borchiellini
- Aix Marseille Université, CNRS, IRD, IMBE UMR 7263, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Station Marine d'Endoume, Marseille, France.
| |
Collapse
|
64
|
Brunet T, King N. The Origin of Animal Multicellularity and Cell Differentiation. Dev Cell 2017; 43:124-140. [PMID: 29065305 PMCID: PMC6089241 DOI: 10.1016/j.devcel.2017.09.016] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/31/2017] [Accepted: 09/19/2017] [Indexed: 12/14/2022]
Abstract
Over 600 million years ago, animals evolved from a unicellular or colonial organism whose cell(s) captured bacteria with a collar complex, a flagellum surrounded by a microvillar collar. Using principles from evolutionary cell biology, we reason that the transition to multicellularity required modification of pre-existing mechanisms for extracellular matrix synthesis and cytokinesis. We discuss two hypotheses for the origin of animal cell types: division of labor from ancient plurifunctional cells and conversion of temporally alternating phenotypes into spatially juxtaposed cell types. Mechanistic studies in diverse animals and their relatives promise to deepen our understanding of animal origins and cell biology.
Collapse
Affiliation(s)
- Thibaut Brunet
- Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Nicole King
- Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|