51
|
Nejedlá M, Klebanovych A, Sulimenko V, Sulimenko T, Dráberová E, Dráber P, Karlsson R. The actin regulator profilin 1 is functionally associated with the mammalian centrosome. Life Sci Alliance 2020; 4:4/1/e202000655. [PMID: 33184056 PMCID: PMC7668531 DOI: 10.26508/lsa.202000655] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022] Open
Abstract
The actin regulator profilin 1 recently shown to control microtubule elongation at the cell periphery is found to interact with the γ-tubulin ring complex and tune centrosomal microtubule nucleation. Profilin 1 is a crucial actin regulator, interacting with monomeric actin and several actin-binding proteins controlling actin polymerization. Recently, it has become evident that this profilin isoform associates with microtubules via formins and interferes with microtubule elongation at the cell periphery. Recruitment of microtubule-associated profilin upon extensive actin polymerizations, for example, at the cell edge, enhances microtubule growth, indicating that profilin contributes to the coordination of actin and microtubule organization. Here, we provide further evidence for the profilin-microtubule connection by demonstrating that it also functions in centrosomes where it impacts on microtubule nucleation.
Collapse
Affiliation(s)
- Michaela Nejedlá
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Anastasiya Klebanovych
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vadym Sulimenko
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tetyana Sulimenko
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eduarda Dráberová
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Dráber
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Roger Karlsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
52
|
Saltini M, Mulder BM. Microtubule-based actin transport and localization in a spherical cell. ROYAL SOCIETY OPEN SCIENCE 2020; 7:201730. [PMID: 33391819 PMCID: PMC7735335 DOI: 10.1098/rsos.201730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/06/2020] [Indexed: 06/12/2023]
Abstract
The interaction between actin filaments and microtubules is crucial for many eukaryotic cellular processes, such as, among others, cell polarization, cell motility and cellular wound healing. The importance of this interaction has long been recognized, yet very little is understood about both the underlying mechanisms and the consequences for the spatial (re)organization of the cellular cytoskeleton. At the same time, understanding the causes and the consequences of the interaction between different biomolecular components are key questions for in vitro research involving reconstituted biomolecular systems, especially in the light of current interest in creating minimal synthetic cells. In this light, recent in vitro experiments have shown that the actin-microtubule interaction mediated by the cytolinker TipAct, which binds to actin lattice and microtubule tips, causes the directed transport of actin filaments. We develop an analytical theory of dynamically unstable microtubules, nucleated from the centre of a spherical cell, in interaction with actin filaments. We show that, depending on the balance between the diffusion of unbound actin filaments and propensity to bind microtubules, actin is either concentrated in the centre of the cell, where the density of microtubules is highest, or becomes localized to the cell cortex.
Collapse
|
53
|
Joo S, Durang X, Lee OC, Jeon JH. Anomalous diffusion of active Brownian particles cross-linked to a networked polymer: Langevin dynamics simulation and theory. SOFT MATTER 2020; 16:9188-9201. [PMID: 32840541 DOI: 10.1039/d0sm01200a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Quantitatively understanding the dynamics of an active Brownian particle (ABP) interacting with a viscoelastic polymer environment is a scientific challenge. It is intimately related to several interdisciplinary topics such as the microrheology of active colloids in a polymer matrix and the athermal dynamics of the in vivo chromosomes or cytoskeletal networks. Based on Langevin dynamics simulation and analytic theory, here we explore such a viscoelastic active system in depth using a star polymer of functionality f with the center cross-linker particle being ABP. We observe that the ABP cross-linker, despite its self-propelled movement, attains an active subdiffusion with the scaling ΔR2(t) ∼ tα with α ≤ 1/2, through the viscoelastic feedback from the polymer. Counter-intuitively, the apparent anomaly exponent α becomes smaller as the ABP is driven by a larger propulsion velocity, but is independent of functionality f or the boundary conditions of the polymer. We set forth an exact theory and show that the motion of the active cross-linker is a Gaussian non-Markovian process characterized by two distinct power-law displacement correlations. At a moderate Péclet number, it seemingly behaves as fractional Brownian motion with a Hurst exponent H = α/2, whereas, at a high Péclet number, the self-propelled noise in the polymer environment leads to a logarithmic growth of the mean squared displacement (∼ln t) and a velocity autocorrelation decaying as -t-2. We demonstrate that the anomalous diffusion of the active cross-linker is precisely described by a fractional Langevin equation with two distinct random noises.
Collapse
Affiliation(s)
- Sungmin Joo
- Department of Physics, POSTECH, Pohang, Republic of Korea.
| | - Xavier Durang
- Department of Physics, POSTECH, Pohang, Republic of Korea.
| | - O-Chul Lee
- Department of Physics, POSTECH, Pohang, Republic of Korea.
| | - Jae-Hyung Jeon
- Department of Physics, POSTECH, Pohang, Republic of Korea.
| |
Collapse
|
54
|
Seetharaman S, Etienne-Manneville S. Cytoskeletal Crosstalk in Cell Migration. Trends Cell Biol 2020; 30:720-735. [DOI: 10.1016/j.tcb.2020.06.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/15/2023]
|
55
|
Pimm ML, Hotaling J, Henty-Ridilla JL. Profilin choreographs actin and microtubules in cells and cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 355:155-204. [PMID: 32859370 PMCID: PMC7461721 DOI: 10.1016/bs.ircmb.2020.05.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Actin and microtubules play essential roles in aberrant cell processes that define and converge in cancer including: signaling, morphology, motility, and division. Actin and microtubules do not directly interact, however shared regulators coordinate these polymers. While many of the individual proteins important for regulating and choreographing actin and microtubule behaviors have been identified, the way these molecules collaborate or fail in normal or disease contexts is not fully understood. Decades of research focus on Profilin as a signaling molecule, lipid-binding protein, and canonical regulator of actin assembly. Recent reports demonstrate that Profilin also regulates microtubule dynamics and polymerization. Thus, Profilin can coordinate both actin and microtubule polymer systems. Here we reconsider the biochemical and cellular roles for Profilin with a focus on the essential cytoskeletal-based cell processes that go awry in cancer. We also explore how the use of model organisms has helped to elucidate mechanisms that underlie the regulatory essence of Profilin in vivo and in the context of disease.
Collapse
Affiliation(s)
- Morgan L Pimm
- Department of Cell and Developmental Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Jessica Hotaling
- Department of Cell and Developmental Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Jessica L Henty-Ridilla
- Department of Cell and Developmental Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States; Department of Biochemistry and Molecular Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States.
| |
Collapse
|
56
|
Tug-of-war between actomyosin-driven antagonistic forces determines the positioning symmetry in cell-sized confinement. Nat Commun 2020; 11:3063. [PMID: 32541780 PMCID: PMC7295813 DOI: 10.1038/s41467-020-16677-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
Symmetric or asymmetric positioning of intracellular structures including the nucleus and mitotic spindle steers various biological processes such as cell migration, division, and embryogenesis. In typical animal cells, both a sparse actomyosin meshwork in the cytoplasm and a dense actomyosin cortex underneath the cell membrane participate in the intracellular positioning. However, it remains unclear how these coexisting actomyosin structures regulate the positioning symmetry. To reveal the potential mechanism, we construct an in vitro model composed of cytoplasmic extracts and nucleus-like clusters confined in droplets. Here we find that periodic centripetal actomyosin waves contract from the droplet boundary push clusters to the center in large droplets, while network percolation of bulk actomyosin pulls clusters to the edge in small droplets. An active gel model quantitatively reproduces molecular perturbation experiments, which reveals that the tug-of-war between two distinct actomyosin networks with different maturation time-scales determines the positioning symmetry.
Collapse
|
57
|
Nunes V, Dantas M, Castro D, Vitiello E, Wang I, Carpi N, Balland M, Piel M, Aguiar P, Maiato H, Ferreira JG. Centrosome-nuclear axis repositioning drives the assembly of a bipolar spindle scaffold to ensure mitotic fidelity. Mol Biol Cell 2020; 31:1675-1690. [PMID: 32348198 PMCID: PMC7521851 DOI: 10.1091/mbc.e20-01-0047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
During the initial stages of cell division, the cytoskeleton is extensively reorganized so that a bipolar mitotic spindle can be correctly assembled. This process occurs through the action of molecular motors, cytoskeletal networks, and the nucleus. How the combined activity of these different components is spatiotemporally regulated to ensure efficient spindle assembly remains unclear. To investigate how cell shape, cytoskeletal organization, and molecular motors cross-talk to regulate initial spindle assembly, we use a combination of micropatterning with high-resolution imaging and 3D cellular reconstruction. We show that during prophase, centrosomes and nucleus reorient so that centrosomes are positioned on the shortest nuclear axis at nuclear envelope (NE) breakdown. We also find that this orientation depends on a combination of centrosome movement controlled by Arp2/3-mediated regulation of microtubule dynamics and Dynein-generated forces on the NE that regulate nuclear reorientation. Finally, we observe this centrosome configuration favors the establishment of an initial bipolar spindle scaffold, facilitating chromosome capture and accurate segregation, without compromising division plane orientation.
Collapse
Affiliation(s)
- Vanessa Nunes
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal.,Instituto de Biologia Celular e Molecular (IBMC), 4200-135 Porto, Portugal.,BiotechHealth PhD program, Instituto de Ciências Biomédicas (ICBAS), 4050-313 Porto, Portugal
| | - Margarida Dantas
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal.,Instituto de Biologia Celular e Molecular (IBMC), 4200-135 Porto, Portugal.,BiotechHealth PhD program, Instituto de Ciências Biomédicas (ICBAS), 4050-313 Porto, Portugal
| | - Domingos Castro
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal.,Instituto Nacional de Engenharia Biomédica (INEB), 4200-135 Porto, Portugal
| | - Elisa Vitiello
- Laboratoire Interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1) 38058, France
| | - Irène Wang
- Laboratoire Interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1) 38058, France
| | - Nicolas Carpi
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France.,Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Martial Balland
- Laboratoire Interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1) 38058, France
| | - Matthieu Piel
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France.,Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Paulo Aguiar
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal.,Instituto Nacional de Engenharia Biomédica (INEB), 4200-135 Porto, Portugal
| | - Helder Maiato
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal.,Instituto de Biologia Celular e Molecular (IBMC), 4200-135 Porto, Portugal.,Departamento de Biomedicina, Faculdade de Medicina do Porto, 4200-450 Porto, Portugal
| | - Jorge G Ferreira
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal.,Instituto de Biologia Celular e Molecular (IBMC), 4200-135 Porto, Portugal.,Departamento de Biomedicina, Faculdade de Medicina do Porto, 4200-450 Porto, Portugal
| |
Collapse
|
58
|
Artificially decreasing cortical tension generates aneuploidy in mouse oocytes. Nat Commun 2020; 11:1649. [PMID: 32245998 PMCID: PMC7125192 DOI: 10.1038/s41467-020-15470-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 03/10/2020] [Indexed: 01/28/2023] Open
Abstract
Human and mouse oocytes’ developmental potential can be predicted by their mechanical properties. Their development into blastocysts requires a specific stiffness window. In this study, we combine live-cell and computational imaging, laser ablation, and biophysical measurements to investigate how deregulation of cortex tension in the oocyte contributes to early developmental failure. We focus on extra-soft cells, the most common defect in a natural population. Using two independent tools to artificially decrease cortical tension, we show that chromosome alignment is impaired in extra-soft mouse oocytes, despite normal spindle morphogenesis and dynamics, inducing aneuploidy. The main cause is a cytoplasmic increase in myosin-II activity that could sterically hinder chromosome capture. We describe here an original mode of generation of aneuploidies that could be very common in oocytes and could contribute to the high aneuploidy rate observed during female meiosis, a leading cause of infertility and congenital disorders. The developmental potential of human and murine oocytes is predicted by their mechanical properties. Here the authors show that artificial reduction of cortex tension produces aneuploid mouse oocytes and speculate that this may contribute to the high aneuploidy rate typical of female meiosis.
Collapse
|
59
|
Rizzelli F, Malabarba MG, Sigismund S, Mapelli M. The crosstalk between microtubules, actin and membranes shapes cell division. Open Biol 2020; 10:190314. [PMID: 32183618 PMCID: PMC7125961 DOI: 10.1098/rsob.190314] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
Mitotic progression is orchestrated by morphological and mechanical changes promoted by the coordinated activities of the microtubule (MT) cytoskeleton, the actin cytoskeleton and the plasma membrane (PM). MTs assemble the mitotic spindle, which assists sister chromatid separation, and contact the rigid and tensile actomyosin cortex rounded-up underneath the PM. Here, we highlight the dynamic crosstalk between MTs, actin and cell membranes during mitosis, and discuss the molecular connections between them. We also summarize recent views on how MT traction forces, the actomyosin cortex and membrane trafficking contribute to spindle positioning in isolated cells in culture and in epithelial sheets. Finally, we describe the emerging role of membrane trafficking in synchronizing actomyosin tension and cell shape changes with cell-substrate adhesion, cell-cell contacts and extracellular signalling events regulating proliferation.
Collapse
Affiliation(s)
| | - Maria Grazia Malabarba
- IEO, Istituto Europeo di Oncologia IRCCS, Milan, Italy
- Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Milan, Italy
| | - Sara Sigismund
- IEO, Istituto Europeo di Oncologia IRCCS, Milan, Italy
- Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
60
|
Wesley CC, Mishra S, Levy DL. Organelle size scaling over embryonic development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 9:e376. [PMID: 32003549 DOI: 10.1002/wdev.376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Abstract
Cell division without growth results in progressive cell size reductions during early embryonic development. How do the sizes of intracellular structures and organelles scale with cell size and what are the functional implications of such scaling relationships? Model organisms, in particular Caenorhabditis elegans worms, Drosophila melanogaster flies, Xenopus laevis frogs, and Mus musculus mice, have provided insights into developmental size scaling of the nucleus, mitotic spindle, and chromosomes. Nuclear size is regulated by nucleocytoplasmic transport, nuclear envelope proteins, and the cytoskeleton. Regulators of microtubule dynamics and chromatin compaction modulate spindle and mitotic chromosome size scaling, respectively. Developmental scaling relationships for membrane-bound organelles, like the endoplasmic reticulum, Golgi, mitochondria, and lysosomes, have been less studied, although new imaging approaches promise to rectify this deficiency. While models that invoke limiting components and dynamic regulation of assembly and disassembly can account for some size scaling relationships in early embryos, it will be exciting to investigate the contribution of newer concepts in cell biology such as phase separation and interorganellar contacts. With a growing understanding of the underlying mechanisms of organelle size scaling, future studies promise to uncover the significance of proper scaling for cell function and embryonic development, as well as how aberrant scaling contributes to disease. This article is categorized under: Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Early Embryonic Development > Fertilization to Gastrulation Comparative Development and Evolution > Model Systems.
Collapse
Affiliation(s)
- Chase C Wesley
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| | - Sampada Mishra
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| |
Collapse
|
61
|
Bashirzadeh Y, Liu AP. Encapsulation of the cytoskeleton: towards mimicking the mechanics of a cell. SOFT MATTER 2019; 15:8425-8436. [PMID: 31621750 DOI: 10.1039/c9sm01669d] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The cytoskeleton of a cell controls all the aspects of cell shape changes and motility from its physiological functions for survival to reproduction to death. The structure and dynamics of the cytoskeletal components: actin, microtubules, intermediate filaments, and septins - recently regarded as the fourth member of the cytoskeleton family - are conserved during evolution. Such conserved and effective control over the mechanics of the cell makes the cytoskeletal components great candidates for in vitro reconstitution and bottom-up synthetic biology studies. Here, we review the recent efforts in reconstitution of the cytoskeleton in and on membrane-enclosed biomimetic systems and argue that co-reconstitution and synergistic interplay between cytoskeletal filaments might be indispensable for efficient mechanical functionality of active minimal cells. Further, mechanical equilibrium in adherent eukaryotic cells is achieved by the formation of integrin-based focal contacts with extracellular matrix (ECM) and the transmission of stresses generated by actomyosin contraction to ECM. Therefore, a minimal mimic of such balance of forces and quasi-static kinetics of the cell by bottom-up reconstitution requires a careful construction of contractile machineries and their link with adhesive contacts. In this review, in addition to cytoskeletal crosstalk, we provide a perspective on reconstruction of cell mechanical equilibrium by reconstitution of cortical actomyosin networks in lipid membrane vesicles adhered on compliant substrates and also discuss future perspectives of this active research area.
Collapse
Affiliation(s)
- Yashar Bashirzadeh
- Department of Mechanical Engineering, University of Michigan, 2350 Hayward Street, Ann Arbor, Michigan, USA.
| | | |
Collapse
|
62
|
Vargas E, McNally KP, Cortes DB, Panzica MT, Danlasky BM, Li Q, Maddox AS, McNally FJ. Spherical spindle shape promotes perpendicular cortical orientation by preventing isometric cortical pulling on both spindle poles during C. elegans female meiosis. Development 2019; 146:dev.178863. [PMID: 31575646 DOI: 10.1242/dev.178863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
Meiotic spindles are positioned perpendicular to the oocyte cortex to facilitate segregation of chromosomes into a large egg and a tiny polar body. In C. elegans, spindles are initially ellipsoid and parallel to the cortex before shortening to a near-spherical shape with flattened poles and then rotating to the perpendicular orientation by dynein-driven cortical pulling. The mechanistic connection between spindle shape and rotation has remained elusive. Here, we have used three different genetic backgrounds to manipulate spindle shape without eliminating dynein-dependent movement or dynein localization. Ellipsoid spindles with flattened or pointed poles became trapped in either a diagonal or a parallel orientation. Mathematical models that recapitulated the shape dependence of rotation indicated that the lower viscous drag experienced by spherical spindles prevented recapture of the cortex by astral microtubules emanating from the pole pivoting away from the cortex. In addition, maximizing contact between pole dynein and cortical dynein stabilizes flattened poles in a perpendicular orientation, and spindle rigidity prevents spindle bending that can lock both poles at the cortex. Spindle shape can thus promote perpendicular orientation by three distinct mechanisms.
Collapse
Affiliation(s)
- Elizabeth Vargas
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Karen P McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Daniel B Cortes
- Biology Department, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michelle T Panzica
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Brennan M Danlasky
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Qianyan Li
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Amy Shaub Maddox
- Biology Department, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Francis J McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
63
|
Nakos K, Radler MR, Spiliotis ET. Septin 2/6/7 complexes tune microtubule plus-end growth and EB1 binding in a concentration- and filament-dependent manner. Mol Biol Cell 2019; 30:2913-2928. [PMID: 31577529 PMCID: PMC6822581 DOI: 10.1091/mbc.e19-07-0362] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Septins (SEPTs) are filamentous guanosine-5′-triphosphate (GTP)-binding proteins, which affect microtubule (MT)-dependent functions including membrane trafficking and cell division, but their precise role in MT dynamics is poorly understood. Here, in vitro reconstitution of MT dynamics with SEPT2/6/7, the minimal subunits of septin heteromers, shows that SEPT2/6/7 has a biphasic concentration-dependent effect on MT growth. Lower concentrations of SEPT2/6/7 enhance MT plus-end growth and elongation, while higher and intermediate concentrations inhibit and pause plus-end growth, respectively. We show that SEPT2/6/7 has a modest preference for GTP- over guanosine diphosphate (GDP)-bound MT lattice and competes with end-binding protein 1 (EB1) for binding to guanosine 5′-O-[γ-thio]triphosphate (GTPγS)-stabilized MTs, which mimic the EB1-preferred GDP-Pi state of polymerized tubulin. Strikingly, SEPT2/6/7 triggers EB1 dissociation from plus-end tips in cis by binding to the MT lattice and in trans when MT plus ends collide with SEPT2/6/7 filaments. At these intersections, SEPT2/6/7 filaments were more potent barriers than actin filaments in pausing MT growth and dissociating EB1 in vitro and in live cells. These data demonstrate that SEPT2/6/7 complexes and filaments can directly impact MT plus-end growth and the tracking of plus end–binding proteins and thereby may facilitate the capture of MT plus ends at intracellular sites of septin enrichment.
Collapse
Affiliation(s)
| | - Megan R Radler
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | | |
Collapse
|
64
|
Periz J, Del Rosario M, McStea A, Gras S, Loney C, Wang L, Martin-Fernandez ML, Meissner M. A highly dynamic F-actin network regulates transport and recycling of micronemes in Toxoplasma gondii vacuoles. Nat Commun 2019; 10:4183. [PMID: 31519913 PMCID: PMC6744512 DOI: 10.1038/s41467-019-12136-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/19/2019] [Indexed: 01/03/2023] Open
Abstract
The obligate intracellular parasite Toxoplasma gondii replicates in an unusual process, described as internal budding. Multiple dausghter parasites are formed sequentially within a single mother cell, requiring replication and distribution of essential organelles such as micronemes. These organelles are thought to be formed de novo in the developing daughter cells. Using dual labelling of a microneme protein MIC2 and super-resolution microscopy, we show that micronemes are recycled from the mother to the forming daughter parasites using a highly dynamic F-actin network. While this recycling pathway is F-actin dependent, de novo synthesis of micronemes appears to be F-actin independent. The F-actin network connects individual parasites, supports long, multidirectional vesicular transport, and regulates transport, density and localisation of micronemal vesicles. The residual body acts as a storage and sorting station for these organelles. Our data describe an F-actin dependent mechanism in apicomplexans for transport and recycling of maternal organelles during intracellular development. Replication of Toxoplasma gondii requires replication and distribution of essential organelles such as micronemes. Here, Periz et al. show that micronemes are recycled from the mother to the forming daughter cells using a highly dynamic F-actin network that supports multidirectional vesicle transport.
Collapse
Affiliation(s)
- Javier Periz
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, UK.
| | - Mario Del Rosario
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, UK
| | - Alexandra McStea
- Central Laser Facility, Research Complex at Harwell Science & Technology Facilities Council, Harwell Campus, Didcot, UK
| | - Simon Gras
- Experimental Parasitology, Department for Veterinary Sciences, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Colin Loney
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, Glasgow, UK
| | - Lin Wang
- Central Laser Facility, Research Complex at Harwell Science & Technology Facilities Council, Harwell Campus, Didcot, UK
| | - Marisa L Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell Science & Technology Facilities Council, Harwell Campus, Didcot, UK
| | - Markus Meissner
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, UK. .,Experimental Parasitology, Department for Veterinary Sciences, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
65
|
Zhovmer AS, Tabdanov ED, Miao H, Wen H, Chen J, Luo X, Ma X, Provenzano PP, Adelstein RS. The role of nonmuscle myosin 2A and 2B in the regulation of mesenchymal cell contact guidance. Mol Biol Cell 2019; 30:1961-1973. [PMID: 31318315 PMCID: PMC6727766 DOI: 10.1091/mbc.e19-01-0071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Contact guidance refers to the ability of cells to sense the geometrical features of the microenvironment and respond by changing their shape and adopting the appropriate orientation. Inhibition and ablation of nonmuscle myosin 2 (NM2) paralogues have demonstrated their importance for contact guidance. However, the specific roles of the NM2 paralogues have not been systematically studied. In this work we use micropatterned substrates to examine the roles of NM2A and NM2B and to elucidate the relationship of the microenvironment, actomyosin, and microtubules in contact guidance. We show that contact guidance is preserved following loss of NM2B and that expression of NM2A alone is sufficient to establish an appropriate orientation of the cells. Loss of NM2B and overexpression of NM2A result in a prominent cell polarization that is found to be linked to the increased alignment of microtubules with the actomyosin scaffold. Suppression of actomyosin with blebbistatin reduces cell polarity on a flat surface, but not on a surface with contact guidance cues. This indicates that the lost microtubule-actomyosin interactions are compensated for by microtubule-microenvironment interactions, which are sufficient to establish cell polarity through contact guidance.
Collapse
Affiliation(s)
- Alexander S Zhovmer
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, Bethesda, MD 20814
| | - Erdem D Tabdanov
- Laboratory for Engineering in Oncology, University of Minnesota, Minneapolis, MN 55455
| | - Houxun Miao
- Imaging Physics Laboratory, National Heart, Lung, and Blood Institute, Bethesda, MD 20814
| | - Han Wen
- Imaging Physics Laboratory, National Heart, Lung, and Blood Institute, Bethesda, MD 20814
| | - Jinqiu Chen
- Collaborative Protein Technology Resource, National Cancer Institute, Bethesda, MD 20892
| | - Xiaoling Luo
- Collaborative Protein Technology Resource, National Cancer Institute, Bethesda, MD 20892
| | - Xuefei Ma
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, Bethesda, MD 20814
| | - Paolo P Provenzano
- Laboratory for Engineering in Oncology, University of Minnesota, Minneapolis, MN 55455
| | - Robert S Adelstein
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, Bethesda, MD 20814
| |
Collapse
|
66
|
Farina F, Ramkumar N, Brown L, Samandar Eweis D, Anstatt J, Waring T, Bithell J, Scita G, Thery M, Blanchoin L, Zech T, Baum B. Local actin nucleation tunes centrosomal microtubule nucleation during passage through mitosis. EMBO J 2019; 38:e99843. [PMID: 31015335 PMCID: PMC6545563 DOI: 10.15252/embj.201899843] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 12/19/2022] Open
Abstract
Cells going through mitosis undergo precisely timed changes in cell shape and organisation, which serve to ensure the fair partitioning of cellular components into the two daughter cells. These structural changes are driven by changes in actin filament and microtubule dynamics and organisation. While most evidence suggests that the two cytoskeletal systems are remodelled in parallel during mitosis, recent work in interphase cells has implicated the centrosome in both microtubule and actin nucleation, suggesting the potential for regulatory crosstalk between the two systems. Here, by using both in vitro and in vivo assays to study centrosomal actin nucleation as cells pass through mitosis, we show that mitotic exit is accompanied by a burst in cytoplasmic actin filament formation that depends on WASH and the Arp2/3 complex. This leads to the accumulation of actin around centrosomes as cells enter anaphase and to a corresponding reduction in the density of centrosomal microtubules. Taken together, these data suggest that the mitotic regulation of centrosomal WASH and the Arp2/3 complex controls local actin nucleation, which may function to tune the levels of centrosomal microtubules during passage through mitosis.
Collapse
Affiliation(s)
- Francesca Farina
- MRC-LMCB, UCL, London, UK
- IPLS, UCL, London, UK
- IFOM, the FIRC Institute of Molecular Oncology, University of Milan, Milan, Italy
- University of Grenoble, Grenoble, France
| | | | - Louise Brown
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | | | | | - Thomas Waring
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Jessica Bithell
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Giorgio Scita
- IFOM, the FIRC Institute of Molecular Oncology, University of Milan, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | | | - Tobias Zech
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Buzz Baum
- MRC-LMCB, UCL, London, UK
- IPLS, UCL, London, UK
| |
Collapse
|
67
|
The quantification and regulation of microtubule dynamics in the mitotic spindle. Curr Opin Cell Biol 2019; 60:36-43. [PMID: 31108428 DOI: 10.1016/j.ceb.2019.03.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/20/2019] [Accepted: 03/30/2019] [Indexed: 12/18/2022]
Abstract
Microtubules play essential roles in cellular organization, cargo transport, and chromosome segregation during cell division. During mitosis microtubules form a macromolecular structure known as the mitotic spindle that is responsible for the accurate segregation of chromosomes between the two daughter cells. This is accomplished thanks to finely tuned control of microtubule dynamics. Even small changes in microtubule dynamics during spindle formation and/or operation may lead to chromosome mis-segregation, chromosome instability and aneuploidy. These three events are directly correlated with human diseases like cancer and developmental defects. Precise measurements of microtubule dynamics in the spindle will allow us to discover new molecules involved in regulating microtubule dynamics and enable a deeper understanding of the mechanisms that underlie mitosis and cancer emergence and development. Moreover, many chemotherapeutic agents for cancer treatment are targeted to microtubules, so continued investigation of their dynamics with utmost precision will facilitate the development of new drugs. Measuring microtubule dynamics in the spindle has been a difficult task until recently. With the development of new and gentler microscopic techniques, and new computer programs, we can perform better and more accurate measurements of microtubule dynamics during mitosis.
Collapse
|
68
|
Hürtgen D, Vogel SK, Schwille P. Cytoskeletal and Actin-Based Polymerization Motors and Their Role in Minimal Cell Design. ACTA ACUST UNITED AC 2019; 3:e1800311. [PMID: 32648711 DOI: 10.1002/adbi.201800311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/28/2019] [Indexed: 01/28/2023]
Abstract
Life implies motion. In cells, protein-based active molecular machines drive cell locomotion and intracellular transport, control cell shape, segregate genetic material, and split a cell in two parts. Key players among molecular machines driving these various cell functions are the cytoskeleton and motor proteins that convert chemical bound energy into mechanical work. Findings over the last decades in the field of in vitro reconstitutions of cytoskeletal and motor proteins have elucidated mechanistic details of these active protein systems. For example, a complex spatial and temporal interplay between the cytoskeleton and motor proteins is responsible for the translation of chemically bound energy into (directed) movement and force generation, which eventually governs the emergence of complex cellular functions. Understanding these mechanisms and the design principles of the cytoskeleton and motor proteins builds the basis for mimicking fundamental life processes. Here, a brief overview of actin, prokaryotic actin analogs, and motor proteins and their potential role in the design of a minimal cell from the bottom-up is provided.
Collapse
Affiliation(s)
- Daniel Hürtgen
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (Synmikro), D-35043, Marburg, Germany
| | - Sven Kenjiro Vogel
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry , Am Klopferspitz 18, D-82152, Martinsried, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry , Am Klopferspitz 18, D-82152, Martinsried, Germany
| |
Collapse
|
69
|
Inoue D, Obino D, Pineau J, Farina F, Gaillard J, Guerin C, Blanchoin L, Lennon-Duménil AM, Théry M. Actin filaments regulate microtubule growth at the centrosome. EMBO J 2019; 38:embj.201899630. [PMID: 30902847 DOI: 10.15252/embj.201899630] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 02/05/2019] [Accepted: 02/21/2019] [Indexed: 12/22/2022] Open
Abstract
The centrosome is the main microtubule-organizing centre. It also organizes a local network of actin filaments. However, the precise function of the actin network at the centrosome is not well understood. Here, we show that increasing densities of actin filaments at the centrosome of lymphocytes are correlated with reduced amounts of microtubules. Furthermore, lymphocyte activation resulted in disassembly of centrosomal actin and an increase in microtubule number. To further investigate the direct crosstalk between actin and microtubules at the centrosome, we performed in vitro reconstitution assays based on (i) purified centrosomes and (ii) on the co-micropatterning of microtubule seeds and actin filaments. These two assays demonstrated that actin filaments constitute a physical barrier blocking elongation of nascent microtubules. Finally, we showed that cell adhesion and cell spreading lead to lower densities of centrosomal actin, thus resulting in higher microtubule growth. We therefore propose a novel mechanism, by which the number of centrosomal microtubules is regulated by cell adhesion and actin-network architecture.
Collapse
Affiliation(s)
- Daisuke Inoue
- CEA, CNRS, INRA, Biosciences & Biotechnology Institute of Grenoble, UMR5168, CytoMorpho Lab, Univ. Grenoble-Alpes, Grenoble, France
| | - Dorian Obino
- INSERM, U932 Immunité et Cancer, Institut Curie, PSL Research University, Paris, France
| | - Judith Pineau
- INSERM, U932 Immunité et Cancer, Institut Curie, PSL Research University, Paris, France
| | - Francesca Farina
- CEA, CNRS, INRA, Biosciences & Biotechnology Institute of Grenoble, UMR5168, CytoMorpho Lab, Univ. Grenoble-Alpes, Grenoble, France
| | - Jérémie Gaillard
- CEA, CNRS, INRA, Biosciences & Biotechnology Institute of Grenoble, UMR5168, CytoMorpho Lab, Univ. Grenoble-Alpes, Grenoble, France.,INSERM, CEA, Hôpital Saint Louis, Institut Universitaire d'Hematologie, UMRS1160, CytoMorpho Lab, Univ. Paris Diderot, Paris, France
| | - Christophe Guerin
- CEA, CNRS, INRA, Biosciences & Biotechnology Institute of Grenoble, UMR5168, CytoMorpho Lab, Univ. Grenoble-Alpes, Grenoble, France.,INSERM, CEA, Hôpital Saint Louis, Institut Universitaire d'Hematologie, UMRS1160, CytoMorpho Lab, Univ. Paris Diderot, Paris, France
| | - Laurent Blanchoin
- CEA, CNRS, INRA, Biosciences & Biotechnology Institute of Grenoble, UMR5168, CytoMorpho Lab, Univ. Grenoble-Alpes, Grenoble, France .,INSERM, CEA, Hôpital Saint Louis, Institut Universitaire d'Hematologie, UMRS1160, CytoMorpho Lab, Univ. Paris Diderot, Paris, France
| | | | - Manuel Théry
- CEA, CNRS, INRA, Biosciences & Biotechnology Institute of Grenoble, UMR5168, CytoMorpho Lab, Univ. Grenoble-Alpes, Grenoble, France .,INSERM, CEA, Hôpital Saint Louis, Institut Universitaire d'Hematologie, UMRS1160, CytoMorpho Lab, Univ. Paris Diderot, Paris, France
| |
Collapse
|