51
|
Li D, Yu AQ, Li XJ, Zhu YT, Jin XK, Li WW, Wang Q. Antimicrobial activity of a novel hypervariable immunoglobulin domain-containing receptor Dscam in Cherax quadricarinatus. FISH & SHELLFISH IMMUNOLOGY 2015; 47:766-776. [PMID: 26497093 DOI: 10.1016/j.fsi.2015.10.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 06/05/2023]
Abstract
Down syndrome cell adhesion molecule (Dscam) mediates innate immunity against pathogens in arthropods. Here, a novel Dscam from red claw crayfish Cherax quadricarinatus (CqDscam) was isolated. The CqDscam protein contains one signal peptide, ten immunoglobulin domains, six fibronectin type III domains, one transmembrane domain and cytoplasmic tail. CqDscam phylogenetically clustered with other invertebrate Dscams. Variable regions of CqDscam in N-terminal halves of Ig2 and Ig3 domains, complete Ig7 domain and TM domain can be reshuffled after transcription to produce a deluge of >37,620 potential alternative splice forms. CqDscam was detected in all tissues tested and abundantly expressed in immune system and nerve system. Upon lipopolysaccharides (LPS) and b-1, 3-glucans (Glu) challenged, the expression of CqDscam was up-regulated, while no response in expression occurred after injection with peptidoglycans (PG). Membrane-bound and secreted types of CqDscam were separated on the protein level, and were both extensively induced post LPS challenge. Membrane-bound CqDscam protein was not detected in the serum, but localized to the hemocyte surface by immuno-localization assay. In the antimicrobial assays, the recombinant LPS-induced isoform of CqDscam protein displayed bacterial binding and growth inhibitory activities, especially with Escherichia coli. These results suggested that CqDscam, as one of pattern-recognition receptors (PRRs), involved in innate immune recognition and defense mechanisms in C. quadricarinatus, possibly through alternative splicing.
Collapse
Affiliation(s)
- Dan Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China
| | - Ai-Qing Yu
- Shanghai Fisheries Technical Extension Station, Shanghai Fisheries Research Institute, Shanghai, China
| | - Xue-Jie Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China
| | - You-Ting Zhu
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China
| | - Xing-Kun Jin
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China
| | - Wei-Wei Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China.
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China.
| |
Collapse
|
53
|
Gerdol M, Venier P. An updated molecular basis for mussel immunity. FISH & SHELLFISH IMMUNOLOGY 2015; 46:17-38. [PMID: 25700785 DOI: 10.1016/j.fsi.2015.02.013] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 02/02/2015] [Accepted: 02/09/2015] [Indexed: 06/04/2023]
Abstract
Non-self recognition with the consequent tolerance or immune reaction is a crucial process to succeed as living organisms. At the same time the interactions between host species and their microbiome, including potential pathogens and parasites, significantly contribute to animal life diversity. Marine filter-feeding bivalves, mussels in particular, can survive also in heavily anthropized coastal waters despite being constantly surrounded by microorganisms. Based on the first outline of the Mytilus galloprovincialis immunome dated 2011, the continuously growing transcript data and the recent release of a draft mussel genome, we explored the available sequence data and scientific literature to reinforce our knowledge on the main gene-encoded elements of the mussel immune responses, from the pathogen recognition to its clearance. We carefully investigated molecules specialized in the sensing and targeting of potential aggressors, expected to show greater molecular diversification, and outlined, whenever relevant, the interconnected cascades of the intracellular signal transduction. Aiming to explore the diversity of extracellular, membrane-bound and intracellular pattern recognition receptors in mussel, we updated a highly complex immune system, comprising molecules which are described here in detail for the first time (e.g. NOD-like receptors) or which had only been partially characterized in bivalves (e.g. RIG-like receptors). Overall, our comparative sequence analysis supported the identification of over 70 novel full-length immunity-related transcripts in M. galloprovincialis. Nevertheless, the multiplicity of gene functions relevant to immunity, the involvement of part of them in other vital processes, and also the lack of a refined mussel genome make this work still not-exhaustive and support the development of more specific studies.
Collapse
Affiliation(s)
- Marco Gerdol
- Department of Life Sciences, University of Trieste, Via L. Giorgeri 5, 34127 Trieste, Italy.
| | - Paola Venier
- Department of Biology, University of Padua, Via U. Bassi 58/b, 35131 Padua, Italy.
| |
Collapse
|
55
|
Verbruggen B, Bickley LK, Santos EM, Tyler CR, Stentiford GD, Bateman KS, van Aerle R. De novo assembly of the Carcinus maenas transcriptome and characterization of innate immune system pathways. BMC Genomics 2015; 16:458. [PMID: 26076827 PMCID: PMC4469326 DOI: 10.1186/s12864-015-1667-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 05/29/2015] [Indexed: 11/25/2022] Open
Abstract
Background The European shore crab, Carcinus maenas, is used widely in biomonitoring, ecotoxicology and for studies into host-pathogen interactions. It is also an important invasive species in numerous global locations. However, the genomic resources for this organism are still sparse, limiting research progress in these fields. To address this resource shortfall we produced a C. maenas transcriptome, enabled by the progress in next-generation sequencing technologies, and applied this to assemble information on the innate immune system in this species. Results We isolated and pooled RNA for twelve different tissues and organs from C. maenas individuals and sequenced the RNA using next generation sequencing on an Illumina HiSeq 2500 platform. After de novo assembly a transcriptome was generated encompassing 212,427 transcripts (153,699 loci). The transcripts were filtered, annotated and characterised using a variety of tools (including BLAST, MEGAN and RSEM) and databases (including NCBI, Gene Ontology and KEGG). There were differential patterns of expression for between 1,223 and 2,741 transcripts across tissues and organs with over-represented Gene Ontology terms relating to their specific function. Based on sequence homology to immune system components in other organisms, we show both the presence of transcripts for a series of known pathogen recognition receptors and response proteins that form part of the innate immune system, and transcripts representing the RNAi, Toll-like receptor signalling, IMD and JAK/STAT pathways. Conclusions We have produced an assembled transcriptome for C. maenas that provides a significant molecular resource for wide ranging studies in this species. Analysis of the transcriptome has revealed the presence of a series of known targets and functional pathways that form part of their innate immune system and illustrate tissue specific differences in their expression patterns. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1667-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bas Verbruggen
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Geoffrey Pope Building, Exeter, EX4 4QD, UK.
| | - Lisa K Bickley
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Geoffrey Pope Building, Exeter, EX4 4QD, UK.
| | - Eduarda M Santos
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Geoffrey Pope Building, Exeter, EX4 4QD, UK.
| | - Charles R Tyler
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Geoffrey Pope Building, Exeter, EX4 4QD, UK.
| | - Grant D Stentiford
- European Union Reference Laboratory for Crustacean Diseases, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, Dorset, DT4 8UB, UK.
| | - Kelly S Bateman
- European Union Reference Laboratory for Crustacean Diseases, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, Dorset, DT4 8UB, UK.
| | - Ronny van Aerle
- Aquatic Health and Hygiene Division, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, Dorset, DT4 8UB, UK.
| |
Collapse
|
56
|
Barribeau SM, Sadd BM, du Plessis L, Brown MJF, Buechel SD, Cappelle K, Carolan JC, Christiaens O, Colgan TJ, Erler S, Evans J, Helbing S, Karaus E, Lattorff HMG, Marxer M, Meeus I, Näpflin K, Niu J, Schmid-Hempel R, Smagghe G, Waterhouse RM, Yu N, Zdobnov EM, Schmid-Hempel P. A depauperate immune repertoire precedes evolution of sociality in bees. Genome Biol 2015; 16:83. [PMID: 25908406 PMCID: PMC4408586 DOI: 10.1186/s13059-015-0628-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 03/11/2015] [Indexed: 11/10/2022] Open
Abstract
Background Sociality has many rewards, but can also be dangerous, as high population density and low genetic diversity, common in social insects, is ideal for parasite transmission. Despite this risk, honeybees and other sequenced social insects have far fewer canonical immune genes relative to solitary insects. Social protection from infection, including behavioral responses, may explain this depauperate immune repertoire. Here, based on full genome sequences, we describe the immune repertoire of two ecologically and commercially important bumblebee species that diverged approximately 18 million years ago, the North American Bombus impatiens and European Bombus terrestris. Results We find that the immune systems of these bumblebees, two species of honeybee, and a solitary leafcutting bee, are strikingly similar. Transcriptional assays confirm the expression of many of these genes in an immunological context and more strongly in young queens than males, affirming Bateman’s principle of greater investment in female immunity. We find evidence of positive selection in genes encoding antiviral responses, components of the Toll and JAK/STAT pathways, and serine protease inhibitors in both social and solitary bees. Finally, we detect many genes across pathways that differ in selection between bumblebees and honeybees, or between the social and solitary clades. Conclusions The similarity in immune complement across a gradient of sociality suggests that a reduced immune repertoire predates the evolution of sociality in bees. The differences in selection on immune genes likely reflect divergent pressures exerted by parasites across social contexts. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0628-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Seth M Barribeau
- Experimental Ecology, Institute of Integrative Biology, ETH Zürich, CH-8092, Zürich, Switzerland. .,Department of Biology, East Carolina University, Greenville, NC, 27858, USA.
| | - Ben M Sadd
- Experimental Ecology, Institute of Integrative Biology, ETH Zürich, CH-8092, Zürich, Switzerland. .,School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA.
| | - Louis du Plessis
- Theoretical Biology, Institute of Integrative Biology, ETH Zürich, CH-8092, Zürich, Switzerland. .,Computational Evolution, Department of Biosystems Science and Evolution, ETH Zürich, 4058, Basel, Switzerland. .,Swiss Institute of Bioinformatics, 1211, Lausanne, Switzerland.
| | - Mark J F Brown
- School of Biological Sciences, Royal Holloway University of London, London, TW20 0EX, UK.
| | - Severine D Buechel
- Experimental Ecology, Institute of Integrative Biology, ETH Zürich, CH-8092, Zürich, Switzerland.
| | - Kaat Cappelle
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium.
| | - James C Carolan
- Maynooth University Department of Biology, Maynooth University, Maynooth, Kildare, Ireland.
| | - Olivier Christiaens
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium.
| | - Thomas J Colgan
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, 2, Ireland. .,School of Biological and Chemical Sciences, Queen Mary University of London, E1 41NS, London, UK.
| | - Silvio Erler
- Department of Apiculture and Sericulture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, 400372, Romania. .,Institut für Biologie, Molekulare Ökologie, Martin-Luther-Universität Halle-Wittenberg, Wittenberg, 06120, Germany.
| | - Jay Evans
- USDA-ARS Bee Research Laboratory, Beltsville, MD, 20705, USA.
| | - Sophie Helbing
- Institut für Biologie, Molekulare Ökologie, Martin-Luther-Universität Halle-Wittenberg, Wittenberg, 06120, Germany.
| | - Elke Karaus
- Experimental Ecology, Institute of Integrative Biology, ETH Zürich, CH-8092, Zürich, Switzerland.
| | - H Michael G Lattorff
- Institut für Biologie, Molekulare Ökologie, Martin-Luther-Universität Halle-Wittenberg, Wittenberg, 06120, Germany. .,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany. .,Institut für Biologie, Tierphysiologie, Martin-Luther-Universität Halle-Wittenberg, Wittenberg, 06099, Germany.
| | - Monika Marxer
- Experimental Ecology, Institute of Integrative Biology, ETH Zürich, CH-8092, Zürich, Switzerland.
| | - Ivan Meeus
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium.
| | - Kathrin Näpflin
- Experimental Ecology, Institute of Integrative Biology, ETH Zürich, CH-8092, Zürich, Switzerland.
| | - Jinzhi Niu
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium. .,College of Plant Protection, Southwest University, Chongqing, 400716, PR China.
| | - Regula Schmid-Hempel
- Experimental Ecology, Institute of Integrative Biology, ETH Zürich, CH-8092, Zürich, Switzerland.
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium. .,College of Plant Protection, Southwest University, Chongqing, 400716, PR China.
| | - Robert M Waterhouse
- Swiss Institute of Bioinformatics, 1211, Lausanne, Switzerland. .,Department of Genetic Medicine and Development, University of Geneva Medical School, 1211, Geneva, Switzerland. .,Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. .,The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - Na Yu
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium.
| | - Evgeny M Zdobnov
- Swiss Institute of Bioinformatics, 1211, Lausanne, Switzerland. .,Department of Genetic Medicine and Development, University of Geneva Medical School, 1211, Geneva, Switzerland.
| | - Paul Schmid-Hempel
- Experimental Ecology, Institute of Integrative Biology, ETH Zürich, CH-8092, Zürich, Switzerland.
| |
Collapse
|
59
|
Dorling J, Moraes C, Rolff J. Recognition, survival and persistence of Staphylococcus aureus in the model host Tenebrio molitor. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 48:284-290. [PMID: 25179414 DOI: 10.1016/j.dci.2014.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 08/18/2014] [Accepted: 08/21/2014] [Indexed: 06/03/2023]
Abstract
The degree of specificity of any given immune response to a parasite is governed by the complexity and variation of interactions between host and pathogen derived molecules. Here, we assess the extent to which recognition and immuno-resistance of cell wall mutants of the pathogen Staphylococcus aureus may contribute to establishment and maintenance of persistent infection in the model insect host, Tenebrio molitor. The cell surface of S. aureus is decorated with various molecules, including glycopolymers such as wall teichoic acid (WTA). WTA is covalently bound to peptidoglycan (PGN) and its absence has been associated with increased recognition of PGN by host receptors (PGRPs). WTA is also further modified by other molecules such as D-alanine (D-alanylation). Both the level of WTA expression and its D-alanylation were found to be important in the mediation of the host-parasite interaction in this model system. Specifically, WTA itself was seen to influence immune recognition, while D-alanylation of WTA was found to increase immuno-resistance and was associated with prolonged persistence of S. aureus in T. molitor. These results implicate WTA and its D-alanylation as important factors in the establishment and maintenance of persistent infection, affecting different critical junctions in the immune response; through potential evasion of recognition by PGRPs and resistance to humoral immune effectors during prolonged exposure to the immune system. This highlights a mechanism by which specificity in this host-parasite interaction may arise.
Collapse
Affiliation(s)
- Jack Dorling
- Animal & Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; Fachbereich Biologie, Chemie, Pharmazie, Evolutionary Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195 Berlin, Germany; Medical Sciences Doctoral Training Centre, University of Oxford, Oxford, UK
| | - Caroline Moraes
- Fachbereich Biologie, Chemie, Pharmazie, Evolutionary Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195 Berlin, Germany; Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil; Centro Universitário Augusto Motta, Rio de Janeiro, Brazil
| | - Jens Rolff
- Fachbereich Biologie, Chemie, Pharmazie, Evolutionary Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195 Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany.
| |
Collapse
|
60
|
Brites D, Du Pasquier L. Somatic and Germline Diversification of a Putative Immunoreceptor within One Phylum: Dscam in Arthropods. Results Probl Cell Differ 2015; 57:131-158. [PMID: 26537380 DOI: 10.1007/978-3-319-20819-0_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Arthropod Dscam, the homologue of the human Down Syndrome cell adhesion molecule, is a receptor used by the nervous and immune systems. Unlike in vertebrates, evolutionary pressure has selected and maintained a vast Dscam diversity of isoforms, known to specifying neuronal identity during the nervous system differentiation. This chapter examines the different modes of Dscam diversification in the context of arthropods' evolution and that of their immune system, where its role is controversial. In the single Dscam gene of insects and crustaceans, mutually exclusive alternative splicing affects three clusters of duplicated exons encoding the variable parts of the receptor. The Dscam gene produces over 10,000 isoforms. In the more basal arthropods such as centipedes, Dscam diversity results from a combination of many germline genes (over 80) with, in about half of those, the possibility of alternative splicing affecting only one exon cluster. In the even more basal arthropods, such as chelicerates, no splicing possibility is detected, but there exist dozens of germline Dscam genes. Compared to controlling the expression of multiple germline genes, the somatic mutually alternative splicing within a single gene may offer a simplified way of expressing a large Dscam repertoire. Expressed by hemocytes, Dscam is considered a phagocytic receptor but is also encountered in solution. More information is necessary about its binding to pathogens, its role in phagocytosis, its possible role in specifying hemocyte identity, its kinetics of expression, and the regulation of its RNA splicing to understand how its diversity is linked to immunity.
Collapse
Affiliation(s)
- Daniela Brites
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland.
| | - Louis Du Pasquier
- Institute of Zoology and Evolutionary Biology, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland.
| |
Collapse
|