51
|
Carnevalli LS, Scognamiglio R, Cabezas-Wallscheid N, Rahmig S, Laurenti E, Masuda K, Jöckel L, Kuck A, Sujer S, Polykratis A, Erlacher M, Pasparakis M, Essers MAG, Trumpp A. Improved HSC reconstitution and protection from inflammatory stress and chemotherapy in mice lacking granzyme B. ACTA ACUST UNITED AC 2014; 211:769-79. [PMID: 24752302 PMCID: PMC4010905 DOI: 10.1084/jem.20131072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Granzyme B is expressed by hematopoietic stem cells (HSCs) and stromal cells in response to bacterial products or chemotherapy agents and limits HSC reconstitution potential. The serine protease granzyme B (GzmB) is stored in the granules of cytotoxic T and NK cells and facilitates immune-mediated destruction of virus-infected cells. In this study, we use genetic tools to report novel roles for GzmB as an important regulator of hematopoietic stem cell (HSC) function in response to stress. HSCs lacking the GzmB gene show improved bone marrow (BM) reconstitution associated with increased HSC proliferation and mitochondrial activity. In addition, recipients deficient in GzmB support superior engraftment of wild-type HSCs compared with hosts with normal BM niches. Stimulation of mice with lipopolysaccharide strongly induced GzmB protein expression in HSCs, which was mediated by the TLR4–TRIF–p65 NF-κB pathway. This is associated with increased cell death and GzmB secretion into the BM environment, suggesting an extracellular role of GzmB in modulating HSC niches. Moreover, treatment with the chemotherapeutic agent 5-fluorouracil (5-FU) also induces GzmB production in HSCs. In this situation GzmB is not secreted, but instead causes cell-autonomous apoptosis. Accordingly, GzmB-deficient mice are more resistant to serial 5-FU treatments. Collectively, these results identify GzmB as a negative regulator of HSC function that is induced by stress and chemotherapy in both HSCs and their niches. Blockade of GzmB production may help to improve hematopoiesis in various situations of BM stress.
Collapse
Affiliation(s)
- Larissa S Carnevalli
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Verovskaya E, Broekhuis MJC, Zwart E, Weersing E, Ritsema M, Bosman LJ, van Poele T, de Haan G, Bystrykh LV. Asymmetry in skeletal distribution of mouse hematopoietic stem cell clones and their equilibration by mobilizing cytokines. ACTA ACUST UNITED AC 2014; 211:487-97. [PMID: 24567446 PMCID: PMC3949563 DOI: 10.1084/jem.20131804] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Upon transplant, functional HSC clones preferentially expand in certain skeletal locations, exhibiting only limited migration toward other niches. Hematopoietic stem cells (HSCs) are able to migrate through the blood stream and engraft bone marrow (BM) niches. These features are key factors for successful stem cell transplantations that are used in cancer patients and in gene therapy protocols. It is unknown to what extent transplanted HSCs distribute throughout different anatomical niches in the BM and whether this changes with age. Here we determine the degree of hematopoietic migration at a clonal level by transplanting individual young and aged mouse HSCs labeled with barcoded viral vector, followed by assessing the skeletal distribution of hundreds of HSC clones. We detected highly skewed representation of individual clones in different bones at least 11 mo after transplantation. Importantly, a single challenge with the clinically relevant mobilizing agent granulocyte colony-stimulating factor (G-CSF) caused rapid redistribution of HSCs across the skeletal compartments. Old and young HSC clones showed a similar level of migratory behavior. Clonal make-up of blood of secondary recipients recapitulates the barcode composition of HSCs in the bone of origin. These data demonstrate a previously unanticipated high skeletal disequilibrium of the clonal composition of HSC pool long-term after transplantation. Our findings have important implications for experimental and clinical and stem cell transplantation protocols.
Collapse
Affiliation(s)
- Evgenia Verovskaya
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Kuroda R, Matsumoto T, Kawakami Y, Fukui T, Mifune Y, Kurosaka M. Clinical impact of circulating CD34-positive cells on bone regeneration and healing. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:190-9. [PMID: 24372338 DOI: 10.1089/ten.teb.2013.0511] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Failures in fracture healing after conventional autologous and allogenic bone grafting are mainly due to poor vascularization. To meet the clinical demand, recent attentions in the regeneration and repair of bone have been focused on the use of stem cells such as bone marrow mesenchymal stem cells and circulating skeletal stem cells. Circulating stem cells are currently paid a lot of attention due to their ease of clinical setting and high potential for osteogenesis and angiogenesis. In this report, we focus on the first proof-of-principle experiments demonstrating the collaborative characteristics of circulating CD34(+) cells, known as endothelial and hematopoietic progenitor cell-rich population, which are capable to differentiate into both endothelial cells and osteoblasts. Transplantation of circulating CD34(+) cells provides a favorable environment for fracture healing via angiogenesis/vasculogenesis and osteogenesis, finally leading to functional recovery from fracture. Based on a series of basic studies, we performed a phase 1/2 clinical trial of autologous CD34(+) cell transplantation in patients with tibial or femoral nonunions and reported the safety and efficacy of this novel therapy. In this review, the current concepts and strategies in circulating CD34(+) cell-based therapy and its potential applications for bone repair will be highlighted.
Collapse
Affiliation(s)
- Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine , Kobe, Japan
| | | | | | | | | | | |
Collapse
|
54
|
Oguro H, Ding L, Morrison SJ. SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell 2014; 13:102-16. [PMID: 23827712 DOI: 10.1016/j.stem.2013.05.014] [Citation(s) in RCA: 470] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 02/15/2013] [Accepted: 05/17/2013] [Indexed: 10/26/2022]
Abstract
Hematopoietic stem cells (HSCs) and multipotent hematopoietic progenitors (MPPs) are routinely isolated using various markers but remain heterogeneous. Here we show that four SLAM family markers, CD150, CD48, CD229, and CD244, can distinguish HSCs and MPPs from restricted progenitors and subdivide them into a hierarchy of functionally distinct subpopulations with stepwise changes in cell-cycle status, self-renewal, and reconstituting potential. CD229 expression largely distinguished lymphoid-biased HSCs from rarely dividing myeloid-biased HSCs, enabling prospective enrichment of these HSC subsets. Differences in CD229 and CD244 expression resolved CD150(-)CD48(-/low)Lineage(-/low)Sca-1(+)c-Kit(+) cells into a hierarchy of highly purified MPPs that retained erythroid and platelet potential but exhibited progressive changes in mitotic activity and reconstituting potential. Use of these markers, and reconstitution assays, showed that conditional deletion of Scf from endothelial cells and perivascular stromal cells eliminated the vast majority of bone marrow HSCs, including nearly all CD229(-/low) HSCs, demonstrating that quiescent HSCs are maintained by a perivascular niche.
Collapse
Affiliation(s)
- Hideyuki Oguro
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | |
Collapse
|
55
|
Abstract
Hematopoietic stem cells have the capacity to self-renew and give rise to the entirety of the mature blood and immune system throughout the lifespan of an organism. Here, we describe methods to isolate and culture murine bone marrow (BM) CD34(-)ckit(+)Sca1(+)Lineage(-) (CD34(-)KSL) hematopoietic stem cells (HSCs). We also describe a method to measure functional HSC content via the competitive repopulation assay. Furthermore, we summarize methods to isolate and culture human CD34(+)CD38(-)Lineage(-) cells which are enriched for human hematopoietic stem and progenitor cells.
Collapse
|
56
|
Lnk adaptor suppresses radiation resistance and radiation-induced B-cell malignancies by inhibiting IL-11 signaling. Proc Natl Acad Sci U S A 2013; 110:20599-604. [PMID: 24297922 DOI: 10.1073/pnas.1319665110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Lnk (Sh2b3) adaptor protein dampens the response of hematopoietic stem cells and progenitors (HSPCs) to a variety of cytokines by inhibiting JAK2 signaling. As a consequence, Lnk(-/-) mice develop hematopoietic hyperplasia, which progresses to a phenotype resembling the nonacute phase of myeloproliferative neoplasm. In addition, Lnk mutations have been identified in human myeloproliferative neoplasms and acute leukemia. We find that Lnk suppresses the development of radiation-induced acute B-cell malignancies in mice. Lnk-deficient HSPCs recover more effectively from irradiation than their wild-type counterparts, and this resistance of Lnk(-/-) HSPCs to radiation underlies the subsequent emergence of leukemia. A search for the mechanism responsible for radiation resistance identified the cytokine IL-11 as being critical for the ability of Lnk(-/-) HSPCs to recover from irradiation and subsequently become leukemic. In IL-11 signaling, wild-type Lnk suppresses tyrosine phosphorylation of the Src homology region 2 domain-containing phosphatase-2/protein tyrosine phosphatase nonreceptor type 11 and its association with the growth factor receptor-bound protein 2, as well as activation of the Erk MAP kinase pathway. Indeed, Src homology region 2 domain-containing phosphatase-2 has a binding motif for the Lnk Src Homology 2 domain that is phosphorylated in response to IL-11 stimulation. IL-11 therefore drives a pathway that enhances HSPC radioresistance and radiation-induced B-cell malignancies, but is normally attenuated by the inhibitory adaptor Lnk.
Collapse
|
57
|
Ema H, Morita Y, Suda T. Heterogeneity and hierarchy of hematopoietic stem cells. Exp Hematol 2013; 42:74-82.e2. [PMID: 24269919 DOI: 10.1016/j.exphem.2013.11.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 10/16/2013] [Accepted: 11/04/2013] [Indexed: 12/31/2022]
Abstract
Hematopoietic stem cells (HSCs) are a more heterogeneous population than previously thought. Extensive analysis of reconstitution kinetics after transplantation allows a new classifications of HSCs based on lineage balance. Previously unrecognized classes of HSCs, such as myeloid- and lymphoid-biased HSCs, have emerged. However, varying nomenclature has been used to describe these cells, promoting confusion in the field. To establish a common nomenclature, we propose a reclassification of short-, intermediate-, and long-term (ST, IT, and LT) HSCs defined as: ST < 6 months, IT > 6 months, and LT > 12. We observe that myeloid-biased HSCs or α cells overlap with LT-HSCs, whereas lymphoid-biased HSCs or γ/δ cells overlap with ST-HSCs, suggesting that HSC lifespan is linked to cell differentiation. We also suggest that HSC heterogeneity prompts reconsideration of long-term (>4 months) multilineage reconstitution as the gold standard for HSC detection. In this review, we discuss relationships among ST-, IT-, and LT-HSCs relevant to stem cell heterogeneity, hierarchical organization, and differentiation pathways.
Collapse
Affiliation(s)
- Hideo Ema
- Department of Cell Differentiation, Sakaguchi Laboratories of Developmental Biology, Keio University School of Medicine, Tokyo, Japan.
| | - Yohei Morita
- Leibniz Institute for Age Research, Fritz Lipmann Institute, Jenna, Germany
| | - Toshio Suda
- Department of Cell Differentiation, Sakaguchi Laboratories of Developmental Biology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
58
|
Kawakami Y, Ii M, Matsumoto T, Kawamoto A, Kuroda R, Akimaru H, Mifune Y, Shoji T, Fukui T, Asahi M, Kurosaka M, Asahara T. A small interfering RNA targeting Lnk accelerates bone fracture healing with early neovascularization. J Transl Med 2013; 93:1036-53. [PMID: 23897412 DOI: 10.1038/labinvest.2013.93] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/03/2013] [Accepted: 07/07/2013] [Indexed: 12/14/2022] Open
Abstract
Lnk, an intracellular adapter protein, is expressed in hematopoietic cell lineages, which has recently been proved as an essential inhibitory signaling molecule for stem cell self-renewal in the stem cell factor-c-Kit signaling pathway with enhanced hematopoietic and osteogenic reconstitution in Lnk-deficient mice. Moreover, the therapeutic potential of hematopoietic stem/endothelial progenitor cells (EPCs) for fracture healing has been demonstrated with mechanistic insight into vasculogenesis/angiogenesis and osteogenesis enhancement in the fracture sites. We report here, Lnk siRNA-transfected endothelial commitment of c-kit+/Sca-1+/lineage- subpopulations of bone marrow cells have high EPC colony-forming capacity exhibiting endothelial markers, VE-Cad, VEGF and Ang-1. Lnk siRNA-transfected osteoblasts also show highly osteoblastic capacity. In vivo, locally transfected Lnk siRNA could successfully downregulate the expression of Lnk at the fracture site up to 1 week, and radiological and histological examination showed extremely accelerated fracture healing in Lnk siRNA-transfected mice. Moreover, Lnk siRNA-transfected mice exhibited sufficient therapeutic outcomes with intrinstic enhancement of angiogenesis and osteogenesis, specifically, the mice demonstrated better blood flow recovery in the sites of fracture. In our series of experiments, we clarified that a negatively regulated Lnk system contributed to a favorable circumstance for fracture healing by enhancing vasculogenesis/angiogenesis and osteogenesis. These findings suggest that downregulation of Lnk system may have the clinical potential for faster fracture healing, which contributes to the reduction of delayed unions or non-unions.
Collapse
Affiliation(s)
- Yohei Kawakami
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Abstract
The SH2B adaptor protein 3 (SH2B3) gene encodes a negative regulator of cytokine signaling with a critical role in the homeostasis of hematopoietic stem cells and lymphoid progenitors. Here, we report the identification of germline homozygous SH2B3 mutations in 2 siblings affected with developmental delay and autoimmunity, one in whom B-precursor acute lymphoblastic leukemia (ALL) developed. Mechanistically, loss of SH2B3 increases Janus kinase-signal transducer and activator of transcription signaling, promotes lymphoid cell proliferation, and accelerates leukemia development in a mouse model of NOTCH1-induced ALL. Moreover, extended mutation analysis showed homozygous somatic mutations in SH2B3 in 2 of 167 ALLs analyzed. Overall, these results demonstrate a Knudson tumor suppressor role for SH2B3 in the pathogenesis of ALL and highlight a possible link between genetic predisposition factors in the pathogenesis of autoimmunity and leukemogenesis.
Collapse
|
60
|
Heterogeneity of young and aged murine hematopoietic stem cells revealed by quantitative clonal analysis using cellular barcoding. Blood 2013; 122:523-32. [PMID: 23719303 DOI: 10.1182/blood-2013-01-481135] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The number of hematopoietic stem cells (HSCs) that contributes to blood formation and the dynamics of their clonal contribution is a matter of ongoing discussion. Here, we use cellular barcoding combined with multiplex high-throughput sequencing to provide a quantitative and sensitive analysis of clonal behavior of hundreds of young and old HSCs. The majority of transplanted clones steadily contributes to hematopoiesis in the long-term, although clonal output in granulocytes, T cells, and B cells is substantially different. Contributions of individual clones to blood are dynamically changing; most of the clones either expand or decline with time. Finally, we demonstrate that the pool of old HSCs is composed of multiple small clones, whereas the young HSC pool is dominated by fewer, but larger, clones.
Collapse
|
61
|
Generation of engraftable hematopoietic stem cells from induced pluripotent stem cells by way of teratoma formation. Mol Ther 2013; 21:1424-31. [PMID: 23670574 DOI: 10.1038/mt.2013.71] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 03/17/2013] [Indexed: 12/31/2022] Open
Abstract
In vitro generation of hematopoietic stem cells (HSCs) from induced pluripotent stem cells (iPSCs) has the potential to provide novel therapeutic approaches for replacing bone marrow (BM) transplantation without rejection or graft versus host disease. Hitherto, however, it has proved difficult to generate truly functional HSCs transplantable to adult host mice. Here, we demonstrate a unique in vivo differentiation system yielding engraftable HSCs from mouse and human iPSCs in teratoma-bearing animals in combination with a maneuver to facilitate hematopoiesis. In mice, we found that iPSC-derived HSCs migrate from teratomas into the BM and their intravenous injection into irradiated recipients resulted in multilineage and long-term reconstitution of the hematolymphopoietic system in serial transfers. Using this in vivo generation system, we could demonstrate that X-linked severe combined immunodeficiency (X-SCID) mice can be treated by HSCs derived from gene-corrected clonal iPSCs. It should also be noted that neither leukemia nor tumors were observed in recipients after transplantation of iPSC-derived HSCs. Taken our findings together, our system presented in this report should provide a useful tool not only for the study of HSCs, but also for practical application of iPSCs in the treatment of hematologic and immunologic diseases.
Collapse
|
62
|
Oh ST. When the Brakes are Lost: LNK Dysfunction in Mice, Men, and Myeloproliferative Neoplasms. Ther Adv Hematol 2013; 2:11-9. [PMID: 23556072 DOI: 10.1177/2040620710393391] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aberrant JAK-STAT signaling is a hallmark of myeloproliferative neoplasms (MPNs). These hyperproliferative disorders are classically associated with activating mutations in tyrosine kinases such as JAK2 and the thrombopoietin (TPO) receptor MPL. Activation of JAK-STAT signaling and responses to JAK2 inhibitors have been observed in MPN patients lacking JAK2 or MPL mutations, suggesting that other regulatory elements in the JAK-STAT pathway are altered. However, the molecular basis for this observation has been unclear. Recently, the role of inhibitory regulators of JAK-STAT signaling in MPN pathogenesis has been increasingly recognized. LNK is an adaptor protein that forms a negative feedback loop by binding to MPL and JAK2 and inhibiting downstream STAT activation. Murine models indicate that loss of LNK function can promote the development of a MPN phenotype. Several recent studies have identified novel LNK mutations in MPNs, thus validating this notion in humans. These findings represent a novel genetic paradigm of loss of negative feedback regulation of JAK-STAT activation in MPNs and have implications for the future development of targeted therapies in MPNs.
Collapse
|
63
|
Stine RR, Matunis EL. JAK-STAT signaling in stem cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:247-67. [PMID: 23696361 DOI: 10.1007/978-94-007-6621-1_14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adult stem cells are essential for the regeneration and repair of tissues in an organism. Signals from many different pathways converge to regulate stem cell maintenance and differentiation while preventing overproliferation. Although each population of adult stem cells is unique, common themes arise by comparing the regulation of various stem cell types in an organism or by comparing similar stem cell types across species. The JAK-STAT signaling pathway, identified nearly two decades ago, is now known to be involved in many biological processes including the regulation of stem cells. Studies in Drosophila first implicated JAK-STAT signaling in the control of stem cell maintenance in the male germline stem cell microenvironment, or niche; subsequently it has been shown play a role in other niches in both Drosophila and mammals. In this chapter, we will address the role of JAK-STAT signaling in stem cells in the germline, intestinal, hematopoietic and neuronal niches in Drosophila as well as the hematopoietic and neuronal niches in mammals. We will comment on how the study of JAK-STAT signaling in invertebrate systems has helped to advance our understanding of signaling in vertebrates. In addition to the role of JAK- STAT signaling in stem cell niche homeostasis, we will also discuss the diseases, including cancers, that can arise when this pathway is misregulated.
Collapse
Affiliation(s)
- Rachel R Stine
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD, 21205 USA
| | | |
Collapse
|
64
|
Tashiro K, Omori M, Kawabata K, Hirata N, Yamaguchi T, Sakurai F, Takaki S, Mizuguchi H. Inhibition of Lnk in Mouse Induced Pluripotent Stem Cells Promotes Hematopoietic Cell Generation. Stem Cells Dev 2012; 21:3381-90. [DOI: 10.1089/scd.2012.0100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Katsuhisa Tashiro
- Laboratory of Stem Cell Regulation, National Institute of Biomedical Innovation, Osaka, Japan
| | - Miyuki Omori
- Laboratory of Stem Cell Regulation, National Institute of Biomedical Innovation, Osaka, Japan
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kenji Kawabata
- Laboratory of Stem Cell Regulation, National Institute of Biomedical Innovation, Osaka, Japan
- Laboratory of Biomedical Innovation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Nobue Hirata
- Laboratory of Stem Cell Regulation, National Institute of Biomedical Innovation, Osaka, Japan
| | - Tomoko Yamaguchi
- Laboratory of Stem Cell Regulation, National Institute of Biomedical Innovation, Osaka, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Satoshi Takaki
- Department of Immune Regulation, National Center for Global Health and Medicine, Research Institute, Tokyo, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Stem Cell Regulation, National Institute of Biomedical Innovation, Osaka, Japan
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan
| |
Collapse
|
65
|
Norddahl GL, Wahlestedt M, Gisler S, Sigvardsson M, Bryder D. Reduced repression of cytokine signaling ameliorates age-induced decline in hematopoietic stem cell function. Aging Cell 2012; 11:1128-31. [PMID: 22809070 DOI: 10.1111/j.1474-9726.2012.00863.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aging causes profound effects on the hematopoietic stem cell (HSC) pool, including an altered output of mature progeny and enhanced self-propagation of repopulating-defective HSCs. An important outstanding question is whether HSCs can be protected from aging. The signal adaptor protein LNK negatively regulates hematopoiesis at several cellular stages. It has remained unclear how the enhanced sensitivity to cytokine signaling caused by LNK deficiency affects hematopoiesis upon aging. Our findings demonstrate that aged LNK-/- HSCs displayed a robust overall reconstitution potential and gave rise to a hematopoietic system with a balanced lineage distribution. Although aged LNK-/- HSCs displayed a distinct molecular profile in which reduced proliferation was central, little or no difference in the proliferation of aged LNK-/- HSCs was observed after transplantation when compared to aged WT HSCs. This coincided with equal telomere maintenance in WT and LNK-/- HSCs. Collectively, our studies suggest that enhanced cytokine signaling can counteract functional age-related HSC decline.
Collapse
Affiliation(s)
- Gudmundur L Norddahl
- Lund University, Institution for Experimental Medical Science, Immunology section, BMC D14, Tornavägen 10, 221 84 Lund, Sweden
| | | | | | | | | |
Collapse
|
66
|
Abstract
Enormous numbers of adult blood cells are constantly regenerated throughout life from hematopoietic stem cells through a series of progenitor stages. Accessibility, robust functional assays, well-established prospective isolation, and successful clinical application made hematopoiesis the classical mammalian stem cell system. Most of the basic concepts of stem cell biology have been defined in this system. At the same time, many long-standing disputes in hematopoiesis research illustrate our still limited understanding. Here we discuss the embryonic development and lifelong maintenance of the hematopoietic system, its cellular components, and some of the hypotheses about the molecular mechanisms involved in controlling hematopoietic cell fates.
Collapse
Affiliation(s)
- Michael A Rieger
- Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt (Main), Germany
| | | |
Collapse
|
67
|
Bersenev A, Rozenova K, Balcerek J, Jiang J, Wu C, Tong W. Lnk deficiency partially mitigates hematopoietic stem cell aging. Aging Cell 2012; 11:949-59. [PMID: 22812478 DOI: 10.1111/j.1474-9726.2012.00862.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Upon aging, the number of hematopoietic stem cells (HSCs) in the bone marrow increases while their repopulation potential declines. Moreover, aged HSCs exhibit lineage bias in reconstitution experiments with an inclination toward myeloid at the expense of lymphoid potential. The adaptor protein Lnk is an important negative regulator of HSC homeostasis, as Lnk deficiency is associated with a 10-fold increase in HSC numbers in young mice. However, the age-related increase in functional HSC numbers found in wild-type HSCs was not observed in Lnk-deficient animals. Importantly, HSCs from aged Lnk null mice possess greatly enhanced self-renewal capacity and diminished exhaustion, as evidenced by serial transplant experiments. In addition, Lnk deficiency ameliorates the aging-associated lineage bias. Transcriptome analysis revealed that WT and Lnk-deficient HSCs share many aging-related changes in gene expression patterns. Nonetheless, Lnk null HSCs displayed altered expression of components in select signaling pathways with potential involvement in HSC self-renewal and aging. Taken together, these results suggest that loss of Lnk partially mitigates age-related HSC alterations.
Collapse
Affiliation(s)
- Alexey Bersenev
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104-4318, USA
| | | | | | | | | | | |
Collapse
|
68
|
Gery S, Koeffler HP. Role of the adaptor protein LNK in normal and malignant hematopoiesis. Oncogene 2012; 32:3111-8. [DOI: 10.1038/onc.2012.435] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
69
|
Velazquez L. The Lnk adaptor protein: a key regulator of normal and pathological hematopoiesis. Arch Immunol Ther Exp (Warsz) 2012; 60:415-29. [PMID: 22990499 DOI: 10.1007/s00005-012-0194-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 08/06/2012] [Indexed: 01/24/2023]
Abstract
The development and function of blood cells are regulated by specific growth factors/cytokines and their receptors' signaling pathways. In this way, these factors influence cell survival, proliferation and differentiation of hematopoietic cells. Central to this positive and/or negative control are the adaptor proteins. Since their identification 10 years ago, members of the Lnk adaptor protein family have proved to be important activators and/or inhibitors in the hematopoietic, immune and vascular system. In particular, the generation of animal and cellular models for the Lnk and APS proteins has helped establish the physiological role of these molecules through the identification of their specific signaling pathways and the characterization of their binding partners. Moreover, the recent identification of mutations in the LNK gene in myeloproliferative disorders, as well as the correlation of a single nucleotide polymorphism on LNK with hematological, immune and vascular diseases have suggested its involvement in the pathophysiology of these malignancies. The latter findings have thus raised the possibility of addressing Lnk signaling for the treatment of certain human diseases. This review therefore describes the pathophysiological role of this adaptor protein in hematological malignancies and the potential benefits of Lnk therapeutic targeting.
Collapse
Affiliation(s)
- Laura Velazquez
- UMR U978 Inserm/Université Paris 13, UFR SMBH, Bobigny, France.
| |
Collapse
|
70
|
Abstract
Abstract
The niche microenvironment controls stem cell number, fate, and behavior. The bone marrow, intestine, and skin are organs with highly regenerative potential, and all produce a large number of mature cells daily. Here, focusing on adult stem cells in these organs, we compare the structures and cellular components of their niches and the factors they produce. We then define the niche as a functional unit for stem cell regulation. For example, the niche possibly maintains quiescence and regulates fate in stem cells. Moreover, we discuss our hypothesis that many stem cell types are regulated by both specialized and nonspecialized niches, although hematopoietic stem cells, as an exception, are regulated by a nonspecialized niche only. The specialized niche is composed of 1 or a few types of cells lying on the basement membrane in the epithelium. The nonspecialized niche is composed of various types of cells widely distributed in mesenchymal tissues. We propose that the specialized niche plays a role in local regulation of stem cells, whereas the nonspecialized niche plays a role in relatively broad regional or systemic regulation. Further work will verify this dual-niche model to understand mechanisms underlying stem cell regulation.
Collapse
|
71
|
Abstract
Fms-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase with important roles in hematopoietic progenitor cell survival and proliferation. It is mutated in approximately one-third of AML patients, mostly by internal tandem duplications (ITDs). Adaptor protein Lnk is a negative regulator of hematopoietic cytokine signaling. In the present study, we show that Lnk interacts physically with both wild-type FLT3 (FLT3-WT) and FLT3-ITD through the SH2 domains. We have identified the tyrosine residues 572, 591, and 919 of FLT3 as phosphorylation sites involved in direct binding to Lnk. Lnk itself was tyrosine phosphorylated by both FLT3 ligand (FL)-activated FLT3-WT and constitutively activated FLT3-ITD. Both shRNA-mediated depletion and forced overexpression of Lnk demonstrated that activation signals emanating from both forms of FLT3 are under negative regulation by Lnk. Moreover, Lnk inhibited 32D cell proliferation driven by different FLT3 variants. Analysis of primary BM cells from Lnk-knockout mice showed that Lnk suppresses the expansion of FL-stimulated hematopoietic progenitors, including lymphoid-primed multipotent progenitors. The results of the present study show that through direct binding to FLT3, Lnk suppresses FLT3-WT/ITD-dependent signaling pathways involved in the proliferation of hematopoietic cells. Therefore, modulation of Lnk expression levels may provide a unique therapeutic approach for FLT3-ITD-associated hematopoietic disease.
Collapse
|
72
|
Boyer SW, Beaudin AE, Forsberg EC. Mapping differentiation pathways from hematopoietic stem cells using Flk2/Flt3 lineage tracing. Cell Cycle 2012; 11:3180-8. [PMID: 22895180 DOI: 10.4161/cc.21279] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Genetic fate-mapping approaches provide a unique opportunity to assess differentiation pathways under physiological conditions. We have recently employed a lineage tracing approach to define hematopoietic differentiation pathways in relation to expression of the tyrosine kinase receptor Flk2.1 Based on our examination of reporter activity across all stem, progenitor and mature populations in our Flk2-Cre lineage model, we concluded that all mature blood lineages are derived through a Flk2+ intermediate, both at steady-state and under stress conditions. Here, we re-examine in depth our initial conclusions and perform additional experiments to test alternative options of lineage specification. Our data unequivocally support the conclusion that onset of Flk2 expression results in loss of self-renewal but preservation of multilineage differentiation potential. We discuss the implications of these data for defining stem cell identity and lineage potential among hematopoietic populations.
Collapse
Affiliation(s)
- Scott W Boyer
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | | | | |
Collapse
|
73
|
Jiang J, Balcerek J, Rozenova K, Cheng Y, Bersenev A, Wu C, Song Y, Tong W. 14-3-3 regulates the LNK/JAK2 pathway in mouse hematopoietic stem and progenitor cells. J Clin Invest 2012; 122:2079-91. [PMID: 22546852 DOI: 10.1172/jci59719] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 03/09/2012] [Indexed: 11/17/2022] Open
Abstract
Hematopoietic stem and progenitor cell (HSPC) functions are governed by intricate signaling networks. The tyrosine kinase JAK2 plays an essential role in cytokine signaling during hematopoiesis. The adaptor protein LNK is a critical determinant of this process through its inhibitory interaction with JAK2, thereby limiting HSPC self-renewal. LNK deficiency promotes myeloproliferative neoplasm (MPN) development in mice, and LNK loss-of-function mutations are found in human MPNs, emphasizing its pivotal role in normal and malignant HSPCs. Here, we report the identification of 14-3-3 proteins as LNK binding partners. 14-3-3 interfered with the LNK-JAK2 interaction, thereby alleviating LNK inhibition of JAK2 signaling and cell proliferation. Binding of 14-3-3 required 2 previously unappreciated serine phosphorylation sites in LNK, and we found that their phosphorylation is mediated by glycogen synthase kinase 3 and PKA kinases. Mutations of these residues abrogated the interaction and augmented the growth inhibitory function of LNK. Conversely, forced 14-3-3 binding constrained LNK function. Furthermore, interaction with 14-3-3 sequestered LNK in the cytoplasm away from the plasma membrane-proximal JAK2. Importantly, bone marrow transplantation studies revealed an essential role for 14-3-3 in HSPC reconstitution that can be partially mitigated by LNK deficiency. We believe that, together, this work implicates 14-3-3 proteins as novel and positive HSPC regulators by impinging on the LNK/JAK2 pathway.
Collapse
Affiliation(s)
- Jing Jiang
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104-4318, USA
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Tower J. Stress and stem cells. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:789-802. [PMID: 23799624 DOI: 10.1002/wdev.56] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The unique properties and functions of stem cells make them particularly susceptible to stresses and also lead to their regulation by stress. Stem cell division must respond to the demand to replenish cells during normal tissue turnover as well as in response to damage. Oxidative stress, mechanical stress, growth factors, and cytokines signal stem cell division and differentiation. Many of the conserved pathways regulating stem cell self-renewal and differentiation are also stress-response pathways. The long life span and division potential of stem cells create a propensity for transformation (cancer) and specific stress responses such as apoptosis and senescence act as antitumor mechanisms. Quiescence regulated by CDK inhibitors and a hypoxic niche regulated by FOXO transcription factor function to reduce stress for several types of stem cells to facilitate long-term maintenance. Aging is a particularly relevant stress for stem cells, because repeated demands on stem cell function over the life span can have cumulative cell-autonomous effects including epigenetic dysregulation, mutations, and telomere erosion. In addition, aging of the organism impairs function of the stem cell niche and systemic signals, including chronic inflammation and oxidative stress.
Collapse
Affiliation(s)
- John Tower
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
75
|
Asymmetric segregation and self-renewal of hematopoietic stem and progenitor cells with endocytic Ap2a2. Blood 2012; 119:2510-22. [DOI: 10.1182/blood-2011-11-393272] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Abstract
The stem cell–intrinsic model of self-renewal via asymmetric cell division (ACD) posits that fate determinants be partitioned unequally between daughter cells to either activate or suppress the stemness state. ACD is a purported mechanism by which hematopoietic stem cells (HSCs) self-renew, but definitive evidence for this cellular process remains open to conjecture. To address this issue, we chose 73 candidate genes that function within the cell polarity network to identify potential determinants that may concomitantly alter HSC fate while also exhibiting asymmetric segregation at cell division. Initial gene-expression profiles of polarity candidates showed high and differential expression in both HSCs and leukemia stem cells. Altered HSC fate was assessed by our established in vitro to in vivo screen on a subcohort of candidate polarity genes, which revealed 6 novel positive regulators of HSC function: Ap2a2, Gpsm2, Tmod1, Kif3a, Racgap1, and Ccnb1. Interestingly, live-cell videomicroscopy of the endocytic protein AP2A2 shows instances of asymmetric segregation during HSC/progenitor cell cytokinesis. These results contribute further evidence that ACD is functional in HSC self-renewal, suggest a role for Ap2a2 in HSC activity, and provide a unique opportunity to prospectively analyze progeny from HSC asymmetric divisions.
Collapse
|
76
|
Boyer SW, Schroeder AV, Smith-Berdan S, Forsberg EC. All hematopoietic cells develop from hematopoietic stem cells through Flk2/Flt3-positive progenitor cells. Cell Stem Cell 2012; 9:64-73. [PMID: 21726834 DOI: 10.1016/j.stem.2011.04.021] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 03/18/2011] [Accepted: 04/22/2011] [Indexed: 01/09/2023]
Abstract
While it is clear that a single hematopoietic stem cell (HSC) is capable of giving rise to all other hematopoietic cell types, the differentiation paths beyond HSC remain controversial. Contradictory reports on the lineage potential of progenitor populations have questioned their physiological contribution of progenitor populations to multilineage differentiation. Here, we established a lineage tracing mouse model that enabled direct assessment of differentiation pathways in vivo. We provide definitive evidence that differentiation into all hematopoietic lineages, including megakaryocyte/erythroid cell types, involves Flk2-expressing non-self-renewing progenitors. A Flk2+ stage was used during steady-state hematopoiesis, after irradiation-induced stress and upon HSC transplantation. In contrast, HSC origin and maintenance do not include a Flk2+ stage. These data demonstrate that HSC specification and maintenance are Flk2 independent, and that hematopoietic lineage separation occurs downstream of Flk2 upregulation.
Collapse
Affiliation(s)
- Scott W Boyer
- Program in Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | | | | | | |
Collapse
|
77
|
Suzuki N, Yamazaki S, Ema H, Yamaguchi T, Nakauchi H, Takaki S. Homeostasis of hematopoietic stem cells regulated by the myeloproliferative disease associated-gene product Lnk/Sh2b3 via Bcl-xL. Exp Hematol 2011; 40:166-74.e3. [PMID: 22101255 DOI: 10.1016/j.exphem.2011.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/25/2011] [Accepted: 11/09/2011] [Indexed: 01/15/2023]
Abstract
Hematopoietic stem cells (HSCs) are maintained at a very low frequency in adult bone marrow under steady-state conditions. However, it is not fully understood how homeostasis of bone marrow HSCs is maintained. We attempted to identify a key molecule involved in the regulation of HSC numbers, a factor that, in the absence of Lnk, leads to HSC expansion. Here, we demonstrate that upon stimulation with thrombopoietin, expression of Bcl-xL, an antiapoptotic protein, was highly enhanced in Lnk-deficient HSCs compared to normal HSCs. As a result, Lnk-deficient HSCs underwent reduced apoptosis following exposure to lethal radiation. Downregulation of Bcl-xL expression in Lnk-deficient HSCs by short-hairpin RNA resulted in a great reduction of their capacity for reconstitution. These findings suggest that Lnk/Sh2b3 constrains the expression of Bcl-xL and that the loss of Lnk/Sh2b3 function enhances survival of HSCs by inhibiting apoptosis. Furthermore, our observations indicate that HSCs in patients with an Lnk/Sh2b3 mutation might become resistant to apoptosis due to thrombopoietin-mediated enhanced expression of Bcl-xL. Consequently, reduced apoptosis could facilitate accumulation of HSCs with oncogenic mutations leading to development of myeloproliferative disorders.
Collapse
Affiliation(s)
- Nao Suzuki
- Laboratory of Stem Cell Therapy, Center for Experimental Medicine, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
78
|
Devallière J, Charreau B. The adaptor Lnk (SH2B3): an emerging regulator in vascular cells and a link between immune and inflammatory signaling. Biochem Pharmacol 2011; 82:1391-402. [PMID: 21723852 DOI: 10.1016/j.bcp.2011.06.023] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/15/2011] [Accepted: 06/16/2011] [Indexed: 12/20/2022]
Abstract
A better knowledge of the process by which inflammatory extracellular signals are relayed from the plasma membrane to specific intracellular sites is a key step to understand how inflammation develops and how it is regulated. This review focuses on Lnk (SH2B3) a member, with SH2B1 and SH2B2, of the SH2B family of adaptor proteins that influences a variety of signaling pathways mediated by Janus kinase and receptor tyrosine kinases. SH2B adaptor proteins contain conserved dimerization, pleckstrin homology, and SH2 domains. Initially described as a regulator of hematopoiesis and lymphocyte differentiation, Lnk now emerges as a key regulator in hematopoeitic and non hematopoeitic cells such as endothelial cells (EC) moderating growth factor and cytokine receptor-mediated signaling. In EC, Lnk is a negative regulator of TNF signaling that reduce proinflammatory phenotype and prevent EC from apoptosis. Lnk is a modulator in integrin signaling and actin cytoskeleton organization in both platelets and EC with an impact on cell adhesion, migration and thrombosis. In this review, we discuss some recent insights proposing Lnk as a key regulator of bone marrow-endothelial progenitor cell kinetics, including the ability to cell growth, endothelial commitment, mobilization, and recruitment for vascular regeneration. Finally, novel findings also provided evidences that mutations in Lnk gene are strongly linked to myeloproliferative disorders but also autoimmune and inflammatory syndromes where both immune and vascular cells display a role. Overall, these studies emphasize the importance of the Lnk adaptor molecule not only as prognostic marker but also as potential therapeutic target.
Collapse
|
79
|
Nakaoka S, Aihara K. Mathematical study on kinetics of hematopoietic stem cells--theoretical conditions for successful transplantation. JOURNAL OF BIOLOGICAL DYNAMICS 2011; 6:836-854. [PMID: 22873618 DOI: 10.1080/17513758.2011.588343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Numerous haematological diseases occur due to dysfunctions during homeostasis processes of blood cell production. Haematopoietic stem cell transplantation (HSCT) is a therapeutic option for the treatment of haematological malignancy and congenital immunodeficiency. Today, HSCT is widely applied as an alternative method to bone marrow transplantation; however, HSCT can be a risky procedure because of potential side effects and complications after transplantations. Although an optimal regimen to achieve successful HSCT while maintaining quality of life is to be developed, even theoretical considerations such as the evaluations of successful engraftments and proposals of clinical management strategies have not been fully discussed yet. In this paper, we construct and investigate mathematical models that describe the kinetics of hematopoietic stem cell self-renewal and granulopoiesis under the influence of growth factors. Moreover, we derive theoretical conditions for successful HSCT, primarily on the basis of the idea that the basic reproduction number R (0) represents a threshold condition for a population to successfully grow in a given steady-state environment. Successful engraftment of transplanted haematopoietic stem cells (HSCs) is subsequently ensured by employing a concept of dynamical systems theory known as 'persistence'. On the basis of the implications from the modelling study, we discuss how the conditions derived for a successful HSCT are used to link to experimental studies.
Collapse
Affiliation(s)
- Shinji Nakaoka
- FIRST, Aihara Innovative Mathematical Modelling Project, Japan Science and Technology Agency, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | | |
Collapse
|
80
|
Gueller S, Hehn S, Nowak V, Gery S, Serve H, Brandts CH, Koeffler HP. Adaptor protein Lnk binds to PDGF receptor and inhibits PDGF-dependent signaling. Exp Hematol 2011; 39:591-600. [PMID: 21310211 DOI: 10.1016/j.exphem.2011.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 01/11/2011] [Accepted: 01/27/2011] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Platelet-derived growth factor receptors α and β (PDGFRA, PDGFRB) are frequently expressed on hematopoietic cells and regulate cellular responses such as proliferation, differentiation, survival, and transformation. Stimulation by autocrine loops or activation by chromosomal translocation makes them important factors in development of hematopoietic disorders. Interaction with the ligand PDGF results in activation of the tyrosine kinase domain and phosphorylation of tyrosine residues, thereby creating binding sites for molecules containing Src homology 2 domains. We hypothesized that one such protein may be Lnk, a negative regulator of cytokine receptors, including Mpl, EpoR, c-Kit, and c-Fms. MATERIALS AND METHODS Interaction of Lnk with PDGFRA, PDGFRB, or leukemogenic FIP1L1-PDGFRA or TEL-PDGFRB was studied in cotransfected 293T cells. Effects of Lnk on PDGFR signaling were shown in 293T and NIH3T3 cells, whereas its influence on either PDGF-dependent or factor-independent growth was investigated using Ba/F3 or 32D cells expressing wild-type PDGFR, FIP1L1-PDGFRA, or TEL-PDGFRB. RESULTS We show that Lnk binds to PDGFR after exposure of cells to PDGF. Furthermore, Lnk can bind the FIP1L1-PDGFRA fusion protein. Mutation or deletion of the Lnk Src homology 2 domain completely abolished binding of Lnk to FIP1L1-PDGFRA, but just partly prevented binding to PDGFRA or PDGFRB. Expression of Lnk inhibited proliferation of PDGF-dependent Ba/F3 cells and diminished phosphorylation of Erk in PDGF-treated NIH3T3. 32D cells transformed by either FIP1L1-PDGFRA or TEL-PDGFRB stopped growing when Lnk was expressed. CONCLUSIONS Lnk is a negative regulator of PDGFR signaling. Development of Lnk mimetic drugs might provide a novel therapeutic strategy for myeloproliferative disorders.
Collapse
Affiliation(s)
- Saskia Gueller
- Department of Medicine, Hematology/Oncology, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany.
| | | | | | | | | | | | | |
Collapse
|
81
|
Coskun S, Hirschi KK. Establishment and regulation of the HSC niche: Roles of osteoblastic and vascular compartments. ACTA ACUST UNITED AC 2011; 90:229-42. [PMID: 21181885 DOI: 10.1002/bdrc.20194] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hematopoietic stem cells (HSC) are multi-potent cells that function to generate a lifelong supply of all blood cell types. During mammalian embryogenesis, sites of hematopoiesis change over the course of gestation: from extraembryonic yolk sac and placenta, to embryonic aorta-gonad-mesonephros region, fetal liver, and finally fetal bond marrow where HSC reside postnatally. These tissues provide microenviroments for de novo HSC formation, as well as HSC maturation and expansion. Within adult bone marrow, HSC self-renewal and differentiation are thought to be regulated by two major cellular components within their so-called niche: osteoblasts and vascular endothelial cells. This review focuses on HSC generation within, and migration to, different tissues during development, and also provides a summary of major regulatory factors provided by osteoblasts and vascular endothelial cells within the adult bone marrow niche.
Collapse
Affiliation(s)
- Suleyman Coskun
- Center for Cell and Gene Therapy, Baylor College of Medicine; Houston, Texas, 77030, USA
| | | |
Collapse
|
82
|
Seita J, Weissman IL. Hematopoietic stem cell: self-renewal versus differentiation. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 2:640-53. [PMID: 20890962 DOI: 10.1002/wsbm.86] [Citation(s) in RCA: 583] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mammalian blood system, containing more than 10 distinct mature cell types, stands on one specific cell type, hematopoietic stem cell (HSC). Within the system, only HSCs possess the ability of both multipotency and self-renewal. Multipotency is the ability to differentiate into all functional blood cells. Self-renewal is the ability to give rise to HSC itself without differentiation. Since mature blood cells (MBCs) are predominantly short-lived, HSCs continuously provide more differentiated progenitors while properly maintaining the HSC pool size throughout life by precisely balancing self-renewal and differentiation. Thus, understanding the mechanisms of self-renewal and differentiation of HSC has been a central issue. In this review, we focus on the hierarchical structure of the hematopoietic system, the current understanding of microenvironment and molecular cues regulating self-renewal and differentiation of adult HSCs, and the currently emerging systems approaches to understand HSC biology.
Collapse
Affiliation(s)
- Jun Seita
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | |
Collapse
|
83
|
Morita Y, Iseki A, Okamura S, Suzuki S, Nakauchi H, Ema H. Functional characterization of hematopoietic stem cells in the spleen. Exp Hematol 2010; 39:351-359.e3. [PMID: 21185906 DOI: 10.1016/j.exphem.2010.12.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 12/13/2010] [Accepted: 12/17/2010] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Hematopoietic stem cells (HSCs) reside in both bone marrow (BM) and spleen in adult mice. However, whether BM and spleen HSCs are functionally similar is not known. Spleen HSCs were compared with BM HSCs by various assays. MATERIALS AND METHODS Whole BM and spleen cells were quantitatively analyzed by competitive repopulation. Single-cell transplantation was performed with HSCs purified from BM and spleen. A parabiosis model was used to distinguish organ-specific HSCs from circulating HSCs. The cell cycle was analyzed with pyronin Y staining and bromodeoxyuridine uptake. RESULTS Repopulating and self-renewal potentials were similar on a clonal basis between BM and spleen HSCs, whereas the HSC frequency in the spleen was significantly lower than that in the BM. Analysis of parabiotic mice suggested that most HSCs are long-term residents in each organ. Cell-cycle analysis revealed that spleen HSCs cycle twice as frequently as do BM HSCs, suggesting that G(0) phase length is longer in BM HSCs than in spleen HSCs. The cycling difference between BM and spleen HSCs was also observed in mice that had been reconstituted with BM or spleen cells, suggesting that HSC quiescence is regulated in an organ-specific manner. CONCLUSIONS Spleen HSCs and BM HSCs are functionally similar, but their cycling behaviors differ.
Collapse
Affiliation(s)
- Yohei Morita
- Division of Stem Cell Therapy, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
84
|
Expression level and differential JAK2-V617F–binding of the adaptor protein Lnk regulates JAK2-mediated signals in myeloproliferative neoplasms. Blood 2010; 116:5961-71. [DOI: 10.1182/blood-2009-12-256768] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
Activating mutations in signaling molecules, such as JAK2-V617F, have been associated with myeloproliferative neoplasms (MPNs). Mice lacking the inhibitory adaptor protein Lnk display deregulation of thrombopoietin/thrombopoietin receptor signaling pathways and exhibit similar myeloproliferative characteristics to those found in MPN patients, suggesting a role for Lnk in the molecular pathogenesis of these diseases. Here, we showed that LNK levels are up-regulated and correlate with an increase in the JAK2-V617F mutant allele burden in MPN patients. Using megakaryocytic cells, we demonstrated that Lnk expression is regulated by the TPO-signaling pathway, thus indicating an important negative control loop in these cells. Analysis of platelets derived from MPN patients and megakaryocytic cell lines showed that Lnk can interact with JAK2-WT and V617F through its SH2 domain, but also through an unrevealed JAK2-binding site within its N-terminal region. In addition, the presence of the V617F mutation causes a tighter association with Lnk. Finally, we found that the expression level of the Lnk protein can modulate JAK2-V617F–dependent cell proliferation and that its different domains contribute to the inhibition of multilineage and megakaryocytic progenitor cell growth in vitro. Together, our results indicate that changes in Lnk expression and JAK2-V617F–binding regulate JAK2-mediated signals in MPNs.
Collapse
|
85
|
Freter R, Osawa M, Nishikawa SI. Adult stem cells exhibit global suppression of RNA polymerase II serine-2 phosphorylation. Stem Cells 2010; 28:1571-80. [PMID: 20641035 DOI: 10.1002/stem.476] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Adult stem cells, which are characterized by their capacity for self-renewal and differentiation, participate in tissue homeostasis and response to injury. They are thought to enter a state of relative quiescence, known as reversible cell cycle arrest, but the underlying molecular mechanisms remain poorly characterized. Previous data from our laboratory has shown that housekeeping gene expression is downregulated in melanocyte stem cells (MelSCs), suggesting a global suppression of mRNA transcription. We now show, using antibodies against specific phosphorylated forms of RNA polymerase II (RNApII), that adult MelSCs do not undergo productive mRNA transcription elongation, while RNApII is activated and initialized, ready to synthesize mRNA upon stimulation, and that the RNApII kinase CDK9 is absent in adult MelSCs. Interestingly, other adult stem cells also, including keratinocyte, muscle, spermatogonia, and hematopoietic stem cells, showed a similar absence of RNApII phosphorylation. Although it is difficult to show the functional significance of this observation in vivo, CDK9 inhibition resulted in enhanced survival of cells that are deprived from survival factors. We conclude that the absence of productive mRNA transcription is an early, specific, and conserved characteristic of adult stem cells. Downregulation of mRNA transcription may lead to decreased rates of metabolism, and protection from cellular and genetic damage. Screening heterogeneous tissues, including tumors, for transcriptionally quiescent cells may result in the identification of cells with stem cell-like phenotypes.
Collapse
Affiliation(s)
- Rasmus Freter
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom.
| | | | | |
Collapse
|
86
|
Gueller S, Goodridge HS, Niebuhr B, Xing H, Koren-Michowitz M, Serve H, Underhill DM, Brandts CH, Koeffler HP. Adaptor protein Lnk inhibits c-Fms-mediated macrophage function. J Leukoc Biol 2010; 88:699-706. [PMID: 20571037 PMCID: PMC3218676 DOI: 10.1189/jlb.0309185] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2009] [Revised: 05/11/2010] [Accepted: 06/05/2010] [Indexed: 12/16/2022] Open
Abstract
The M-CSFR (c-Fms) participates in proliferation, differentiation, and survival of macrophages and is involved in the regulation of distinct macrophage functions. Interaction with the ligand M-CSF results in phosphorylation of tyrosine residues on c-Fms, thereby creating binding sites for molecules containing SH2 domains. Lnk is a SH2 domain adaptor protein that negatively regulates hematopoietic cytokine receptors. Here, we show that Lnk binds to c-Fms. Biological and functional effects of this interaction were examined in macrophages from Lnk-deficient (KO) and WT mice. Clonogenic assays demonstrated an elevated number of M-CFUs in the bone marrow of Lnk KO mice. Furthermore, the M-CSF-induced phosphorylation of Akt in Lnk KO macrophages was increased and prolonged, whereas phosphorylation of Erk was diminished. Zymosan-stimulated production of ROS was increased dramatically in a M-CSF-dependent manner in Lnk KO macrophages. Lastly, Lnk inhibited M-CSF-induced migration of macrophages. In summary, we show that Lnk binds to c-Fms and can blunt M-CSF stimulation. Modulation of levels of Lnk in macrophages may provide a unique therapeutic approach to increase innate host defenses.
Collapse
Affiliation(s)
- Saskia Gueller
- Department of Hematology and Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Matsumoto T, Ii M, Nishimura H, Shoji T, Mifune Y, Kawamoto A, Kuroda R, Fukui T, Kawakami Y, Kuroda T, Kwon SM, Iwasaki H, Horii M, Yokoyama A, Oyamada A, Lee SY, Hayashi S, Kurosaka M, Takaki S, Asahara T. Lnk-dependent axis of SCF-cKit signal for osteogenesis in bone fracture healing. ACTA ACUST UNITED AC 2010; 207:2207-23. [PMID: 20855498 PMCID: PMC2947078 DOI: 10.1084/jem.20100321] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The therapeutic potential of hematopoietic stem cells/endothelial progenitor cells (HSCs/EPCs) for fracture healing has been demonstrated with evidence for enhanced vasculogenesis/angiogenesis and osteogenesis at the site of fracture. The adaptor protein Lnk has recently been identified as an essential inhibitor of stem cell factor (SCF)–cKit signaling during stem cell self-renewal, and Lnk-deficient mice demonstrate enhanced hematopoietic reconstitution. In this study, we investigated whether the loss of Lnk signaling enhances the regenerative response during fracture healing. Radiological and histological examination showed accelerated fracture healing and remodeling in Lnk-deficient mice compared with wild-type mice. Molecular, physiological, and morphological approaches showed that vasculogenesis/angiogenesis and osteogenesis were promoted in Lnk-deficient mice by the mobilization and recruitment of HSCs/EPCs via activation of the SCF–cKit signaling pathway in the perifracture zone, which established a favorable environment for bone healing and remodeling. In addition, osteoblasts (OBs) from Lnk-deficient mice had a greater potential for terminal differentiation in response to SCF–cKit signaling in vitro. These findings suggest that inhibition of Lnk may have therapeutic potential by promoting an environment conducive to vasculogenesis/angiogenesis and osteogenesis and by facilitating OB terminal differentiation, leading to enhanced fracture healing.
Collapse
Affiliation(s)
- Tomoyuki Matsumoto
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 565-8686, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Essers MAG, Trumpp A. Targeting leukemic stem cells by breaking their dormancy. Mol Oncol 2010; 4:443-50. [PMID: 20599449 DOI: 10.1016/j.molonc.2010.06.001] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 06/01/2010] [Accepted: 06/01/2010] [Indexed: 12/17/2022] Open
Abstract
Transient or long-term quiescence, the latter referred to as dormancy are fundamental features of at least some adult stem cells. The status of dormancy is likely a critical mechanism for the observed resistance of normal HSCs and leukemic stem cells (LSCs) to anti-proliferative chemotherapy. Recent studies have revealed cytokines such as Interferon-alpha (IFNα) and G-CSF as well as arsenic trioxide (As(2)O(3)) to be efficient agents for promoting cycling of dormant HSCs and LSCs. Most interestingly, such cell cycle activated stem cells become exquisitely sensitive to killing by different chemotherapeutic agents, suggesting that dormant LSCs in patients may be targeted by a sequential two-step protocol involving an initial activation by IFNα, G-CSF or As(2)O(3), followed by targeted chemotherapy.
Collapse
Affiliation(s)
- Marieke Alida Gertruda Essers
- HI-STEM (Heidelberg Institute for Stem Cell Technology and Experimental Medicine), Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany.
| | | |
Collapse
|
89
|
A mutant allele of the Swi/Snf member BAF250a determines the pool size of fetal liver hemopoietic stem cell populations. Blood 2010; 116:1678-84. [PMID: 20522713 DOI: 10.1182/blood-2010-03-273862] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is believed that hemopoietic stem cells (HSC), which colonize the fetal liver (FL) rapidly, expand to establish a supply of HSCs adequate for maintenance of hemopoiesis throughout life. Accordingly, FL HSCs are actively cycling as opposed to their predominantly quiescent bone marrow counterparts, suggesting that the FL microenvironment provides unique signals that support HSC proliferation and self-renewal. We now report the generation and characterization of mice with a mutant allele of Baf250a lacking exons 2 and 3. Baf250a(E2E3/E2E3) mice are viable until E19.5, but do not survive beyond birth. Most interestingly, FL HSC numbers are markedly higher in these mice than in control littermates, thus raising the possibility that Baf250a determines the HSC pool size in vivo. Limit dilution experiments indicate that the activity of Baf250a(E2E3/E2E3) HSC is equivalent to that of the wild-type counterparts. The Baf250a(E2E3/E2E3) FL-derived stroma, in contrast, exhibits a hemopoiesis-supporting potential superior to the developmentally matched controls. To our knowledge, this demonstration is the first that a mechanism operating in a cell nonautonomous manner canexpand the pool size of the fetal HSC populations.
Collapse
|
90
|
Bersenev A, Wu C, Balcerek J, Jing J, Kundu M, Blobel GA, Chikwava KR, Tong W. Lnk constrains myeloproliferative diseases in mice. J Clin Invest 2010; 120:2058-69. [PMID: 20458146 PMCID: PMC2877957 DOI: 10.1172/jci42032] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 03/31/2010] [Indexed: 12/24/2022] Open
Abstract
Hematopoietic stem and progenitor cell (HSPC) expansion is regulated by intrinsic signaling pathways activated by cytokines. The intracellular kinase JAK2 plays an essential role in cytokine signaling, and activating mutations in JAK2 are found in a number of hematologic malignancies. We previously demonstrated that lymphocyte adaptor protein (Lnk, also known as Sh2b3) binds JAK2 and attenuates its activity, thereby limiting HSPC expansion. Here we show that loss of Lnk accelerates and exacerbates oncogenic JAK2-induced myeloproliferative diseases (MPDs) in mice. Specifically, Lnk deficiency enhanced cytokine-independent JAK/STAT signaling and augmented the ability of oncogenic JAK2 to expand myeloid progenitors in vitro and in vivo. An activated form of JAK2, unable to bind Lnk, caused greater myeloid expansion than activated JAK2 alone and accelerated myelofibrosis, indicating that Lnk directly inhibits oncogenic JAK2 in constraining MPD development. In addition, Lnk deficiency cooperated with the BCR/ABL oncogene, the product of which does not directly interact with or depend on JAK2 or Lnk, in chronic myeloid leukemia (CML) development, suggesting that Lnk also acts through endogenous pathways to constrain HSPCs. Consistent with this idea, aged Lnk-/- mice spontaneously developed a CML-like MPD. Taken together, our data establish Lnk as a bona fide suppressor of MPD in mice and raise the possibility that Lnk dysfunction contributes to the development of hematologic malignancies in humans.
Collapse
Affiliation(s)
- Alexey Bersenev
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA.
Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Pathology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Chao Wu
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA.
Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Pathology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Joanna Balcerek
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA.
Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Pathology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jiang Jing
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA.
Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Pathology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Mondira Kundu
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA.
Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Pathology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Gerd A. Blobel
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA.
Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Pathology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kudakwashe R. Chikwava
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA.
Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Pathology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Wei Tong
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA.
Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Pathology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
91
|
Abstract
Hematopoietic stem cells (HSCs) save lives in routine clinical practice every day, as they are the key element in transplantation-based therapies for hematologic malignancies. The success of clinical stem cell transplantation critically relies on the ability of stem cells to reconstitute the hematopoietic system for many decades after the administration of the powerful chemotherapy and/or irradiation that is required to eradicate malignant cells, but also irreversibly ablates patients’ own blood forming capacity. Surprisingly, despite enormous efforts and continuous progress in the field, our understanding of the basic biology of HSCs is still rather incomplete. Several recent studies substantially refine our understanding of the cells at the very top of the hematopoietic hierarchy, and suggest that we may need to revise the criteria we typically use to identify and define HSCs.
Collapse
Affiliation(s)
- Hanno Hock
- The Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
92
|
Morita Y, Ema H, Nakauchi H. Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment. ACTA ACUST UNITED AC 2010; 207:1173-82. [PMID: 20421392 PMCID: PMC2882827 DOI: 10.1084/jem.20091318] [Citation(s) in RCA: 332] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hematopoietic stem cells (HSCs) have been extensively characterized based on functional definitions determined by experimental transplantation into lethally irradiated mice. In mice, HSCs are heterogeneous with regard to self-renewal potential, in vitro colony-forming activity, and in vivo behavior. We attempted prospective isolation of HSC subsets with distinct properties among CD34(-/low) c-Kit+Sca-1+Lin- (CD34-KSL) cells. CD34-KSL cells were divided, based on CD150 expression, into three fractions: CD150high, CD150med, and CD150neg cells. Compared with the other two fractions, CD150high cells were significantly enriched in HSCs, with great self-renewal potential. In vitro colony assays revealed that decreased expression of CD150 was associated with reduced erythroblast/megakaryocyte differentiation potential. All three fractions were regenerated only from CD150high cells in recipient mice. Using single-cell transplantation studies, we found that a fraction of CD150high cells displayed latent and barely detectable myeloid engraftment in primary-recipient mice but progressive and multilineage reconstitution in secondary-recipient mice. These findings highlight the complexity and hierarchy of reconstitution capability, even among HSCs in the most primitive compartment.
Collapse
Affiliation(s)
- Yohei Morita
- Division of Stem Cell Therapy and FACS Core Laboratory, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
93
|
Abstract
Haematopoietic stem cells (HSCs) in mouse bone marrow are located in specialized niches as single cells. During homeostasis, signals from this environment keep some HSCs dormant, which preserves long-term self-renewal potential, while other HSCs actively self renew to maintain haematopoiesis. In response to haematopoietic stress, dormant HSCs become activated and rapidly replenish the haematopoietic system. Interestingly, three factors - granulocyte colony-stimulating factor, interferon-alpha and arsenic trioxide - have been shown to efficiently activate dormant stem cells and thereby could break their resistance to anti-proliferative chemotherapeutics. Thus, we propose that two-step strategies could target resistant leukaemic stem cells by priming tumours with activators of dormancy followed by chemotherapy or targeted therapies.
Collapse
Affiliation(s)
- Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, German Cancer Research Center, Germany.
| | | | | |
Collapse
|
94
|
Challen GA, Boles NC, Chambers SM, Goodell MA. Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-beta1. Cell Stem Cell 2010; 6:265-78. [PMID: 20207229 PMCID: PMC2837284 DOI: 10.1016/j.stem.2010.02.002] [Citation(s) in RCA: 455] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 11/11/2009] [Accepted: 02/02/2010] [Indexed: 02/06/2023]
Abstract
The traditional view of hematopoiesis has been that all the cells of the peripheral blood are the progeny of a unitary homogeneous pool of hematopoietic stem cells (HSCs). Recent evidence suggests that the hematopoietic system is actually maintained by a consortium of HSC subtypes with distinct functional characteristics. We show here that myeloid-biased HSCs (My-HSCs) and lymphoid-biased HSCs (Ly-HSCs) can be purified according to their capacity for Hoechst dye efflux in combination with canonical HSC markers. These phenotypes are stable under natural (aging) or artificial (serial transplantation) stress and are exacerbated in the presence of competing HSCs. My- and Ly-HSCs respond differently to TGF-beta1, presenting a possible mechanism for differential regulation of HSC subtype activation. This study demonstrates definitive isolation of lineage-biased HSC subtypes and contributes to the fundamental change in view that the hematopoietic system is maintained by a continuum of HSC subtypes, rather than a functionally uniform pool.
Collapse
Affiliation(s)
- Grant A. Challen
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA, 77030
- Center For Cell And Gene Therapy, Baylor College of Medicine, Houston, TX, USA, 77030
- Department of Anatomy and Cell Biology, Monash University, Clayton, Victoria, Australia, 3800
| | - Nathan C. Boles
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA, 77030
- Center For Cell And Gene Therapy, Baylor College of Medicine, Houston, TX, USA, 77030
| | - Stuart M. Chambers
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA, 77030
- Center For Cell And Gene Therapy, Baylor College of Medicine, Houston, TX, USA, 77030
| | - Margaret A. Goodell
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA, 77030
- Center For Cell And Gene Therapy, Baylor College of Medicine, Houston, TX, USA, 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
95
|
Benveniste P, Frelin C, Janmohamed S, Barbara M, Herrington R, Hyam D, Iscove NN. Intermediate-term hematopoietic stem cells with extended but time-limited reconstitution potential. Cell Stem Cell 2010; 6:48-58. [PMID: 20074534 DOI: 10.1016/j.stem.2009.11.014] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 10/06/2009] [Accepted: 11/19/2009] [Indexed: 10/20/2022]
Abstract
Sustained blood cell production depends on divisions by hematopoietic stem cells (HSCs) that yield both differentiating progeny as well as new HSCs via self-renewal. Differentiating progeny remain capable of self-renewal, but only HSCs sustain self-renewal through successive divisions securely enough to maintain clones that persist life-long. Until recently, the first identified next stage consisted of "short-term" reconstituting cells able to sustain clones of differentiating cells for only 4-6 weeks. Here we expand evidence for a numerically dominant "intermediate-term" multipotent HSC stage in mice whose clones persist for 6-8 months before becoming extinct and that are separable from both short-term as well as permanently reconstituting "long-term" HSCs. The findings suggest that the first step in stem cell differentiation consists not in loss of initial capacity for serial self-renewal divisions, but rather in loss of mechanisms that stabilize self-renewing behavior throughout successive future stem cell divisions.
Collapse
|
96
|
Abstract
Clonal analysis is important for many areas of hematopoietic stem cell research, including in vitro cell expansion, gene therapy, and cancer progression and treatment. A common approach to measure clonality of retrovirally transduced cells is to perform integration site analysis using Southern blotting or polymerase chain reaction-based methods. Although these methods are useful in principle, they generally provide a low-resolution, biased, and incomplete assessment of clonality. To overcome those limitations, we labeled retroviral vectors with random sequence tags or "barcodes." On integration, each vector introduces a unique, identifiable, and heritable mark into the host cell genome, allowing the clonal progeny of each cell to be tracked over time. By coupling the barcoding method to a sequencing-based detection system, we could identify major and minor clones in 2 distinct cell culture systems in vitro and in a long-term transplantation setting. In addition, we demonstrate how clonal analysis can be complemented with transgene expression and integration site analysis. This cellular barcoding tool permits a simple, sensitive assessment of clonality and holds great promise for future gene therapy protocols in humans, and any other applications when clonal tracking is important.
Collapse
|
97
|
Takizawa H, Nishimura S, Takayama N, Oda A, Nishikii H, Morita Y, Kakinuma S, Yamazaki S, Okamura S, Tamura N, Goto S, Sawaguchi A, Manabe I, Takatsu K, Nakauchi H, Takaki S, Eto K. Lnk regulates integrin alphaIIbbeta3 outside-in signaling in mouse platelets, leading to stabilization of thrombus development in vivo. J Clin Invest 2009; 120:179-90. [PMID: 20038804 DOI: 10.1172/jci39503] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 10/28/2009] [Indexed: 12/20/2022] Open
Abstract
The nature of the in vivo cellular events underlying thrombus formation mediated by platelet activation remains unclear because of the absence of a modality for analysis. Lymphocyte adaptor protein (Lnk; also known as Sh2b3) is an adaptor protein that inhibits thrombopoietin-mediated signaling, and as a result, megakaryocyte and platelet counts are elevated in Lnk-/- mice. Here we describe an unanticipated role for Lnk in stabilizing thrombus formation and clarify the activities of Lnk in platelets transduced through integrin alphaIIbbeta3-mediated outside-in signaling. We equalized platelet counts in wild-type and Lnk-/- mice by using genetic depletion of Lnk and BM transplantation. Using FeCl3- or laser-induced injury and in vivo imaging that enabled observation of single platelet behavior and the multiple steps in thrombus formation, we determined that Lnk is an essential contributor to the stabilization of developing thrombi within vessels. Lnk-/- platelets exhibited a reduced ability to fully spread on fibrinogen and mediate clot retraction, reduced tyrosine phosphorylation of the beta3 integrin subunit, and reduced binding of Fyn to integrin alphaIIbbeta3. These results provide new insight into the mechanism of alphaIIbbeta3-based outside-in signaling, which appears to be coordinated in platelets by Lnk, Fyn, and integrins. Outside-in signaling modulators could represent new therapeutic targets for the prevention of cardiovascular events.
Collapse
Affiliation(s)
- Hitoshi Takizawa
- Research Institute, International Medical Center of Japan, 1-21-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Bhattacharya D, Czechowicz A, Ooi AGL, Rossi DJ, Bryder D, Weissman IL. Niche recycling through division-independent egress of hematopoietic stem cells. ACTA ACUST UNITED AC 2009; 206:2837-50. [PMID: 19887396 PMCID: PMC2806613 DOI: 10.1084/jem.20090778] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hematopoietic stem cells (HSCs) are thought to reside in discrete niches through stable adhesion, yet previous studies have suggested that host HSCs can be replaced by transplanted donor HSCs, even in the absence of cytoreductive conditioning. To explain this apparent paradox, we calculated, through cell surface phenotyping and transplantation of unfractionated blood, that approximately 1-5% of the total pool of HSCs enters into the circulation each day. Bromodeoxyuridine (BrdU) feeding experiments demonstrated that HSCs in the peripheral blood incorporate BrdU at the same rate as do HSCs in the bone marrow, suggesting that egress from the bone marrow to the blood can occur without cell division and can leave behind vacant HSC niches. Consistent with this, repetitive daily transplantations of small numbers of HSCs administered as new niches became available over the course of 7 d led to significantly higher levels of engraftment than did large, single-bolus transplantations of the same total number of HSCs. These data provide insight as to how HSC replacement can occur despite the residence of endogenous HSCs in niches, and suggest therapeutic interventions that capitalize upon physiological HSC egress.
Collapse
Affiliation(s)
- Deepta Bhattacharya
- Institute of Stem Cell Biology and Regenerative Medicine Stanford University School of Medicine Stanford, CA 94305, USA.
| | | | | | | | | | | |
Collapse
|
99
|
HEMATOPOIETIC STEM CELL PROLIFERATION MODELING UNDER THE INFLUENCE OF HEMATOPOIETIC-INDUCING AGENT. Shock 2009; 32:471-7. [DOI: 10.1097/shk.0b013e3181a1a05f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
100
|
Ono Y, Boldrin L, Knopp P, Morgan JE, Zammit PS. Muscle satellite cells are a functionally heterogeneous population in both somite-derived and branchiomeric muscles. Dev Biol 2009; 337:29-41. [PMID: 19835858 PMCID: PMC2806517 DOI: 10.1016/j.ydbio.2009.10.005] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 10/02/2009] [Accepted: 10/03/2009] [Indexed: 01/29/2023]
Abstract
Skeletal muscles of body and limb are derived from somites, but most head muscles originate from cranial mesoderm. The resident stem cells of muscle are satellite cells, which have the same embryonic origin as the muscle in which they reside. Here, we analysed satellite cells with a different ontology, comparing those of the extensor digitorum longus (EDL) of the limb with satellite cells from the masseter of the head. Satellite cell-derived myoblasts from MAS and EDL muscles had distinct gene expression profiles and masseter cells usually proliferated more and differentiated later than those from EDL. When transplanted, however, masseter-derived satellite cells regenerated limb muscles as efficiently as those from EDL. Clonal analysis showed that functional properties differed markedly between satellite cells: ranging from clones that proliferated extensively and gave rise to both differentiated and self-renewed progeny, to others that divided minimally before differentiating completely. Generally, masseter-derived clones were larger and took longer to differentiate than those from EDL. This distribution in cell properties was preserved in both EDL-derived and masseter-derived satellite cells from old mice, although clones were generally less proliferative. Satellite cells, therefore, are a functionally heterogeneous population, with many occupants of the niche exhibiting stem cell characteristics in both somite-derived and branchiomeric muscles.
Collapse
Affiliation(s)
- Yusuke Ono
- King's College London, Randall Division of Cell and Molecular Biophysics, Guy's Campus, London SE11UL, UK
| | | | | | | | | |
Collapse
|