51
|
Oikonomou G, Perens EA, Lu Y, Watanabe S, Jorgensen EM, Shaham S. Opposing activities of LIT-1/NLK and DAF-6/patched-related direct sensory compartment morphogenesis in C. elegans. PLoS Biol 2011; 9:e1001121. [PMID: 21857800 PMCID: PMC3153439 DOI: 10.1371/journal.pbio.1001121] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 06/28/2011] [Indexed: 12/23/2022] Open
Abstract
Glial cells surround neuronal endings to create enclosed compartments required for neuronal function. This architecture is seen at excitatory synapses and at sensory neuron receptive endings. Despite the prevalence and importance of these compartments, how they form is not known. We used the main sensory organ of C. elegans, the amphid, to investigate this issue. daf-6/Patched-related is a glia-expressed gene previously implicated in amphid sensory compartment morphogenesis. By comparing time series of electron-microscopy (EM) reconstructions of wild-type and daf-6 mutant embryos, we show that daf-6 acts to restrict compartment size. From a genetic screen, we found that mutations in the gene lit-1/Nemo-like kinase (NLK) suppress daf-6. EM and genetic studies demonstrate that lit-1 acts within glia, in counterbalance to daf-6, to promote sensory compartment expansion. Although LIT-1 has been shown to regulate Wnt signaling, our genetic studies demonstrate a novel, Wnt-independent role for LIT-1 in sensory compartment size control. The LIT-1 activator MOM-4/TAK1 is also important for compartment morphogenesis and both proteins line the glial sensory compartment. LIT-1 compartment localization is important for its function and requires neuronal signals. Furthermore, the conserved LIT-1 C-terminus is necessary and sufficient for this localization. Two-hybrid and co-immunoprecipitation studies demonstrate that the LIT-1 C-terminus binds both actin and the Wiskott-Aldrich syndrome protein (WASP), an actin regulator. We use fluorescence light microscopy and fluorescence EM methodology to show that actin is highly enriched around the amphid sensory compartment. Finally, our genetic studies demonstrate that WASP is important for compartment expansion and functions in the same pathway as LIT-1. The studies presented here uncover a novel, Wnt-independent role for the conserved Nemo-like kinase LIT-1 in controlling cell morphogenesis in conjunction with the actin cytoskeleton. Our results suggest that the opposing daf-6 and lit-1 glial pathways act together to control sensory compartment size. The nervous system of most animals consists of two related cell types, neurons and glia. A striking property of glia is their ability to ensheath neuronal cells, which can help increase the efficiency of synaptic communication between neurons. Sensory neuron receptive endings in the periphery, as well as excitatory synapses in the central nervous system, often lie within specialized compartments formed by glial processes. Despite the prevalence of these compartments, and their importance for neuronal function and signal transmission, little is known about how they form. We have used the amphid, the main sensory organ of the worm Caenorhabditis elegans, to investigate glial sensory compartment morphogenesis. We demonstrate that the glia-expressed gene daf-6/Patched-related acts to restrict the size of the sensory compartment, while the Nemo-like kinase lit-1 acts within glia in the opposite direction, to promote sensory compartment expansion. We show that LIT-1 localizes to the sensory compartment through a highly conserved domain. This domain can interact both with actin, which outlines the compartment, and with the regulator of actin polymerization WASP, which acts in the same pathway as lit-1. We postulate that Nemo-like kinases could have broader roles as regulators of cellular morphogenesis, in addition to their traditional role in regulating the Wnt signaling pathway.
Collapse
Affiliation(s)
- Grigorios Oikonomou
- Laboratory of Developmental Genetics, The Rockefeller University, New York, New York, United States of America
| | - Elliot A. Perens
- Laboratory of Developmental Genetics, The Rockefeller University, New York, New York, United States of America
| | - Yun Lu
- Laboratory of Developmental Genetics, The Rockefeller University, New York, New York, United States of America
| | - Shigeki Watanabe
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Erik M. Jorgensen
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
52
|
Banerjee D, Chen X, Lin SY, Slack FJ. kin-19/casein kinase Iα has dual functions in regulating asymmetric division and terminal differentiation in C. elegans epidermal stem cells. Cell Cycle 2010; 9:4748-65. [PMID: 21127398 DOI: 10.4161/cc.9.23.14092] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Casein Kinase I (CKI) is a conserved component of the Wnt signaling pathway, which regulates cell fate determination in metazoans. We show that post-embryonic asymmetric division and fate specification of C. elegans epidermal stem cells are controlled by a non-canonical Wnt/β-catenin signaling pathway, involving the β-catenins WRM-1 and SYS-1, and that C. elegans kin-19/CKIα functions in this pathway. Furthermore, we find that kin-19 is the only member of the Wnt asymmetry pathway that functions with, or in parallel to, the heterochronic temporal patterning pathway to control withdrawal from self-renewal and subsequent terminal differentiation of epidermal stem cells. We show that, except in the case of kin-19, the Wnt asymmetry pathway and the heterochronic pathway function separately and in parallel to control different aspects of epidermal stem cell fate specification. However, given the function of kin-19/CKIα in both pathways, and that CKI, Wnt signaling pathway and heterochronic pathway genes are widely conserved in animals, our findings suggest that CKIα may function as a regulatory hub through which asymmetric division and terminal differentiation are coordinated in adult stem cells of vertebrates.
Collapse
Affiliation(s)
- Diya Banerjee
- Department of Biological Sciences, Virginia Tech University, Blacksburg, VA, USA.
| | | | | | | |
Collapse
|
53
|
Gleason JE, Eisenmann DM. Wnt signaling controls the stem cell-like asymmetric division of the epithelial seam cells during C. elegans larval development. Dev Biol 2010; 348:58-66. [PMID: 20849842 PMCID: PMC2976807 DOI: 10.1016/j.ydbio.2010.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 08/06/2010] [Accepted: 09/06/2010] [Indexed: 10/19/2022]
Abstract
Metazoan stem cells repopulate tissues during adult life by dividing asymmetrically to generate another stem cell and a cell that terminally differentiates. Wnt signaling regulates the division pattern of stem cells in flies and vertebrates. While the short-lived nematode C. elegans has no adult somatic stem cells, the lateral epithelial seam cells divide in a stem cell-like manner in each larval stage, usually generating a posterior daughter that retains the seam cell fate and an anterior daughter that terminally differentiates. We show that while wild-type adult animals have 16 seam cells per side, animals with reduced function of the TCF homolog POP-1 have as many as 67 seam cells, and animals with reduced function of the β-catenins SYS-1 and WRM-1 have as few as three. Analysis of seam cell division patterns showed alterations in their stem cell-like divisions in the L2-L4 stages: reduced Wnt signaling caused both daughters to adopt non-seam fates, while activated Wnt signaling caused both daughters to adopt the seam fate. Therefore, our results indicate that Wnt signaling globally regulates the asymmetric, stem cell-like division of most or all somatic seam cells during C. elegans larval development, and that Wnt pathway regulation of stem cell-like behavior is conserved in nematodes.
Collapse
|
54
|
Chen JR, Lazarenko OP, Wu X, Kang J, Blackburn ML, Shankar K, Badger TM, Ronis MJJ. Dietary-induced serum phenolic acids promote bone growth via p38 MAPK/β-catenin canonical Wnt signaling. J Bone Miner Res 2010; 25:2399-411. [PMID: 20499363 DOI: 10.1002/jbmr.137] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Diet and nutritional status are critical factors that influences bone development. In this report we demonstrate that a mixture of phenolic acids found in the serum of young rats fed blueberries (BB) significantly stimulated osteoblast differentiation, resulting in significantly increased bone mass. Greater bone formation in BB diet-fed animals was associated with increases in osteoblast progenitors and osteoblast differentiation and reduced osteoclastogenesis. Blockade of p38 phosphorylation eliminated effects of BB on activation of Wnt signaling in preosteoblasts. Knocking down β-catenin expression also blocked the ability of serum from BB diet-fed rats to stimulate osteoblast differentiation in vitro. Based on our in vivo and in vitro data, we propose that the underlying mechanisms of these powerful bone-promoting effects occur through β-catenin activation and the nuclear accumulation and transactivation of TCF/LEF gene transcription in bone and in osteoblasts. These results indicate stimulation of molecular events leading to osteoblast differentiation triggered by P38 MAP kinase (MAPK)/β-catenin canonical Wnt signaling results in significant increases in bone growth in young rats consuming BB-supplemented diets. Liquid chromatography/mass spectrometry (LC/MS) characterization of the serum after BB feeding revealed a mixture of simple phenolic acids that may provide a basis for developing a new treatment to increase peak bone mass and delay degenerative bone disorders such as osteoporosis.
Collapse
Affiliation(s)
- Jin-Ran Chen
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Cadigan KM, Peifer M. Wnt signaling from development to disease: insights from model systems. Cold Spring Harb Perspect Biol 2010; 1:a002881. [PMID: 20066091 DOI: 10.1101/cshperspect.a002881] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
One of the early surprises in the study of cell adhesion was the discovery that beta-catenin plays dual roles, serving as an essential component of cadherin-based cell-cell adherens junctions and also serving as the key regulated effector of the Wnt signaling pathway. Here, we review our current model of Wnt signaling and discuss how recent work using model organisms has advanced our understanding of the roles Wnt signaling plays in both normal development and in disease. These data help flesh out the mechanisms of signaling from the membrane to the nucleus, revealing new protein players and providing novel information about known components of the pathway.
Collapse
Affiliation(s)
- Ken M Cadigan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | |
Collapse
|
56
|
Imae R, Inoue T, Kimura M, Kanamori T, Tomioka NH, Kage-Nakadai E, Mitani S, Arai H. Intracellular phospholipase A1 and acyltransferase, which are involved in Caenorhabditis elegans stem cell divisions, determine the sn-1 fatty acyl chain of phosphatidylinositol. Mol Biol Cell 2010; 21:3114-24. [PMID: 20668164 PMCID: PMC2938378 DOI: 10.1091/mbc.e10-03-0195] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Phosphatidylinositol (PI), an important constituent of membranes, contains stearic acid as the major fatty acid at the sn-1 position. This fatty acid is thought to be incorporated into PI through fatty acid remodeling by sequential deacylation and reacylation. However, the genes responsible for the reaction are unknown, and consequently, the physiological significance of the sn-1 fatty acid remains to be elucidated. Here, we identified acl-8, -9, and -10, which are closely related to each other, and ipla-1 as strong candidates for genes involved in fatty acid remodeling at the sn-1 position of PI. In both ipla-1 mutants and acl-8 acl-9 acl-10 triple mutants of Caenorhabditis elegans, the stearic acid content of PI is reduced, and asymmetric division of stem cell-like epithelial cells is defective. The defects in asymmetric division of these mutants are suppressed by a mutation of the same genes involved in intracellular retrograde transport, suggesting that ipla-1 and acl genes act in the same pathway. IPLA-1 and ACL-10 have phospholipase A(1) and acyltransferase activity, respectively, both of which recognize the sn-1 position of PI as their substrate. We propose that the sn-1 fatty acid of PI is determined by ipla-1 and acl-8, -9, -10 and crucial for asymmetric divisions.
Collapse
Affiliation(s)
- Rieko Imae
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Wu M, Smith CL, Hall JA, Lee I, Luby-Phelps K, Tallquist MD. Epicardial spindle orientation controls cell entry into the myocardium. Dev Cell 2010; 19:114-25. [PMID: 20643355 PMCID: PMC2909470 DOI: 10.1016/j.devcel.2010.06.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 05/12/2010] [Accepted: 05/21/2010] [Indexed: 11/25/2022]
Abstract
During heart morphogenesis, epicardial cells undergo an epithelial-to-mesenchymal transition (EMT) and migrate into the subepicardium. The cellular signals controlling this process are poorly understood. Here, we show that epicardial cells exhibit two distinct mitotic spindle orientations, directed either parallel or perpendicular to the basement membrane. Cells undergoing perpendicular cell division subsequently enter the myocardium. We found that loss of beta-catenin led to a disruption of adherens junctions and a randomization of mitotic spindle orientation. Loss of adherens junctions also disrupted Numb localization within epicardial cells, and disruption of Numb and Numblike expression in the epicardium led to randomized mitotic spindle orientations. Taken together, these data suggest that directed mitotic spindle orientation contributes to epicardial EMT and implicate a junctional complex of beta-catenin and Numb in the regulation of spindle orientation.
Collapse
Affiliation(s)
- Mingfu Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas TX 75390-9148
| | - Christopher L. Smith
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas TX 75390-9148
| | - James A. Hall
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas TX 75390-9148
| | - Ivy Lee
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas TX 75390-9148
| | - Kate Luby-Phelps
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas TX 75390-9148
| | - Michelle D. Tallquist
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas TX 75390-9148
| |
Collapse
|
58
|
Ren H, Zhang H. Wnt signaling controls temporal identities of seam cells in Caenorhabditis elegans. Dev Biol 2010; 345:144-55. [PMID: 20624379 DOI: 10.1016/j.ydbio.2010.07.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 06/04/2010] [Accepted: 07/01/2010] [Indexed: 01/07/2023]
Abstract
The Wnt signaling pathway regulates multiple aspects of the development of stem cell-like epithelial seam cells in Caenorhabditis elegans, including cell fate specification and symmetric/asymmetric division. In this study, we demonstrate that lit-1, encoding the Nemo-like kinase in the Wnt/beta-catenin asymmetry pathway, plays a role in specifying temporal identities of seam cells. Loss of function of lit-1 suppresses defects in retarded heterochronic mutants and enhances defects in precocious heterochronic mutants. Overexpressing lit-1 causes heterochronic defects opposite to those in lit-1(lf) mutants. LIT-1 exhibits a periodic expression pattern in seam cells within each larval stage. The kinase activity of LIT-1 is essential for its role in the heterochronic pathway. lit-1 specifies the temporal fate of seam cells likely by modulating miRNA-mediated silencing of target heterochronic genes. We further show that loss of function of other components of Wnt signaling, including mom-4, wrm-1, apr-1, and pop-1, also causes heterochronic defects in sensitized genetic backgrounds. Our study reveals a novel function of Wnt signaling in controlling the timing of seam cell development in C. elegans.
Collapse
Affiliation(s)
- Haiyan Ren
- Graduate Program in Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| | | |
Collapse
|
59
|
Kormish JD, Gaudet J, McGhee JD. Development of the C. elegans digestive tract. Curr Opin Genet Dev 2010; 20:346-54. [PMID: 20570129 DOI: 10.1016/j.gde.2010.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 04/20/2010] [Accepted: 04/24/2010] [Indexed: 12/11/2022]
Abstract
The C. elegans digestive tract (pharynx, intestine, and rectum) contains only approximately 100 cells but develops under the control of the same types of transcription factors (e.g. FoxA and GATA factors) that control digestive tract development in far more complex animals. The GATA-factor dominated core regulatory hierarchy directing development of the homogenous clonal intestine from oocyte to mature organ is now known with some degree of certainty, setting the stage for more biochemical experiments to understand developmental mechanisms. The FoxA-factor dominated development of the pharynx (and rectum) is less well understood but is beginning to reveal how transcription factor combinations produce unique cell types within organs.
Collapse
Affiliation(s)
- Jay D Kormish
- Department of Molecular Biology and Biochemistry, Department of Medical Genetics, Alberta Children's Hospital Research Institute for Child and Maternal Health, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
60
|
Abstract
We review the application of Caenorhabditis elegans as a model system to understand key aspects of stem cell biology. The only bona fide stem cells in C. elegans are those of the germline, which serves as a valuable paradigm for understanding how stem-cell niches influence maintenance and differentiation of stem cells and how somatic differentiation is repressed during germline development. Somatic cells that share stem cell-like characteristics also provide insights into principles in stem-cell biology. The epidermal seam cell lineages lend clues to conserved mechanisms of self-renewal and expansion divisions. Principles of developmental plasticity and reprogramming relevant to stem-cell biology arise from studies of natural transdifferentiation and from analysis of early embryonic progenitors, which undergo a dramatic transition from a pluripotent, reprogrammable condition to a state of committed differentiation. The relevance of these developmental processes to our understanding of stem-cell biology in other organisms is discussed.
Collapse
Affiliation(s)
- Pradeep M. Joshi
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Misty R. Riddle
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Nareg J.V. Djabrayan
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Joel H. Rothman
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
61
|
Functional genomic identification of genes required for male gonadal differentiation in Caenorhabditis elegans. Genetics 2010; 185:523-35. [PMID: 20308279 DOI: 10.1534/genetics.110.116038] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Caenorhabditis elegans somatic gonad develops from a four-cell primordium into a mature organ that differs dramatically between the sexes in overall morphology (two arms in hermaphrodites and one in males) and in the cell types comprising it. Gonadal development in C. elegans is well studied, but regulation of sexual differentiation, especially later in gonadal development, remains poorly elucidated. To identify genes involved in this process, we performed a genome-wide RNAi screen using sex-specifically expressed gonadal GFP reporters. This screen identified several phenotypic classes, including approximately 70 genes whose depletion feminized male gonadal cells. Among the genes required for male cell fate specification are Wnt/beta-catenin pathway members, cell cycle regulators, and genes required for mitotic spindle function and cytokinesis. We find that a Wnt/beta-catenin pathway independent of extracellular Wnt ligand is essential for asymmetric cell divisions and male differentiation during gonadal development in larvae. We also find that the cell cycle regulators cdk-1 and cyb-3 and the spindle/cytokinesis regulator zen-4 are required for Wnt/beta-catenin pathway activity in the developing gonad. After sex is determined in the gonadal primordium the global sex determination pathway is dispensable for gonadal sexual fate, suggesting that male cell fates are promoted and maintained independently of the global pathway during this period.
Collapse
|
62
|
Sugioka K, Sawa H. Regulation of asymmetric positioning of nuclei by Wnt and Src signaling and its roles in POP-1/TCF nuclear asymmetry in Caenorhabditis elegans. Genes Cells 2010; 15:397-407. [PMID: 20298434 PMCID: PMC2855865 DOI: 10.1111/j.1365-2443.2010.01388.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In various polarized cells, positions of nuclei are often off-center. However, extrinsic signals regulating nuclear off-centering and its biologic roles remain to be elucidated. In Caenorhabditis elegans, polarity of the EMS cell undergoing asymmetric division is regulated by the MOM-2/Wnt and MES-1 signals from its posterior neighbor P2 cell. We show that after divisions of different cells including EMS, the nuclei of the posterior but not anterior daughter cells are anchored to the posterior cell cortex via centrosomes. We also show that this nuclear anchoring is regulated by components of the Wnt pathway and SRC-1 that functions in MES-1 signaling. To understand the biologic roles of nuclear anchoring, we analyzed its effects on asymmetric nuclear localization of POP-1/TCF that is also regulated by Wnt and Src signaling. We found that in mom-2 mutants where the nuclear anchoring and POP-1 asymmetry is partially inhibited, the proximity of the nucleus to the cell cortex correlated with POP-1 asymmetry. Furthermore, in mutants of mom-2, the defect in the anchoring is clearly correlated with that of asymmetric fate determination. These results suggest that the asymmetric nuclear anchoring functions in asymmetric division by enhancing POP-1 asymmetry.
Collapse
Affiliation(s)
- Kenji Sugioka
- Laboratory for Cell Fate Decision, RIKEN, Center for Developmental Biology, Kobe 650-0047, Japan
| | | |
Collapse
|
63
|
Shibata Y, Takeshita H, Sasakawa N, Sawa H. Double bromodomain protein BET-1 and MYST HATs establish and maintain stable cell fates in C. elegans. Development 2010; 137:1045-53. [PMID: 20181741 DOI: 10.1242/dev.042812] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The maintenance of cell fate is important for normal development and tissue homeostasis. Epigenetic mechanisms, including histone modifications, are likely to play crucial roles in cell-fate maintenance. However, in contrast to the established functions of histone methylation, which are mediated by the polycomb proteins, the roles of histone acetylation in cell-fate maintenance are poorly understood. Here, we show that the C. elegans acetylated-histone-binding protein BET-1 is required for the establishment and maintenance of stable fate in various lineages. In most bet-1 mutants, cells adopted the correct fate initially, but at later stages they often transformed into a different cell type. By expressing BET-1 at various times in development and examining the rescue of the Bet-1 phenotype, we showed that BET-1 functions both at the time of fate acquisition, to establish a stable fate, and at later stages, to maintain the established fate. Furthermore, the disruption of the MYST HATs perturbed the subnuclear localization of BET-1 and caused bet-1-like phenotypes, suggesting that BET-1 is recruited to its targets through acetylated histones. Our results therefore indicate that histone acetylation plays a crucial role in cell-fate maintenance.
Collapse
Affiliation(s)
- Yukimasa Shibata
- Laboratory for Cell Fate Decision, Riken, Center for Developmental Biology, Kobe, Hyogo, 650-0047, Japan
| | | | | | | |
Collapse
|
64
|
Abstract
Colon cancer closely follows the paradigm of a single "gatekeeper gene." Mutations inactivating the APC (adenomatous polyposis coli) gene are found in approximately 80% of all human colon tumors and heterozygosity for such mutations produces an autosomal dominant colon cancer predisposition in humans and in murine models. However, this tight association between a single genotype and phenotype belies a complex association of genetic and epigenetic factors that together generate the broad phenotypic spectrum ofboth familial and sporadic colon cancers. In this Chapter, we give a general overview of the structure, function and outstanding issues concerning the role of Apc in human and experimental colon cancer. The availability of increasingly close models for human colon cancer in genetically tractable animal species enables the discovery and eventual molecular identification of genetic modifiers of the Apc-mutant phenotypes, connecting the central role of Apc in colon carcinogenesis to the myriad factors that ultimately determine the course of the disease.
Collapse
|
65
|
Agathocleous M, Iordanova I, Willardsen MI, Xue XY, Vetter ML, Harris WA, Moore KB. A directional Wnt/beta-catenin-Sox2-proneural pathway regulates the transition from proliferation to differentiation in the Xenopus retina. Development 2009; 136:3289-99. [PMID: 19736324 PMCID: PMC2739145 DOI: 10.1242/dev.040451] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2009] [Indexed: 01/01/2023]
Abstract
Progenitor cells in the central nervous system must leave the cell cycle to become neurons and glia, but the signals that coordinate this transition remain largely unknown. We previously found that Wnt signaling, acting through Sox2, promotes neural competence in the Xenopus retina by activating proneural gene expression. We now report that Wnt and Sox2 inhibit neural differentiation through Notch activation. Independently of Sox2, Wnt stimulates retinal progenitor proliferation and this, when combined with the block on differentiation, maintains retinal progenitor fates. Feedback inhibition by Sox2 on Wnt signaling and by the proneural transcription factors on Sox2 mean that each element of the core pathway activates the next element and inhibits the previous one, providing a directional network that ensures retinal cells make the transition from progenitors to neurons and glia.
Collapse
Affiliation(s)
- Michalis Agathocleous
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | | | | | | | | | | | | |
Collapse
|
66
|
Hajduskova M, Jindra M, Herman MA, Asahina M. The nuclear receptor NHR-25 cooperates with the Wnt/beta-catenin asymmetry pathway to control differentiation of the T seam cell in C. elegans. J Cell Sci 2009; 122:3051-60. [PMID: 19654209 DOI: 10.1242/jcs.052373] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Asymmetric cell divisions produce new cell types during animal development. Studies in Caenorhabditis elegans have identified major signal-transduction pathways that determine the polarity of cell divisions. How these relatively few conserved pathways interact and what modulates them to ensure the diversity of multiple tissue types is an open question. The Wnt/beta-catenin asymmetry pathway governs polarity of the epidermal T seam cell in the C. elegans tail. Here, we show that the asymmetry of T-seam-cell division and morphogenesis of the male sensory rays require NHR-25, an evolutionarily conserved nuclear receptor. NHR-25 ensures the neural fate of the T-seam-cell descendants in cooperation with the Wnt/beta-catenin asymmetry pathway. Loss of NHR-25 enhances the impact of mutated nuclear effectors of this pathway, POP-1 (TCF) and SYS-1 (beta-catenin), on T-seam-cell polarity, whereas it suppresses the effect of the same mutations on asymmetric division of the somatic gonad precursor cells. Therefore, NHR-25 can either synergize with or antagonize the Wnt/beta-catenin asymmetry pathway depending on the tissue context. Our findings define NHR-25 as a versatile modulator of Wnt/beta-catenin-dependent cell-fate decisions.
Collapse
Affiliation(s)
- Martina Hajduskova
- Department of Molecular Biology, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | | | | | | |
Collapse
|
67
|
Huang X, Tian E, Xu Y, Zhang H. The C. elegans engrailed homolog ceh-16 regulates the self-renewal expansion division of stem cell-like seam cells. Dev Biol 2009; 333:337-47. [PMID: 19607822 DOI: 10.1016/j.ydbio.2009.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 06/01/2009] [Accepted: 07/06/2009] [Indexed: 12/24/2022]
Abstract
Stem cells undergo symmetric and asymmetric division to maintain the dynamic equilibrium of the stem cell pool and also to generate a variety of differentiated cells. The homeostatic mechanism controlling the choice between self-renewal and differentiation of stem cells is poorly understood. We show here that ceh-16, encoding the C. elegans ortholog of the transcription factor Engrailed, controls symmetric and asymmetric division of stem cell-like seam cells. Loss of function of ceh-16 causes certain seam cells, which normally undergo symmetric self-renewal expansion division with both daughters adopting the seam cell fate, to divide asymmetrically with only one daughter retaining the seam cell fate. The human engrailed homolog En2 functionally substitutes the role of ceh-16 in promoting self-renewal expansion division of seam cells. Loss of function of apr-1, encoding the C. elegans homolog of the Wnt signaling component APC, results in transformation of self-renewal maintenance seam cell division to self-renewal expansion division, leading to seam cell hyperplasia. The apr-1 mutation suppresses the seam cell division defect in ceh-16 mutants. Our study reveals that ceh-16 interacts with the Wnt signaling pathway to control the choice between self-renewal expansion and maintenance division and also demonstrates an evolutionarily conserved function of engrailed in promoting cell proliferation.
Collapse
Affiliation(s)
- Xinxin Huang
- College of Life Sciences, Beijing Normal University, Beijing, 100875, PR China
| | | | | | | |
Collapse
|
68
|
Patterning of an ascidian embryo along the anterior–posterior axis through spatial regulation of competence and induction ability by maternally localized PEM. Dev Biol 2009; 331:78-88. [DOI: 10.1016/j.ydbio.2009.04.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 04/02/2009] [Accepted: 04/22/2009] [Indexed: 11/21/2022]
|
69
|
Dong J, MacAlister CA, Bergmann DC. BASL controls asymmetric cell division in Arabidopsis. Cell 2009; 137:1320-30. [PMID: 19523675 DOI: 10.1016/j.cell.2009.04.018] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/19/2009] [Accepted: 04/01/2009] [Indexed: 12/25/2022]
Abstract
Development in multicellular organisms requires the organized generation of differences. A universal mechanism for creating such differences is asymmetric cell division. In plants, as in animals, asymmetric divisions are correlated with the production of cellular diversity and pattern; however, structural constraints imposed by plant cell walls and the absence of homologs of known animal or fungal cell polarity regulators necessitates that plants utilize new molecules and mechanisms to create asymmetries. Here, we identify BASL, a novel regulator of asymmetric divisions in Arabidopsis. In asymmetrically dividing stomatal-lineage cells, BASL accumulates in a polarized crescent at the cell periphery before division, and then localizes differentially to the nucleus and a peripheral crescent in self-renewing cells and their sisters after division. BASL presence at the cell periphery is critical for its function, and we propose that BASL represents a plant-specific solution to the challenge of asymmetric cell division.
Collapse
Affiliation(s)
- Juan Dong
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA
| | | | | |
Collapse
|
70
|
Hingwing K, Lee S, Nykilchuk L, Walston T, Hardin J, Hawkins N. CWN-1 functions with DSH-2 to regulate C. elegans asymmetric neuroblast division in a β-catenin independent Wnt pathway. Dev Biol 2009; 328:245-56. [DOI: 10.1016/j.ydbio.2009.01.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 01/14/2009] [Accepted: 01/17/2009] [Indexed: 12/30/2022]
|
71
|
Maduro MF. Structure and evolution of the C. elegans embryonic endomesoderm network. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1789:250-60. [PMID: 18778800 PMCID: PMC2688470 DOI: 10.1016/j.bbagrm.2008.07.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 07/29/2008] [Indexed: 12/19/2022]
Abstract
The specification of the Caenorhabditis elegans endomesoderm has been the subject of study for more than 15 years. Specification of the 4-cell stage endomesoderm precursor, EMS, occurs as a result of the activation of a transcription factor cascade that starts with SKN-1, coupled with input from the Wnt/beta-catenin asymmetry pathway through the nuclear effector POP-1. As development proceeds, transiently-expressed cell fate factors are succeeded by stable, tissue/organ-specific regulators. The pathway is complex and uses motifs found in all transcriptional networks. Here, the regulators that function in the C. elegans endomesoderm network are described. An examination of the motifs in the network suggests how they may have evolved from simpler gene interactions. Flexibility in the network is evident from the multitude of parallel functions that have been identified and from apparent changes in parts of the corresponding network in Caenorhabditis briggsae. Overall, the complexities of C. elegans endomesoderm specification build a picture of a network that is robust, complex, and still evolving.
Collapse
Affiliation(s)
- Morris F Maduro
- Department of Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
72
|
The N- or C-terminal domains of DSH-2 can activate the C. elegans Wnt/beta-catenin asymmetry pathway. Dev Biol 2009; 328:234-44. [PMID: 19298786 DOI: 10.1016/j.ydbio.2009.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 01/12/2009] [Accepted: 01/13/2009] [Indexed: 12/25/2022]
Abstract
Dishevelleds are modular proteins that lie at the crossroads of divergent Wnt signaling pathways. The DIX domain of dishevelleds modulates a beta-catenin destruction complex, and thereby mediates cell fate decisions through differential activation of Tcf transcription factors. The DEP domain of dishevelleds mediates planar polarity of cells within a sheet through regulation of actin modulators. In Caenorhabditis elegans asymmetric cell fate decisions are regulated by asymmetric localization of signaling components in a pathway termed the Wnt/beta-catenin asymmetry pathway. Which domain(s) of Disheveled regulate this pathway is unknown. We show that C. elegans embryos from dsh-2(or302) mutant mothers fail to successfully undergo morphogenesis, but transgenes containing either the DIX or the DEP domain of DSH-2 are sufficient to rescue the mutant phenotype. Embryos lacking zygotic function of SYS-1/beta-catenin, WRM-1/beta-catenin, or POP-1/Tcf show defects similar to dsh-2 mutants, including a loss of asymmetry in some cell fate decisions. Removal of two dishevelleds (dsh-2 and mig-5) leads to a global loss of POP-1 asymmetry, which can be rescued by addition of transgenes containing either the DIX or DEP domain of DSH-2. These results indicate that either the DIX or DEP domain of DSH-2 is capable of activating the Wnt/beta-catenin asymmetry pathway and regulating anterior-posterior fate decisions required for proper morphogenesis.
Collapse
|
73
|
Hawkins ED, Russell SM. Upsides and downsides to polarity and asymmetric cell division in leukemia. Oncogene 2009; 27:7003-17. [PMID: 19029941 DOI: 10.1038/onc.2008.350] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The notion that polarity regulators can act as tumor suppressors in epithelial cells is now well accepted. The function of these proteins in lymphocytes is less well explored, and their possible function as suppressors of leukemia has had little attention so far. We review the literature on lymphocyte polarity and the growing recognition that polarity proteins have an important function in lymphocyte function. We then describe molecular relationships between the polarity network and signaling pathways that have been implicated in leukemogenesis, which suggest mechanisms by which the polarity network might impact on leukemogenesis. We particularly focus on the possibility that disruption of polarity might alter asymmetric cell division (ACD), and that this might be a leukemia-initiating event. We also explore the converse possibility that leukemic stem cells might be produced or maintained by ACD, and therefore that Dlg, Scribble and Lgl might be important regulators of this process.
Collapse
Affiliation(s)
- E D Hawkins
- Immune Signalling Laboratory, Cancer Immunology, Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | | |
Collapse
|
74
|
Kennell J, Cadigan KM. APC and beta-catenin degradation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 656:1-12. [PMID: 19928348 DOI: 10.1007/978-1-4419-1145-2_1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jennifer Kennell
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
75
|
Abstract
Mutational inactivation of the tumor suppressor gene APC (Adenomatous polyposis coli) is thought to be an initiating step in the progression of the vast majority ofcolorectal cancers. Attempts to understand APC function have revealed more than a dozen binding partners as well as several subcellular localizations including at cell-cell junctions, associated with microtubules at the leading edge of migrating cells, at the apical membrane, in the cytoplasm and in the nucleus. The present chapter focuses on APC localization and functions in the nucleus. APC contains two classical nuclear localization signals, with a third domain that can enhance nuclear import. Along with two sets of nuclear export signals, the nuclear localization signals enable the large APC protein to shuttle between the nucleus and cytoplasm. Nuclear APC can oppose beta-catenin-mediated transcription. This down-regulation of nuclear beta-catenin activity by APC most likely involves nuclear sequestration of beta-catenin from the transcription complex as well as interaction of APC with transcription corepressor CtBP. Additional nuclear binding partners for APC include transcription factor activator protein AP-2alpha, nuclear export factor Crm1, protein tyrosine phosphatase PTP-BL and perhaps DNA itself. Interaction of APC with polymerase beta and PCNA, suggests a role for APC in DNA repair. The observation that increases in the cytoplasmic distribution of APC correlate with colon cancer progression suggests that disruption of these nuclear functions of APC plays an important role in cancer progression. APC prevalence in the cytoplasm of quiescent cells points to a potential function for nuclear APC in control of cell proliferation. Clear definition of APC's nuclear function(s) will expand the possibilities for early colorectal cancer diagnostics and therapeutics targeted to APC.
Collapse
|
76
|
Hardin J, King RS. The long and the short of Wnt signaling in C. elegans. Curr Opin Genet Dev 2008; 18:362-7. [PMID: 18625312 DOI: 10.1016/j.gde.2008.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 06/04/2008] [Accepted: 06/14/2008] [Indexed: 10/21/2022]
Abstract
The simplicity of C. elegans makes it an outstanding system to study the role of Wnt signaling in development. Many asymmetric cell divisions in C. elegans require the Wnt/beta-catenin asymmetry pathway. Recent studies confirm that SYS-1 is a structurally and functionally divergent beta-catenin, and implicate lipids and retrograde trafficking in maintenance of WRM-1/beta-catenin asymmetry. Wnts also regulate short-range events such as spindle rotation and gastrulation, and a PCP-like pathway regulates asymmetric divisions. Long-range, cell non-autonomous Wnt signals regulate vulval induction. Both short-range and long-range Wnt signal s are regulated by recycling of MIG-14/Wntless via the retromer complex. These studies indicate that C. elegans continues to be useful for identifying new, conserved mechanisms underlying Wnt signaling in metazoans.
Collapse
Affiliation(s)
- Jeff Hardin
- Graduate Program in Cellular and Molecular Biology, Department of Zoology, University of Wisconsin, 1117 W. Johnson Street, Madison, WI 53706, USA.
| | | |
Collapse
|
77
|
Kanamori T, Inoue T, Sakamoto T, Gengyo-Ando K, Tsujimoto M, Mitani S, Sawa H, Aoki J, Arai H. Beta-catenin asymmetry is regulated by PLA1 and retrograde traffic in C. elegans stem cell divisions. EMBO J 2008; 27:1647-57. [PMID: 18497747 PMCID: PMC2396877 DOI: 10.1038/emboj.2008.102] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 04/28/2008] [Indexed: 12/17/2022] Open
Abstract
Asymmetric division is an important property of stem cells. In Caenorhabditis elegans, the Wnt/beta-catenin asymmetry pathway determines the polarity of most asymmetric divisions. The Wnt signalling components such as beta-catenin localize asymmetrically to the cortex of mother cells to produce two distinct daughter cells. However, the molecular mechanism to polarize them remains to be elucidated. Here, we demonstrate that intracellular phospholipase A(1) (PLA(1)), a poorly characterized lipid-metabolizing enzyme, controls the subcellular localizations of beta-catenin in the terminal asymmetric divisions of epithelial stem cells (seam cells). In mutants of ipla-1, a single C. elegans PLA(1) gene, cortical beta-catenin is delocalized and the asymmetry of cell-fate specification is disrupted in the asymmetric divisions. ipla-1 mutant phenotypes are rescued by expression of ipla-1 in seam cells in a catalytic activity-dependent manner. Furthermore, our genetic screen utilizing ipla-1 mutants reveals that reduction of endosome-to-Golgi retrograde transport in seam cells restores normal subcellular localization of beta-catenin to ipla-1 mutants. We propose that membrane trafficking regulated by ipla-1 provides a mechanism to control the cortical asymmetry of beta-catenin.
Collapse
Affiliation(s)
- Takahiro Kanamori
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Laboratory of Cellular Biochemistry, RIKEN, Saitama, Japan
| | - Takao Inoue
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
| | - Taro Sakamoto
- School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Keiko Gengyo-Ando
- CREST, Japan Science and Technology Agency, Saitama, Japan
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | | | - Shohei Mitani
- CREST, Japan Science and Technology Agency, Saitama, Japan
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Hitoshi Sawa
- Laboratory for Cell Fate Decision, RIKEN Center for Developmental Biology, Kobe, Japan
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Junken Aoki
- Department of Molecular & Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
78
|
Liu J, Phillips BT, Amaya MF, Kimble J, Xu W. The C. elegans SYS-1 protein is a bona fide beta-catenin. Dev Cell 2008; 14:751-61. [PMID: 18477457 PMCID: PMC2538363 DOI: 10.1016/j.devcel.2008.02.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 02/19/2008] [Accepted: 02/23/2008] [Indexed: 11/21/2022]
Abstract
C. elegans SYS-1 has key functional characteristics of a canonical beta-catenin, but no significant sequence similarity. Here, we report the SYS-1 crystal structure, both on its own and in a complex with POP-1, the C. elegans TCF homolog. The two structures possess signature features of canonical beta-catenin and the beta-catenin/TCF complex that could not be predicted by sequence. Most importantly, SYS-1 bears 12 armadillo repeats and the SYS-1/POP-1 interface is anchored by a conserved salt-bridge, the "charged button." We also modeled structures for three other C. elegans beta-catenins to predict the molecular basis of their distinct binding properties. Finally, we generated a phylogenetic tree, using the region of highest structural similarity between SYS-1 and beta-catenin, and found that SYS-1 clusters robustly within the beta-catenin clade. We conclude that the SYS-1 protein belongs to the beta-catenin family and suggest that additional divergent beta-catenins await discovery.
Collapse
Affiliation(s)
- Jing Liu
- Department of Biological Structure, University of Washington, Seattle, WA 98195-7420
- Biomolecular Structure and Design Program, University of Washington, Seattle, WA 98195-7420
| | - Bryan T. Phillips
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544
| | - Maria F. Amaya
- Department of Biological Structure, University of Washington, Seattle, WA 98195-7420
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706-1544
| | - Wenqing Xu
- Department of Biological Structure, University of Washington, Seattle, WA 98195-7420
| |
Collapse
|
79
|
McCartney BM, Näthke IS. Cell regulation by the Apc protein Apc as master regulator of epithelia. Curr Opin Cell Biol 2008; 20:186-93. [PMID: 18359618 DOI: 10.1016/j.ceb.2008.02.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/08/2008] [Accepted: 02/08/2008] [Indexed: 01/12/2023]
Abstract
The adenomatous polyposis coli (Apc) protein participates in many of the fundamental cellular processes that govern epithelial tissues: Apc is directly involved in regulating the availability of beta-catenin for transcriptional de-repression of Tcf/LEF transcription factors, it contributes to the stability of microtubules in interphase and mitosis, and has an impact on the dynamics of F-actin. Thus Apc contributes directly and/or indirectly to proliferation, differentiation, migration, and apoptosis. This particular multifunctionality can explain why disruption of Apc is especially detrimental for the epithelium of the gut, where Apc mutations are common in most cancers. We summarise recent data that shed light on the molecular mechanisms involved in the different functions of Apc.
Collapse
Affiliation(s)
- Brooke M McCartney
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Avenue, Pittsburgh, PA, USA
| | | |
Collapse
|
80
|
Van Hoffelen S, Herman MA. Analysis of Wnt signaling during Caenorhabditis elegans postembryonic development. Methods Mol Biol 2008; 469:87-102. [PMID: 19109705 DOI: 10.1007/978-1-60327-469-2_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Wnts play a central role in the development of many cells and tissue types in all species studied to date. Like many other extracellular signaling pathways, secreted Wnt proteins are involved in many different processes; in C. elegans these include: cell proliferation, differentiation, cell migration, control of cell polarity, axon outgrowth and control of the stem cell niche. Perturbations in Wnt signaling are also key factors in cancer formation, and therefore of interest to oncobiologists. Wnts are secreted glycoproteins, which bind to Frizzled transmembrane receptors and signal either through, or independently of beta-catenin. Both beta-catenin-dependant (Wnt/beta-catenin) and -independent pathways function during postembryonic development in C. elegans and allow Wnt researchers to explore aspects of Wnt signaling both in common with other organisms and unique to the nematode. Chapter 9 in Volume 2 discusses various processes controlled by Wnt signaling during C. elegans embryonic development; this chapter discusses Wnt controlled processes that occur during postembryonic development, including an overview of methods used to observe their function.
Collapse
|
81
|
Abstract
A 'traditional' Wnt meeting, the first of which occurred over two decades ago as a meeting of the laboratories of Harold Varmus and Roel Nusse, was held at the University of California, San Diego, in June 2007. Organized by Karl Willert, Anthony Wynshaw-Boris and Katherine Jones, the meeting was attended by nearly 400 scientists interested in ;all things Wnt', including Wnt signal transduction mechanisms, and Wnt signaling in evolutionary and developmental biology, stem cell biology, regeneration and disease. Themes that dominated the meeting included the need for precise control over each step of the signal transduction mechanism and developing therapeutics for diseases caused by altered Wnt-signaling.
Collapse
Affiliation(s)
- Sergei Y Sokol
- Department of Molecular, Cell and Developmental Biology, Box 1020, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA.
| | | |
Collapse
|
82
|
Mizumoto K, Sawa H. Two betas or not two betas: regulation of asymmetric division by beta-catenin. Trends Cell Biol 2007; 17:465-73. [PMID: 17919911 DOI: 10.1016/j.tcb.2007.08.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 08/01/2007] [Accepted: 08/01/2007] [Indexed: 10/22/2022]
Abstract
In various organisms, cells divide asymmetrically to produce distinct daughter cells. In the nematode Caenorhabditis elegans, asymmetric division is controlled by the asymmetric activity of a Wnt signaling pathway (the Wnt/beta-catenin asymmetry pathway). In this process, two specialized beta-catenin homologs have crucial roles in the transmission of Wnt signals to the asymmetric activity of a T-cell factor (TCF)-type transcription factor, POP-1, in the daughter cells. One beta-catenin homolog regulates the distinct nuclear level of POP-1, and the other functions as a coactivator of POP-1. Both beta-catenins localize asymmetrically in the daughter nuclei using different mechanisms. The recent discovery of reiterative nuclear asymmetries of a highly conserved beta-catenin in an annelid suggests that similar molecular mechanisms might regulate asymmetric cell divisions in other organisms.
Collapse
Affiliation(s)
- Kota Mizumoto
- Laboratory for Cell Fate Decision, Riken, Center for Developmental Biology, Kobe 650-0047, Japan
| | | |
Collapse
|
83
|
Huang S, Shetty P, Robertson SM, Lin R. Binary cell fate specification duringC. elegansembryogenesis driven by reiterated reciprocal asymmetry of TCF POP-1 and its coactivatorβ-catenin SYS-1. Development 2007; 134:2685-95. [PMID: 17567664 DOI: 10.1242/dev.008268] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
C. elegans embryos exhibit an invariant lineage comprised primarily of a stepwise binary diversification of anterior-posterior (A-P)blastomere identities. This binary cell fate specification requires input from both the Wnt and MAP kinase signaling pathways. The nuclear level of the TCF protein POP-1 is lowered in all posterior cells. We show here that theβ-catenin SYS-1 also exhibits reiterated asymmetry throughout multiple A-P divisions and that this asymmetry is reciprocal to that of POP-1. Furthermore, we show that SYS-1 functions as a coactivator for POP-1, and that the SYS-1-to-POP-1 ratio appears critical for both the anterior and posterior cell fates. A high ratio drives posterior cell fates, whereas a low ratio drives anterior cell fates. We show that the SYS-1 and POP-1 asymmetries are regulated independently, each by a subset of genes in the Wnt/MAP kinase pathways. We propose that two genetic pathways, one increasing SYS-1 and the other decreasing POP-1 levels, robustly elevate the SYS-1-to-POP-1 ratio in the posterior cell, thereby driving A-P differential cell fates.
Collapse
Affiliation(s)
- Shuyi Huang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|