51
|
Wang L, Wu B, Ma Y, Ren Z, Li W. The blooming of an old story on the bouquet. Biol Reprod 2022; 107:289-300. [PMID: 35470849 DOI: 10.1093/biolre/ioac075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/09/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
As an evolutionarily conserved process, the bouquet stage during meiosis was discovered over a century ago, and active research on this important stage continues. Since the discovery of the first bouquet-related protein Taz1p in 1998, several bouquet formation-related proteins have been identified in various eukaryotes. These proteins are involved in the interaction between telomeres and the inner nuclear membrane (INM), and once these interactions are disrupted, meiotic progression is arrested, leading to infertility. Recent studies have provided significant insights into the relationships and interactions among bouquet formation-related proteins. In this review, we summarize the components involved in telomere-INM interactions and focus on their roles in bouquet formation and telomere homeostasis maintenance. In addition, we examined bouquet-related proteins in different species from an evolutionary viewpoint, highlighting the potential interactions among them.
Collapse
Affiliation(s)
- Lina Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Department of Respiratory, China National Clinical Research Center of Respiratory Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Bingbing Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yanjie Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengxing Ren
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of the Chinese Academy of Sciences, Beijing 100049, China.,Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| |
Collapse
|
52
|
Integrating mechanical signals into cellular identity. Trends Cell Biol 2022; 32:669-680. [PMID: 35337714 PMCID: PMC9288541 DOI: 10.1016/j.tcb.2022.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 11/24/2022]
Abstract
The large arrays of cell types in a multicellular organism are defined by their stereotypic size and/or morphology, and, for cells in vivo, by their anatomic positions. Historically, this identity-structure-function correlation was conceptualized as arising from distinct gene expression programs that dictate how cells appear and behave. However, a growing number of studies suggest that a cell's mechanical state is also an important determinant of its identity, both in lineage-committed cells and in pluripotent stem cells. Defining the mechanism by which mechanical inputs influence complex cellular programs remains an area of ongoing investigation. Here, we discuss how the cytoskeleton actively participates in instructing the response of the nucleus and genome to integrate mechanical and biochemical inputs, with a primary focus on the role of the actomyosin-LINC (linker of nucleoskeleton and cytoskeleton) complex axis.
Collapse
|
53
|
Rouen A, Rogers E, Kerlan V, Delemer B, Catteau-Jonard S, Reznik Y, Gompel A, Cedrin I, Guedj AM, Grouthier V, Brue T, Pienkowski C, Bachelot A, Chantot-Bastaraud S, Rousseau A, Simon T, Kott E, Siffroi JP, Touraine P, Christin-Maitre S. Whole exome sequencing in a cohort of familial premature ovarian insufficiency cases reveals a broad array of pathogenic or likely pathogenic variants in 50% of families. Fertil Steril 2022; 117:843-853. [PMID: 35115167 DOI: 10.1016/j.fertnstert.2021.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To study the diagnostic yield, including variants in genes yet to be incriminated, of whole exome sequencing (WES) in familial cases of premature ovarian insufficiency (POI). DESIGN Cross-sectional study. SETTING Endocrinology and reproductive medicine teaching hospital departments. PATIENTS Familial POI cases were recruited as part of a nationwide multicentric cohort. A total of 36 index cases in 36 different families were studied. Fifty-two relatives were available, including 25 with POI and 27 affectedwho were nonaffected. Karyotype analysis, FMR1 screening, single nucleotide polymorphism array analysis, and WES were performed in all subjects. INTERVENTIONS None. MAIN OUTCOME MEASURES The primary outcome was a molecular etiology, as diagnosed by karyotype, FMR1 screening, single nucleotide polymorphism array, and WES. RESULTS A likely molecular etiology (pathogenic or likely pathogenic variant) was identified in 18 of 36 index cases (50% diagnostic yield). In 12 families, we found a pathogenic or likely pathogenic variant in a gene previously incriminated in POI, and in 6 families, we found a pathogenic or likely pathogenic variant in new candidate genes. Most of the variants identified were located in genes involved in cell division and meiosis (n = 11) or DNA repair (n = 4). CONCLUSIONS The genetic etiologic diagnosis in POI allows for genetic familial counseling, anticipated pregnancy planning, and ovarian tissue preservation or oocyte preservation. Identifying new genes may lead to future development of therapeutics in reproduction based on disrupted molecular pathways. CLINICAL TRIAL REGISTRATION NUMBER NCT 01177891.
Collapse
Affiliation(s)
- Alexandre Rouen
- Département de Génétique Médicale, Unité INSERM U933, Hôpital Armand-Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France.
| | - Eli Rogers
- Département de Génétique Médicale, Unité INSERM U933, Hôpital Armand-Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Véronique Kerlan
- Service d'Endocrinologie, Centre Hospitalier Universitaire de Brest, Brest, France
| | - Brigitte Delemer
- Service d'Endocrinologie, Diabète, Nutrition, Centre Hospitalier Universitaire de Reims, Reims, France
| | | | - Yves Reznik
- Service d'Endocrinologie, Hôpital Caen, France
| | - Anne Gompel
- Université de Paris, Unité de Gynécologie Médicale, Hôpital Port-Royal, France
| | - Isabelle Cedrin
- Service de Médecine de la Reproduction, Hôpital Jean Verdier, France
| | | | | | - Thierry Brue
- Assistance Publique-Hôpitaux de Marseille, Department of Endocrinology, Hôpital de la Conception, Centre de Référence des Maladies Rares de l'Hypophyse, Marseille, France, and Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Marseille Medical Genetics, Institut Marseille Maladies Rares, Marseille, France
| | | | - Anne Bachelot
- Service d'Endocrinologie et Médecine de la Reproduction, Centre Constitutif des Maladies Endocriniennes Rares de la Croissance et du Développement, Centre Constitutif du Centre des Pathologies Gynécologiques Rares, Sorbonne Université, Hôpital de la Pitié-Salpétrière, Paris, France; Sorbonne Université, Paris, France
| | - Sandra Chantot-Bastaraud
- Département de Génétique Médicale, Unité INSERM U933, Hôpital Armand-Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alexandra Rousseau
- Unité de Recherche Clinique de l'Est Parisien, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris, France
| | - Tabassome Simon
- Unité de Recherche Clinique de l'Est Parisien, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris, France
| | - Esther Kott
- Département de Génétique Médicale, Unité INSERM U933, Hôpital Armand-Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jean-Pierre Siffroi
- Département de Génétique Médicale, Unité INSERM U933, Hôpital Armand-Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France; Sorbonne Université, Paris, France
| | - Philippe Touraine
- Service d'Endocrinologie et Médecine de la Reproduction, Centre Constitutif des Maladies Endocriniennes Rares de la Croissance et du Développement, Centre Constitutif du Centre des Pathologies Gynécologiques Rares, Sorbonne Université, Hôpital de la Pitié-Salpétrière, Paris, France; Sorbonne Université, Paris, France
| | - Sophie Christin-Maitre
- Département de Génétique Médicale, Unité INSERM U933, Hôpital Armand-Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France; Sorbonne Université, Paris, France; Service d'Endocrinologie, Diabétologie et Médecine de la Reproduction, Centre Constitutif des Maladies Endocriniennes Rares de la Croissance et du Développement, Sorbonne Université, Hôpital Saint-Antoine, Paris, France
| |
Collapse
|
54
|
Zhang K, Tarczykowska A, Gupta DK, Pendlebury DF, Zuckerman C, Nandakumar J, Shibuya H. The TERB1 MYB domain suppresses telomere erosion in meiotic prophase I. Cell Rep 2022; 38:110289. [PMID: 35081355 PMCID: PMC8867601 DOI: 10.1016/j.celrep.2021.110289] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/08/2021] [Accepted: 12/29/2021] [Indexed: 11/24/2022] Open
Abstract
The meiosis-specific telomere-binding protein TERB1 anchors telomeres to the nuclear envelope and drives chromosome movements for the pairing of homologous chromosomes. TERB1 has an MYB-like DNA-binding (MYB) domain, which is a hallmark of telomeric DNA-binding proteins. Here, we demonstrate that the TERB1 MYB domain has lost its canonical DNA-binding activity. The analysis of Terb1 point mutant mice expressing TERB1 lacking its MYB domain showed that the MYB domain is dispensable for telomere localization of TERB1 and the downstream TERB2-MAJIN complex, the promotion of homologous pairing, and even fertility. Instead, the TERB1 MYB domain regulates the enrichment of cohesin and promotes the remodeling of axial elements in the early-to-late pachytene transition, which suppresses telomere erosion. Considering its conservation across metazoan phyla, the TERB1 MYB domain is likely to be important for the maintenance of telomeric DNA and thus for genomic integrity by suppressing meiotic telomere erosion over long evolutionary timescales.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-41390, Sweden
| | - Agata Tarczykowska
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-41390, Sweden
| | - Deepesh Kumar Gupta
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-41390, Sweden
| | - Devon F Pendlebury
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Cassandra Zuckerman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hiroki Shibuya
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-41390, Sweden.
| |
Collapse
|
55
|
Xie C, Wang W, Tu C, Meng L, Lu G, Lin G, Lu LY, Tan YQ. OUP accepted manuscript. Hum Reprod Update 2022; 28:763-797. [PMID: 35613017 DOI: 10.1093/humupd/dmac024] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/18/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Chunbo Xie
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Weili Wang
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Chaofeng Tu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lanlan Meng
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Guangxiu Lu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ge Lin
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lin-Yu Lu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue-Qiu Tan
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
56
|
Ishiguro KI, Shimada R. MEIOSIN directs initiation of meiosis and subsequent meiotic prophase program during spermatogenesis. Genes Genet Syst 2021; 97:27-39. [PMID: 34955498 DOI: 10.1266/ggs.21-00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Meiosis is a crucial process for spermatogenesis and oogenesis. Initiation of meiosis coincides with spermatocyte differentiation and is followed by meiotic prophase, a prolonged G2 phase that ensures the completion of numerous meiosis-specific chromosome events. During meiotic prophase, chromosomes are organized into axis-loop structures, which underlie meiosis-specific events such as meiotic recombination and homolog synapsis. In spermatocytes, meiotic prophase is accompanied by robust alterations of gene expression programs and chromatin status for subsequent sperm production. The mechanisms regulating meiotic initiation and subsequent meiotic prophase programs are enigmatic. Recently, we discovered MEIOSIN (Meiosis initiator), a DNA-binding protein that directs the switch from mitosis to meiosis. This review mainly focuses on how MEIOSIN is involved in meiotic initiation and the meiotic prophase program during spermatogenesis. Further, we discuss the downstream genes activated by MEIOSIN, which are crucial for meiotic prophase-specific events, from the viewpoint of chromosome dynamics and the gene expression program.
Collapse
Affiliation(s)
- Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University
| | - Ryuki Shimada
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University
| |
Collapse
|
57
|
Liu R, Kasowitz SD, Homolka D, Leu NA, Shaked JT, Ruthel G, Jain D, Lin H, Keeney S, Luo M, Pillai RS, Wang PJ. YTHDC2 is essential for pachytene progression and prevents aberrant microtubule-driven telomere clustering in male meiosis. Cell Rep 2021; 37:110110. [PMID: 34910909 PMCID: PMC8720241 DOI: 10.1016/j.celrep.2021.110110] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/21/2021] [Accepted: 11/17/2021] [Indexed: 01/18/2023] Open
Abstract
Mechanisms driving the prolonged meiotic prophase I in mammals are poorly understood. RNA helicase YTHDC2 is critical for mitosis to meiosis transition. However, YTHDC2 is highly expressed in pachytene cells. Here we identify an essential role for YTHDC2 in meiotic progression. Specifically, YTHDC2 deficiency causes microtubule-dependent telomere clustering and apoptosis at the pachytene stage of prophase I. Depletion of YTHDC2 results in a massively dysregulated transcriptome in pachytene cells, with a tendency toward upregulation of genes normally expressed in mitotic germ cells and downregulation of meiotic transcripts. Dysregulation does not correlate with m6A status, and YTHDC2-bound mRNAs are enriched in genes upregulated in mutant germ cells, revealing that YTHDC2 primarily targets mRNAs for degradation. Furthermore, altered transcripts in mutant pachytene cells encode microtubule network proteins. Our results demonstrate that YTHDC2 regulates the pachytene stage by perpetuating a meiotic transcriptome and preventing microtubule network changes that could lead to telomere clustering.
Collapse
Affiliation(s)
- Rong Liu
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei Province, China; Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Seth D Kasowitz
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - David Homolka
- Department of Molecular Biology, Science III, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - N Adrian Leu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Jordan T Shaked
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Gordon Ruthel
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Devanshi Jain
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York City, NY, USA; Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - Huijuan Lin
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei Province, China; Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York City, NY, USA; Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Mengcheng Luo
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei Province, China
| | - Ramesh S Pillai
- Department of Molecular Biology, Science III, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - P Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA.
| |
Collapse
|
58
|
Goelzer M, Goelzer J, Ferguson ML, Neu CP, Uzer G. Nuclear envelope mechanobiology: linking the nuclear structure and function. Nucleus 2021; 12:90-114. [PMID: 34455929 PMCID: PMC8432354 DOI: 10.1080/19491034.2021.1962610] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 01/10/2023] Open
Abstract
The nucleus, central to cellular activity, relies on both direct mechanical input as well as its molecular transducers to sense external stimuli and respond by regulating intra-nuclear chromatin organization that determines cell function and fate. In mesenchymal stem cells of musculoskeletal tissues, changes in nuclear structures are emerging as a key modulator of their differentiation and proliferation programs. In this review we will first introduce the structural elements of the nucleoskeleton and discuss the current literature on how nuclear structure and signaling are altered in relation to environmental and tissue level mechanical cues. We will focus on state-of-the-art techniques to apply mechanical force and methods to measure nuclear mechanics in conjunction with DNA, RNA, and protein visualization in living cells. Ultimately, combining real-time nuclear deformations and chromatin dynamics can be a powerful tool to study mechanisms of how forces affect the dynamics of genome function.
Collapse
Affiliation(s)
- Matthew Goelzer
- Materials Science and Engineering, Boise State University, Boise, ID, US
| | | | - Matthew L. Ferguson
- Biomolecular Science, Boise State University, Boise, ID, US
- Physics, Boise State University, Boise, ID, US
| | - Corey P. Neu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, CO, US
| | - Gunes Uzer
- Mechanical and Biomedical Engineering, Boise State University, Boise, ID, US
| |
Collapse
|
59
|
Manfrevola F, Martinez G, Coutton C, Rocco D, Reynaud K, Le Vern Y, Froment P, Beauclair L, Aubert D, Pierantoni R, Chianese R, Guillou F. Ankrd31 in Sperm and Epididymal Integrity. Front Cell Dev Biol 2021; 9:741975. [PMID: 34820371 PMCID: PMC8607815 DOI: 10.3389/fcell.2021.741975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022] Open
Abstract
Ankyrin proteins (ANKRD) are key mediators linking membrane and sub-membranous cytoskeletal proteins. Recent findings have highlighted a new role of ANKRD31 during spermatogenesis, elucidating its involvement in meiotic recombination and male germ cell progression. Following testicular differentiation, spermatozoa (SPZ) enter into the epididymis, where they undergo several biochemical and enzymatic changes. The epididymal epithelium is characterized by cell-to-cell junctions that are able to form the blood-epididymal barrier (BEB). This intricate epithelial structure provides the optimal microenvironment needed for epididymal sperm maturation. To date, no notions have been reported regarding a putative role of ANKRD31 in correct BEB formation. In our work, we generated an Ankrd31 knockout male mouse model (Ankrd31-/- ) and characterized its reproductive phenotype. Ankrd31-/- mice were infertile and exhibited oligo-astheno-teratozoospermia (a low number of immotile SPZ with abnormal morphological features). In addition, a complete deregulation of BEB was found in Ankrd31-/- , due to cell-to-cell junction anomalies. In order to suggest that BEB deregulation may depend on Ankrd31 gene deletion, we showed the physical interaction among ANKRD31 and some epithelial junction proteins in wild-type (WT) epididymides. In conclusion, the current work shows a key role of ANKRD31 in the control of germ cell progression as well as sperm and epididymal integrity.
Collapse
Affiliation(s)
- Francesco Manfrevola
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Guillaume Martinez
- Hôpital Couple-Enfant, Centre Hospitalier Universitaire de Grenoble, UM de Génétique Chromosomique, Grenoble, France
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences INSERM U1209, CNRS UMR 5309, Grenoble, France
| | - Charles Coutton
- Hôpital Couple-Enfant, Centre Hospitalier Universitaire de Grenoble, UM de Génétique Chromosomique, Grenoble, France
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences INSERM U1209, CNRS UMR 5309, Grenoble, France
| | - Domenico Rocco
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Karine Reynaud
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Yves Le Vern
- INRAE, Université de Tours, ISP, Nouzilly, France
| | - Pascal Froment
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Linda Beauclair
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Denise Aubert
- Univ Lyon, ENS de Lyon, INRAE, CNRS, Institut de Génomique Fonctionnelle de Lyon, Lyon, France
| | - Riccardo Pierantoni
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Rosanna Chianese
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Florian Guillou
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| |
Collapse
|
60
|
Zuo W, Chen G, Gao Z, Li S, Chen Y, Huang C, Chen J, Chen Z, Lei M, Bian Q. Stage-resolved Hi-C analyses reveal meiotic chromosome organizational features influencing homolog alignment. Nat Commun 2021; 12:5827. [PMID: 34625553 PMCID: PMC8501046 DOI: 10.1038/s41467-021-26033-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/14/2021] [Indexed: 02/08/2023] Open
Abstract
During meiosis, chromosomes exhibit dramatic changes in morphology and intranuclear positioning. How these changes influence homolog pairing, alignment, and recombination remain elusive. Using Hi-C, we systematically mapped 3D genome architecture throughout all meiotic prophase substages during mouse spermatogenesis. Our data uncover two major chromosome organizational features varying along the chromosome axis during early meiotic prophase, when homolog alignment occurs. First, transcriptionally active and inactive genomic regions form alternating domains consisting of shorter and longer chromatin loops, respectively. Second, the force-transmitting LINC complex promotes the alignment of ends of different chromosomes over a range of up to 20% of chromosome length. Both features correlate with the pattern of homolog interactions and the distribution of recombination events. Collectively, our data reveal the influences of transcription and force on meiotic chromosome structure and suggest chromosome organization may provide an infrastructure for the modulation of meiotic recombination in higher eukaryotes.
Collapse
Affiliation(s)
- Wu Zuo
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Guangming Chen
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200125, Shanghai, China
- Shanghai Institute of Precision Medicine, 200125, Shanghai, China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, 313000, Huzhou, China
| | - Zhimei Gao
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200125, Shanghai, China
- Shanghai Institute of Precision Medicine, 200125, Shanghai, China
| | - Shuai Li
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200125, Shanghai, China
- Shanghai Institute of Precision Medicine, 200125, Shanghai, China
| | - Yanyan Chen
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200125, Shanghai, China
- Shanghai Institute of Precision Medicine, 200125, Shanghai, China
| | - Chenhui Huang
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200125, Shanghai, China
- Shanghai Institute of Precision Medicine, 200125, Shanghai, China
| | - Juan Chen
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200125, Shanghai, China
- Shanghai Institute of Precision Medicine, 200125, Shanghai, China
| | - Zhengjun Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Ming Lei
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200125, Shanghai, China.
- Shanghai Institute of Precision Medicine, 200125, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Qian Bian
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200125, Shanghai, China.
- Shanghai Institute of Precision Medicine, 200125, Shanghai, China.
| |
Collapse
|
61
|
Faber EB, Wang N, Georg GI. Review of rationale and progress toward targeting cyclin-dependent kinase 2 (CDK2) for male contraception†. Biol Reprod 2021; 103:357-367. [PMID: 32543655 PMCID: PMC7523694 DOI: 10.1093/biolre/ioaa107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/03/2020] [Accepted: 04/19/2020] [Indexed: 12/30/2022] Open
Abstract
Cyclin-dependent kinase 2 (CDK2) is a member of the larger cell cycle regulating CDK family of kinases, activated by binding partner cyclins as its name suggests. Despite its canonical role in mitosis, CDK2 knockout mice are viable but sterile, suggesting compensatory mechanisms for loss of CDK2 in mitosis but not meiosis. Here, we review the literature surrounding the role of CDK2 in meiosis, particularly a cyclin-independent role in complex with another activator, Speedy 1 (SPY1). From this evidence, we suggest that CDK2 could be a viable nonhormonal male contraceptive target. Finally, we review the literature of pertinent CDK2 inhibitors from the preclinical to clinical stages, mostly developed to treat various cancers. To date, there is no potent yet selective CDK2 inhibitor that could be repurposed as a contraceptive without appreciable off-target toxicity. To achieve selectivity for CDK2 over closely related kinases, developing compounds that bind outside the conserved adenosine triphosphate-binding site may be necessary.
Collapse
Affiliation(s)
- Erik B Faber
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota-Twin Cities, Minneapolis, MN, USA.,Medical-Scientist Training Program, University of Minnesota Medical School, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Nan Wang
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Gunda I Georg
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
62
|
Abstract
The specialized two-stage meiotic cell division program halves a cell's chromosome complement in preparation for sexual reproduction. This reduction in ploidy requires that in meiotic prophase, each pair of homologous chromosomes (homologs) identify one another and form physical links through DNA recombination. Here, we review recent advances in understanding the complex morphological changes that chromosomes undergo during meiotic prophase to promote homolog identification and crossing over. We focus on the structural maintenance of chromosomes (SMC) family cohesin complexes and the meiotic chromosome axis, which together organize chromosomes and promote recombination. We then discuss the architecture and dynamics of the conserved synaptonemal complex (SC), which assembles between homologs and mediates local and global feedback to ensure high fidelity in meiotic recombination. Finally, we discuss exciting new advances, including mechanisms for boosting recombination on particular chromosomes or chromosomal domains and the implications of a new liquid crystal model for SC assembly and structure. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sarah N Ur
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA; ,
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA; , .,Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
63
|
Lei Q, Lai X, Eliveld J, Chuva de Sousa Lopes SM, van Pelt AMM, Hamer G. In Vitro Meiosis of Male Germline Stem Cells. Stem Cell Reports 2021; 15:1140-1153. [PMID: 33176123 PMCID: PMC7664054 DOI: 10.1016/j.stemcr.2020.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 01/15/2023] Open
Abstract
In vitro spermatogenesis has been achieved by culturing mouse embryonic stem cells (ESCs) together with a cell suspension of male juvenile gonad. However, for human fertility treatment or preservation, patient-specific ESCs or juvenile gonad is not available. We therefore aim to achieve in vitro spermatogenesis using male germline stem cells (GSCs) without the use of juvenile gonad. GSCs, when cultured on immortalized Sertoli cells, were able to enter meiosis, reach the meiotic metaphase stages, and sporadically form spermatid-like cells. However, the in vitro-formed pachytene-like spermatocytes did not display full chromosome synapsis and did not form meiotic crossovers. Despite this, the meiotic checkpoints that usually eliminate such cells to prevent genomic instabilities from being transmitted to the offspring were not activated, allowing the cells to proceed to the meiotic metaphase stages. In vitro-generated spermatid-like cells should thus be thoroughly investigated before being considered for clinical use.
Collapse
Affiliation(s)
- Qijing Lei
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Xin Lai
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Jitske Eliveld
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | | | - Ans M M van Pelt
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Geert Hamer
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands.
| |
Collapse
|
64
|
Pawar S, Kutay U. The Diverse Cellular Functions of Inner Nuclear Membrane Proteins. Cold Spring Harb Perspect Biol 2021; 13:a040477. [PMID: 33753404 PMCID: PMC8411953 DOI: 10.1101/cshperspect.a040477] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nuclear compartment is delimited by a specialized expanded sheet of the endoplasmic reticulum (ER) known as the nuclear envelope (NE). Compared to the outer nuclear membrane and the contiguous peripheral ER, the inner nuclear membrane (INM) houses a unique set of transmembrane proteins that serve a staggering range of functions. Many of these functions reflect the exceptional position of INM proteins at the membrane-chromatin interface. Recent research revealed that numerous INM proteins perform crucial roles in chromatin organization, regulation of gene expression, genome stability, and mediation of signaling pathways into the nucleus. Other INM proteins establish mechanical links between chromatin and the cytoskeleton, help NE remodeling, or contribute to the surveillance of NE integrity and homeostasis. As INM proteins continue to gain prominence, we review these advancements and give an overview on the functional versatility of the INM proteome.
Collapse
Affiliation(s)
- Sumit Pawar
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ulrike Kutay
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
65
|
Wu R, Zhan J, Zheng B, Chen Z, Li J, Li C, Liu R, Zhang X, Huang X, Luo M. SYMPK Is Required for Meiosis and Involved in Alternative Splicing in Male Germ Cells. Front Cell Dev Biol 2021; 9:715733. [PMID: 34434935 PMCID: PMC8380814 DOI: 10.3389/fcell.2021.715733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022] Open
Abstract
SYMPK is a scaffold protein that supports polyadenylation machinery assembly on nascent transcripts and is also involved in alternative splicing in some mammalian somatic cells. However, the role of SYMPK in germ cells remains unknown. Here, we report that SYMPK is highly expressed in male germ cells, and germ cell-specific knockout (cKO) of Sympk in mouse leads to male infertility. Sympk cKODdx4–cre mice showed reduced spermatogonia at P4 and almost no germ cells at P18. Sympk cKOStra8–Cre spermatocytes exhibit defects in homologous chromosome synapsis, DNA double-strand break (DSB) repair, and meiotic recombination. RNA-Seq analyses reveal that SYMPK is associated with alternative splicing, besides regulating the expressions of many genes in spermatogenic cells. Importantly, Sympk deletion results in abnormal alternative splicing and a decreased expression of Sun1. Taken together, our results demonstrate that SYMPK is pivotal for meiotic progression by regulating pre-mRNA alternative splicing in male germ cells.
Collapse
Affiliation(s)
- Rui Wu
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.,Reproductive Medicine Center, Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Junfeng Zhan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bo Zheng
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Zhen Chen
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Jianbo Li
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Changrong Li
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Rong Liu
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoyan Huang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Mengcheng Luo
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
66
|
Kron NS, Fieber LA. Co-expression analysis identifies neuro-inflammation as a driver of sensory neuron aging in Aplysia californica. PLoS One 2021; 16:e0252647. [PMID: 34116561 PMCID: PMC8195618 DOI: 10.1371/journal.pone.0252647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/20/2021] [Indexed: 01/08/2023] Open
Abstract
Aging of the nervous system is typified by depressed metabolism, compromised proteostasis, and increased inflammation that results in cognitive impairment. Differential expression analysis is a popular technique for exploring the molecular underpinnings of neural aging, but technical drawbacks of the methodology often obscure larger expression patterns. Co-expression analysis offers a robust alternative that allows for identification of networks of genes and their putative central regulators. In an effort to expand upon previous work exploring neural aging in the marine model Aplysia californica, we used weighted gene correlation network analysis to identify co-expression networks in a targeted set of aging sensory neurons in these animals. We identified twelve modules, six of which were strongly positively or negatively associated with aging. Kyoto Encyclopedia of Genes analysis and investigation of central module transcripts identified signatures of metabolic impairment, increased reactive oxygen species, compromised proteostasis, disrupted signaling, and increased inflammation. Although modules with immune character were identified, there was no correlation between genes in Aplysia that increased in expression with aging and the orthologous genes in oyster displaying long-term increases in expression after a virus-like challenge. This suggests anti-viral response is not a driver of Aplysia sensory neuron aging.
Collapse
Affiliation(s)
- N. S. Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States of America
| | - L. A. Fieber
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States of America
| |
Collapse
|
67
|
Chen Y, Wang Y, Chen J, Zuo W, Fan Y, Huang S, Liu Y, Chen G, Li Q, Li J, Wu J, Bian Q, Huang C, Lei M. The SUN1-SPDYA interaction plays an essential role in meiosis prophase I. Nat Commun 2021; 12:3176. [PMID: 34039995 PMCID: PMC8155084 DOI: 10.1038/s41467-021-23550-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 04/29/2021] [Indexed: 12/27/2022] Open
Abstract
Chromosomes pair and synapse with their homologous partners to segregate correctly at the first meiotic division. Association of telomeres with the LINC (Linker of Nucleoskeleton and Cytoskeleton) complex composed of SUN1 and KASH5 enables telomere-led chromosome movements and telomere bouquet formation, facilitating precise pairwise alignment of homologs. Here, we identify a direct interaction between SUN1 and Speedy A (SPDYA) and determine the crystal structure of human SUN1-SPDYA-CDK2 ternary complex. Analysis of meiosis prophase I process in SPDYA-binding-deficient SUN1 mutant mice reveals that the SUN1-SPDYA interaction is required for the telomere-LINC complex connection and the assembly of a ring-shaped telomere supramolecular architecture at the nuclear envelope, which is critical for efficient homologous pairing and synapsis. Overall, our results provide structural insights into meiotic telomere structure that is essential for meiotic prophase I progression. Telomeres attach to the nuclear envelope to facilitate homolog pairing during meiosis prophase I. Here, the authors show that SUN1 and SPDYA interact, and demonstrate that this interaction is important for telomere structure and function, and essential to mice gametogenesis.
Collapse
Affiliation(s)
- Yanyan Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yan Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Juan Chen
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Wu Zuo
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yong Fan
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Sijia Huang
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Yongmei Liu
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Guangming Chen
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China.,Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou Central Hospital, Zhenjiang, China
| | - Qing Li
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Jinsong Li
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Jian Wu
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Qian Bian
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Chenhui Huang
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Institute of Precision Medicine, Shanghai, China.
| | - Ming Lei
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Institute of Precision Medicine, Shanghai, China. .,Key laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
68
|
Wang X, Pepling ME. Regulation of Meiotic Prophase One in Mammalian Oocytes. Front Cell Dev Biol 2021; 9:667306. [PMID: 34095134 PMCID: PMC8172968 DOI: 10.3389/fcell.2021.667306] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/28/2021] [Indexed: 11/23/2022] Open
Abstract
In female mammals, meiotic prophase one begins during fetal development. Oocytes transition through the prophase one substages consisting of leptotene, zygotene, and pachytene, and are finally arrested at the diplotene substage, for months in mice and years in humans. After puberty, luteinizing hormone induces ovulation and meiotic resumption in a cohort of oocytes, driving the progression from meiotic prophase one to metaphase two. If fertilization occurs, the oocyte completes meiosis two followed by fusion with the sperm nucleus and preparation for zygotic divisions; otherwise, it is passed into the uterus and degenerates. Specifically in the mouse, oocytes enter meiosis at 13.5 days post coitum. As meiotic prophase one proceeds, chromosomes find their homologous partner, synapse, exchange genetic material between homologs and then begin to separate, remaining connected at recombination sites. At postnatal day 5, most of the oocytes have reached the late diplotene (or dictyate) substage of prophase one where they remain arrested until ovulation. This review focuses on events and mechanisms controlling the progression through meiotic prophase one, which include recombination, synapsis and control by signaling pathways. These events are prerequisites for proper chromosome segregation in meiotic divisions; and if they go awry, chromosomes mis-segregate resulting in aneuploidy. Therefore, elucidating the mechanisms regulating meiotic progression is important to provide a foundation for developing improved treatments of female infertility.
Collapse
|
69
|
Bentebbal SA, Meqbel BR, Salter A, Allan V, Burke B, Horn HF. A human infertility-associated KASH5 variant promotes mitochondrial localization. Sci Rep 2021; 11:10133. [PMID: 33980926 PMCID: PMC8115505 DOI: 10.1038/s41598-021-89439-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/22/2021] [Indexed: 02/03/2023] Open
Abstract
KASH5 is the most recently identified member of the KASH domain family of tail anchored, outer nuclear membrane (ONM) and endoplasmic reticulum (ER) proteins. During meiosis prophase I, KASH5 and SUN1 form a complex that spans the nuclear envelope and which links the telomeres of meiotic chromosomes to cytoplasmic dynein. This connection is essential for homologous chromosome dynamics and pairing. A recent study identified a variant in human KASH5 (L535Q) that correlated with male infertility associated with azoospermia. However, no molecular mechanism was described. Here, we report that this amino acid substitution, within the KASH5 transmembrane domain (TMD) has no predicted effects on secondary structure. However, the overall hydrophobicity of the L535Q TMD, is calculated to be lower than the wild-type KASH5, based on the GES (Goldman-Engelman-Steitz) amino acid hydrophobicity scale. This change in hydrophobicity profoundly affects the subcellular localization of KASH5. Through a series of amino acid substitution studies, we show that the L535Q substitution perturbs KASH5 localization to the ER and ONM and instead results in mistargeting to the mitochondria membrane. We suggest that this mislocalization accounts for the infertility and azoospermia phenotype in patients.
Collapse
Affiliation(s)
- Sana A. Bentebbal
- grid.452146.00000 0004 1789 3191College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Bakhita R. Meqbel
- grid.452146.00000 0004 1789 3191College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Anna Salter
- grid.5379.80000000121662407Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT UK ,grid.185448.40000 0004 0637 0221Laboratory of Nuclear Dynamics and Architecture, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Victoria Allan
- grid.5379.80000000121662407Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT UK
| | - Brian Burke
- grid.185448.40000 0004 0637 0221Laboratory of Nuclear Dynamics and Architecture, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Henning F. Horn
- grid.452146.00000 0004 1789 3191College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
70
|
Abstract
Meiosis is a highly conserved and essential process in gametogenesis in sexually reproducing organisms. However, there are substantial sex-specific differences within individual species with respect to meiosis-related chromatin reorganization, recombination, and tolerance for meiotic defects. A wide range of murine models have been developed over the past two decades to study the complex regulatory processes governing mammalian meiosis. The present review article thus provides a comprehensive overview of the knockout mice that have been employed to study meiosis, with a particular focus on gene- and gametogenesis-related sexual dimorphism observed in these model animals. In so doing, we aim to provide a firm foundation for the future study of sex-specific differences in meiosis at the molecular level.
Collapse
Affiliation(s)
- Rong Hua
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| |
Collapse
|
71
|
Manfrevola F, Guillou F, Fasano S, Pierantoni R, Chianese R. LINCking the Nuclear Envelope to Sperm Architecture. Genes (Basel) 2021; 12:genes12050658. [PMID: 33925685 PMCID: PMC8145172 DOI: 10.3390/genes12050658] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/13/2021] [Accepted: 04/24/2021] [Indexed: 12/11/2022] Open
Abstract
Nuclear architecture undergoes an extensive remodeling during spermatogenesis, especially at levels of spermatocytes (SPC) and spermatids (SPT). Interestingly, typical events of spermiogenesis, such as nuclear elongation, acrosome biogenesis, and flagellum formation, need a functional cooperation between proteins of the nuclear envelope and acroplaxome/manchette structures. In addition, nuclear envelope plays a key role in chromosome distribution. In this scenario, special attention has been focused on the LINC (linker of nucleoskeleton and cytoskeleton) complex, a nuclear envelope-bridge structure involved in the connection of the nucleoskeleton to the cytoskeleton, governing mechanotransduction. It includes two integral proteins: KASH- and SUN-domain proteins, on the outer (ONM) and inner (INM) nuclear membrane, respectively. The LINC complex is involved in several functions fundamental to the correct development of sperm cells such as head formation and head to tail connection, and, therefore, it seems to be important in determining male fertility. This review provides a global overview of the main LINC complex components, with a special attention to their subcellular localization in sperm cells, their roles in the regulation of sperm morphological maturation, and, lastly, LINC complex alterations associated to male infertility.
Collapse
Affiliation(s)
- Francesco Manfrevola
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Via Costantinopoli 16, 80138 Napoli, Italy; (F.M.); (S.F.); (R.P.)
| | - Florian Guillou
- PRC, CNRS, IFCE, INRAE, University of Tours, 37380 Nouzilly, France;
| | - Silvia Fasano
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Via Costantinopoli 16, 80138 Napoli, Italy; (F.M.); (S.F.); (R.P.)
| | - Riccardo Pierantoni
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Via Costantinopoli 16, 80138 Napoli, Italy; (F.M.); (S.F.); (R.P.)
| | - Rosanna Chianese
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Via Costantinopoli 16, 80138 Napoli, Italy; (F.M.); (S.F.); (R.P.)
- Correspondence:
| |
Collapse
|
72
|
Mytlis A, Elkouby YM. Live and Time-Lapse Imaging of Early Oogenesis and Meiotic Chromosomal Dynamics in Cultured Juvenile Zebrafish Ovaries. Methods Mol Biol 2021; 2218:137-155. [PMID: 33606229 DOI: 10.1007/978-1-0716-0970-5_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Oocyte production is crucial for sexual reproduction. Recent findings in zebrafish and other established model organisms emphasize that the early steps of oogenesis involve the coordination of simultaneous and tightly sequential processes across cellular compartments and between sister cells. To fully understand the mechanistic framework of these coordinated processes, cellular and morphological analysis in high temporal resolution is required. Here, we provide a protocol for four-dimensional live time-lapse analysis of cultured juvenile zebrafish ovaries. We describe how multiple-stage oocytes can be simultaneously analyzed in single ovaries, and several ovaries can be processed in single experiments. In addition, we detail adequate conditions for quantitative image acquisition. Finally, we demonstrate that using this protocol, we successfully capture rapid meiotic chromosomal movements in early prophase for the first time in zebrafish oocytes, in four dimensions and in vivo. Our protocol expands the use of the zebrafish as a model system to understand germ cell and ovarian development in postembryonic stages.
Collapse
Affiliation(s)
- Avishag Mytlis
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem, Faculty of Medicine, Institute for Medical Research - Israel-Canada (IMRIC), Jerusalem, Israel
| | - Yaniv M Elkouby
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem, Faculty of Medicine, Institute for Medical Research - Israel-Canada (IMRIC), Jerusalem, Israel.
| |
Collapse
|
73
|
The SUN2-nesprin-2 LINC complex and KIF20A function in the Golgi dispersal. Sci Rep 2021; 11:5358. [PMID: 33686165 PMCID: PMC7940470 DOI: 10.1038/s41598-021-84750-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/12/2021] [Indexed: 01/31/2023] Open
Abstract
The morphology of the Golgi complex is influenced by the cellular context, which strictly correlates with nuclear functions; however, the mechanism underlying this association remains elusive. The inner nuclear membrane SUN proteins, SUN1 and SUN2, have diverse functions together with the outer nuclear membrane nesprin proteins, which comprise the LINC complex. We found that depletion of SUN1 leads to Golgi complex dispersion with maintenance of ministacks and retained function for vesicle transport through the Golgi complex. In addition, SUN2 associates with microtubule plus-end-directed motor KIF20A, possibly via nesprin-2. KIF20A plays a role in the Golgi dispersion in conjunction with the SUN2-nesprin-2 LINC complex in SUN1-depleted cells, suggesting that SUN1 suppresses the function of the SUN2-nesprin-2 LINC complex under a steady-state condition. Further, SUN1-knockout mice, which show impaired cerebellar development and cerebellar ataxia, presented altered Golgi morphology in Purkinje cells. These findings revealed a regulation of the Golgi organization by the LINC complex.
Collapse
|
74
|
Yuan L, Pan J, Zhu S, Li Y, Yao J, Li Q, Fang S, Liu C, Wang X, Li B, Chen W, Zhang Y. Evolution and Functional Divergence of SUN Genes in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:646622. [PMID: 33763102 PMCID: PMC7982736 DOI: 10.3389/fpls.2021.646622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/18/2021] [Indexed: 05/27/2023]
Abstract
SUN-domain containing proteins are crucial nuclear membrane proteins involved in a plethora of biological functions, including meiosis, nuclear morphology, and embryonic development, but their evolutionary history and functional divergence are obscure. In all, 216 SUN proteins from protists, fungi, and plants were divided into two monophyletic clades (Cter-SUN and Mid-SUN). We performed comprehensive evolutionary analyses, investigating the characteristics of different subfamilies in plants. Mid-SUNs further evolved into two subgroups, SUN3 and SUN5, before the emergence of the ancestor of angiosperms, while Cter-SUNs retained one subfamily of SUN1. The two clades were distinct from each other in the conserved residues of the SUN domain, the TM motif, and exon/intron structures. The gene losses occurred with equal frequency between these two clades, but duplication events of Mid-SUNs were more frequent. In cotton, SUN3 proteins are primarily expressed in petals and stamens and are moderately expressed in other tissues, whereas SUN5 proteins are specifically expressed in mature pollen. Virus-induced knock-down and the CRISPR/Cas9-mediated knockout of GbSUN5 both showed higher ratios of aborted seeds, although pollen viability remained normal. Our results indicated divergence of biological function between SUN3 and SUN5, and that SUN5 plays an important role in reproductive development.
Collapse
Affiliation(s)
- Li Yuan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jingwen Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shouhong Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yan Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jinbo Yao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Qiulin Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shengtao Fang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Chunyan Liu
- College of Plant Science, Tarim University, Xinjiang, China
| | - Xinyu Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Bei Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wei Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yongshan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
75
|
Matveevsky S, Chassovnikarova T, Grishaeva T, Atsaeva M, Malygin V, Bakloushinskaya I, Kolomiets O. Kinase CDK2 in Mammalian Meiotic Prophase I: Screening for Hetero- and Homomorphic Sex Chromosomes. Int J Mol Sci 2021; 22:1969. [PMID: 33671248 PMCID: PMC7922030 DOI: 10.3390/ijms22041969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/13/2021] [Accepted: 02/13/2021] [Indexed: 01/19/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) are crucial regulators of the eukaryotic cell cycle. The critical role of CDK2 in the progression of meiosis was demonstrated in a single mammalian species, the mouse. We used immunocytochemistry to study the localization of CDK2 during meiosis in seven rodent species that possess hetero- and homomorphic male sex chromosomes. To compare the distribution of CDK2 in XY and XX male sex chromosomes, we performed multi-round immunostaining of a number of marker proteins in meiotic chromosomes of the rat and subterranean mole voles. Antibodies to the following proteins were used: RAD51, a member of the double-stranded DNA break repair machinery; MLH1, a component of the DNA mismatch repair system; and SUN1, which is involved in the connection between the meiotic telomeres and nuclear envelope, alongside the synaptic protein SYCP3 and kinetochore marker CREST. Using an enhanced protocol, we were able to assess the distribution of as many as four separate proteins in the same meiotic cell. We showed that during prophase I, CDK2 localizes to telomeric and interstitial regions of autosomes in all species investigated (rat, vole, hamster, subterranean mole voles, and mole rats). In sex bivalents following synaptic specificity, the CDK2 signals were distributed in three different modes. In the XY bivalent in the rat and mole rat, we detected numerous CDK2 signals in asynaptic regions and a single CDK2 focus on synaptic segments, similar to the mouse sex chromosomes. In the mole voles, which have unique XX sex chromosomes in males, CDK2 signals were nevertheless distributed similarly to the rat XY sex chromosomes. In the vole, sex chromosomes did not synapse, but demonstrated CDK2 signals of varying intensity, similar to the rat X and Y chromosomes. In female mole voles, the XX bivalent had CDK2 pattern similar to autosomes of all species. In the hamster, CDK2 signals were revealed in telomeric regions in the short synaptic segment of the sex bivalent. We found that CDK2 signals colocalize with SUN1 and MLH1 signals in meiotic chromosomes in rats and mole voles, similar to the mouse. The difference in CDK2 manifestation at the prophase I sex chromosomes can be considered an example of the rapid chromosome evolution in mammals.
Collapse
Affiliation(s)
- Sergey Matveevsky
- Laboratory of Cytogenetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (T.G.); (O.K.)
| | - Tsenka Chassovnikarova
- Department of Animal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Science, 1000 Sofia, Bulgaria;
- Department of Zoology, Biological Faculty, University “Paisi Hilendarski”, 4000 Plovdiv, Bulgaria
| | - Tatiana Grishaeva
- Laboratory of Cytogenetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (T.G.); (O.K.)
| | - Maret Atsaeva
- Department of Cell Biology, Morphology and Microbiology, Chehen State University, 364051 Grozny, Russia;
| | - Vasilii Malygin
- Department of Vertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Irina Bakloushinskaya
- Laboratory of Genome Evolution and Speciation, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Oxana Kolomiets
- Laboratory of Cytogenetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (T.G.); (O.K.)
| |
Collapse
|
76
|
Zeng X, Li H, Li K, Yuan R, Zhao S, Li J, Luo J, Li X, Ma H, Wu G, Yan X. Evolution of the Brassicaceae-specific MS5-Like family and neofunctionalization of the novel MALE STERILITY 5 gene essential for male fertility in Brassica napus. THE NEW PHYTOLOGIST 2021; 229:2339-2356. [PMID: 33128826 PMCID: PMC7894334 DOI: 10.1111/nph.17053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 10/08/2020] [Indexed: 05/22/2023]
Abstract
New genes (or lineage-specific genes) can facilitate functional innovations. MALE STERILITY 5 (MS5) in Brassica napus is a fertility-related new gene, which has two wild-type alleles (BnMS5a and BnMS5c ) and two mutant alleles (BnMS5b and BnMS5d ) that could induce male sterility. Here, we studied the history and functional evolution of MS5 homologs in plants by phylogenetic analysis and molecular genetic experiments. We identified 727 MS5 homologs and found that they define a Brassicaceae-specific gene family that has expanded partly via multiple tandem gene duplications and also probably transpositions. The MS5 in B. napus is inherited from a basic diploid ancestor of B. rapa. Molecular genetic experiments indicate that BnMS5a and BnMS5c are functionally distinct in B. napus and that BnMS5d can inhibit BnMS5a in B. napus in a dosage-dependent manner. The BnMS5a protein can move in coordination with meiotic telomeres and interact with the nuclear envelope protein SUN1, with a possible crucial role in meiotic chromosome behavior. In summary, BnMS5 belongs to a Brassicaceae-specific new gene family, and has gained a novel function that is essential for male fertility in B. napus through neofunctionalization that has likely occurred since the origin of B. rapa.
Collapse
Affiliation(s)
- Xinhua Zeng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhan430062China
| | - Hao Li
- Department of Biologythe Huck Institutes of the Life Sciencesthe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Keqi Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhan430062China
| | - Rong Yuan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhan430062China
| | - Shengbo Zhao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhan430062China
| | - Jun Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhan430062China
| | - Junling Luo
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhan430062China
| | - Xiaofei Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhan430062China
| | - Hong Ma
- Department of Biologythe Huck Institutes of the Life Sciencesthe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Gang Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhan430062China
| | - Xiaohong Yan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhan430062China
| |
Collapse
|
77
|
LINC complex regulation of genome organization and function. Curr Opin Genet Dev 2021; 67:130-141. [PMID: 33524904 DOI: 10.1016/j.gde.2020.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/25/2020] [Accepted: 12/11/2020] [Indexed: 12/28/2022]
Abstract
The regulation of genomic function is in part mediated through the physical organization and architecture of the nucleus. Disruption to nuclear organization and architecture is increasingly being recognized by its contribution to many diseases. The LINC complexes - protein structures traversing the nuclear envelope, that physically connect the nuclear interior, and hence the genome, to cytoplasmic cytoskeletal networks are an important component in the physical organization of the genome and its function. This connection, potentially allows for the constant detection of environmental mechanical stimuli, resulting in altered regulation of nuclear architecture and genome function, either directly or via the process of mechanotransduction. Here, we review the influences LINC complexes exert on genome functions and their impact on cellular/organismal health.
Collapse
|
78
|
Kazemi P, Taketo T. Two telomeric ends of acrocentric chromosome play distinct roles in homologous chromosome synapsis in the fetal mouse oocyte. Chromosoma 2021; 130:41-52. [PMID: 33492414 DOI: 10.1007/s00412-021-00752-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/16/2022]
Abstract
In mammalian oocytes, proper chromosome segregation at the first meiotic division is dictated by the presence and site of homologous chromosome recombination, which takes place in fetal life. Our current understanding of how homologous chromosomes find each other and initiate synapsis, which is prerequisite for homologous recombination, is limited. It is known that chromosome telomeres are anchored into the nuclear envelope (NE) at the early meiotic prophase I (MPI) and move along NE to facilitate homologous chromosome search and pairing. However, the mouse (Mus musculus) carries all acrocentric chromosomes with one telomeric end close to the centromere (subcentromeric telomere; C-telomere) and the other far away from the centromere (distal telomere; D-telomere), and how C- and D-telomeres participate in chromosome pairing and synapsis during the MPI progression is not well understood. Here, we found in the mouse oocyte that C- and D-telomeres transiently clustered in one area, but D-telomeres soon separated together from C-telomeres and then dispersed to preferentially initiate synapsis, while C-telomeres remained in clusters and synapsed at the last. In the Spo11 null oocyte, which is deficient in SPO11-dependent DSBs formation and homologous synapsis, the pattern of C- and D-telomere clustering and resolution was not affected, but synapsis was more frequently initiated at C-telomeres. These results suggest that SPO11 suppresses the early synapsis between C-telomeres in clusters.
Collapse
Affiliation(s)
- Parinaz Kazemi
- Department of Biology, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Teruko Taketo
- Department of Biology, McGill University, Montreal, QC, H3A 1B1, Canada. .,Department of Surgery, McGill University, RI-MUHC, Montreal, QC, H4A 3J1, Canada. .,Department of Obstetrics/Gynecology, McGill University, RI-MUHC, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
79
|
Gurusaran M, Davies OR. A molecular mechanism for LINC complex branching by structurally diverse SUN-KASH 6:6 assemblies. eLife 2021; 10:60175. [PMID: 33393904 PMCID: PMC7800377 DOI: 10.7554/elife.60175] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/03/2021] [Indexed: 12/11/2022] Open
Abstract
The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex mechanically couples cytoskeletal and nuclear components across the nuclear envelope to fulfil a myriad of cellular functions, including nuclear shape and positioning, hearing, and meiotic chromosome movements. The canonical model is that 3:3 interactions between SUN and KASH proteins underlie the nucleocytoskeletal linkages provided by the LINC complex. Here, we provide crystallographic and biophysical evidence that SUN-KASH is a constitutive 6:6 complex in which two constituent 3:3 complexes interact head-to-head. A common SUN-KASH topology is achieved through structurally diverse 6:6 interaction mechanisms by distinct KASH proteins, including zinc-coordination by Nesprin-4. The SUN-KASH 6:6 interface provides a molecular mechanism for the establishment of integrative and distributive connections between 3:3 structures within a branched LINC complex network. In this model, SUN-KASH 6:6 complexes act as nodes for force distribution and integration between adjacent SUN and KASH molecules, enabling the coordinated transduction of large forces across the nuclear envelope.
Collapse
Affiliation(s)
- Manickam Gurusaran
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom.,Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
| | - Owen Richard Davies
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom.,Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
80
|
Leonida SRL, Bennett NC, Leitch AR, Faulkes CG. Patterns of telomere length with age in African mole-rats: New insights from quantitative fluorescence in situ hybridisation (qFISH). PeerJ 2020; 8:e10498. [PMID: 33335813 PMCID: PMC7720729 DOI: 10.7717/peerj.10498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/15/2020] [Indexed: 01/15/2023] Open
Abstract
Naked mole-rats Heterocephalus glaber (NMRs) are the longest-lived rodent and also resist the normal signs of senescence. In a number of species, cellular ageing has been correlated with a reduction in telomere length, yet relatively little is known about telomeres and their age-related dynamics in NMRs and other African mole-rats. Here, we apply fluorescence in situ hybridisation (FISH) to quantify telomeric repeat sequences in the NMR, the Damaraland mole-rat, Fukomys damarensis (DMR) and the Mahali mole-rat, Cryptomys hottentotus mahali (MMR). Both terminal and non-terminal telomeric sequences were identified in chromosomes of the NMR and DMR, whilst the MMR displayed only terminal telomeric repeats. Measurements of tooth wear and eruption patterns in wild caught DMRs and MMRs, and known ages in captive bred NMRs, were used to place individuals into relative age classes and compared with a quantitative measure of telomeric fluorescence (as a proxy for telomere size). While NMRs and MMRs failed to show an age-related decline in telomeric fluorescence, the DMR had a significant decrease in fluorescence with age, suggesting a decrease in telomere size in older animals. Our results suggest that among African mole-rats there is variation between species with respect to the role of telomere shortening in ageing, and the replicative theory of cellular senescence.
Collapse
Affiliation(s)
- Stephanie R L Leonida
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK.,Department of Zoology, University of Pretoria, Pretoria, South Africa
| | - Nigel C Bennett
- Department of Zoology, University of Pretoria, Pretoria, South Africa
| | - Andrew R Leitch
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| | - Chris G Faulkes
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
81
|
Burla R, La Torre M, Maccaroni K, Verni F, Giunta S, Saggio I. Interplay of the nuclear envelope with chromatin in physiology and pathology. Nucleus 2020; 11:205-218. [PMID: 32835589 PMCID: PMC7529417 DOI: 10.1080/19491034.2020.1806661] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022] Open
Abstract
The nuclear envelope compartmentalizes chromatin in eukaryotic cells. The main nuclear envelope components are lamins that associate with a panoply of factors, including the LEM domain proteins. The nuclear envelope of mammalian cells opens up during cell division. It is reassembled and associated with chromatin at the end of mitosis when telomeres tether to the nuclear periphery. Lamins, LEM domain proteins, and DNA binding factors, as BAF, contribute to the reorganization of chromatin. In this context, an emerging role is that of the ESCRT complex, a machinery operating in multiple membrane assembly pathways, including nuclear envelope reformation. Research in this area is unraveling how, mechanistically, ESCRTs link to nuclear envelope associated factors as LEM domain proteins. Importantly, ESCRTs work also during interphase for repairing nuclear envelope ruptures. Altogether the advances in this field are giving new clues for the interpretation of diseases implicating nuclear envelope fragility, as laminopathies and cancer. ABBREVIATIONS na, not analyzed; ko, knockout; kd, knockdown; NE, nuclear envelope; LEM, LAP2-emerin-MAN1 (LEM)-domain containing proteins; LINC, linker of nucleoskeleton and cytoskeleton complexes; Cyt, cytoplasm; Chr, chromatin; MB, midbody; End, endosomes; Tel, telomeres; INM, inner nuclear membrane; NP, nucleoplasm; NPC, Nuclear Pore Complex; ER, Endoplasmic Reticulum; SPB, spindle pole body.
Collapse
Affiliation(s)
- Romina Burla
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
- CNR Institute of Molecular Biology and Pathology, Italy
| | - Mattia La Torre
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Klizia Maccaroni
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Fiammetta Verni
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Simona Giunta
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
- Rockefeller University, New York, NY, USA
| | - Isabella Saggio
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
- CNR Institute of Molecular Biology and Pathology, Italy
- Institute of Structural Biology, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
82
|
Kmonickova V, Frolikova M, Steger K, Komrskova K. The Role of the LINC Complex in Sperm Development and Function. Int J Mol Sci 2020; 21:E9058. [PMID: 33260574 PMCID: PMC7730847 DOI: 10.3390/ijms21239058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 11/23/2022] Open
Abstract
The LINC (LInker of Nucleoskeleton and Cytoskeleton) complex is localized within the nuclear envelope and consists of SUN (Sad1/UNc84 homology domain-containing) proteins located in the inner nuclear membrane and KASH (Klarsicht/Anc1/Syne1 homology domain-containing) proteins located in the outer nuclear membrane, hence linking nuclear with cytoplasmic structures. While the nucleoplasm-facing side acts as a key player for correct pairing of homolog chromosomes and rapid chromosome movements during meiosis, the cytoplasm-facing side plays a pivotal role for sperm head development and proper acrosome formation during spermiogenesis. A further complex present in spermatozoa is involved in head-to-tail coupling. An intact LINC complex is crucial for the production of fertile sperm, as mutations in genes encoding for complex proteins are known to be associated with male subfertility in both mice and men. The present review provides a comprehensive overview on our current knowledge of LINC complex subtypes present in germ cells and its central role for male reproduction. Future studies on distinct LINC complex components are an absolute requirement to improve the diagnosis of idiopathic male factor infertility and the outcome of assisted reproduction.
Collapse
Affiliation(s)
- Vera Kmonickova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic; (V.K.); (M.F.)
| | - Michaela Frolikova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic; (V.K.); (M.F.)
| | - Klaus Steger
- Department of Urology, Pediatric Urology and Andrology, Molecular Andrology, Justus-Liebig University, 35392 Giessen, Germany;
| | - Katerina Komrskova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic; (V.K.); (M.F.)
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague 2, Czech Republic
| |
Collapse
|
83
|
Balzano E, Pelliccia F, Giunta S. Genome (in)stability at tandem repeats. Semin Cell Dev Biol 2020; 113:97-112. [PMID: 33109442 DOI: 10.1016/j.semcdb.2020.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/26/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022]
Abstract
Repeat sequences account for over half of the human genome and represent a significant source of variation that underlies physiological and pathological states. Yet, their study has been hindered due to limitations in short-reads sequencing technology and difficulties in assembly. A important category of repetitive DNA in the human genome is comprised of tandem repeats (TRs), where repetitive units are arranged in a head-to-tail pattern. Compared to other regions of the genome, TRs carry between 10 and 10,000 fold higher mutation rate. There are several mutagenic mechanisms that can give rise to this propensity toward instability, but their precise contribution remains speculative. Given the high degree of homology between these sequences and their arrangement in tandem, once damaged, TRs have an intrinsic propensity to undergo aberrant recombination with non-allelic exchange and generate harmful rearrangements that may undermine the stability of the entire genome. The dynamic mutagenesis at TRs has been found to underlie individual polymorphism associated with neurodegenerative and neuromuscular disorders, as well as complex genetic diseases like cancer and diabetes. Here, we review our current understanding of the surveillance and repair mechanisms operating within these regions, and we describe how alterations in these protective processes can readily trigger mutational signatures found at TRs, ultimately resulting in the pathological correlation between TRs instability and human diseases. Finally, we provide a viewpoint to counter the detrimental effects that TRs pose in light of their selection and conservation, as important drivers of human evolution.
Collapse
Affiliation(s)
- Elisa Balzano
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, 00185 Roma, Italy
| | - Franca Pelliccia
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, 00185 Roma, Italy
| | - Simona Giunta
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, 00185 Roma, Italy.
| |
Collapse
|
84
|
Satomi E, Ueda M, Katahira J, Hieda M. The SUN1 splicing variants SUN1_888 and SUN1_916 differentially regulate nucleolar structure. Genes Cells 2020; 25:730-740. [PMID: 32931086 DOI: 10.1111/gtc.12807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/27/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022]
Abstract
The nucleolar structure is highly dynamic and strictly regulated in response to internal cues, such as metabolic rates, and to external cues, such as mechanical forces applied to cells. Although the multilayered nucleolar structure is largely determined by the liquid-like properties of RNA and proteins, the mechanisms regulating the morphology and number of nucleoli remain elusive. The linker of the nucleoskeleton and cytoskeleton (LINC) complex comprises inner nuclear membrane Sad1/UNC-84 (SUN) proteins and outer nuclear membrane-localized nesprins. We previously showed that the depletion of SUN1 proteins affects nucleolar morphologies. This study focuses on the function of SUN1 splicing variants in determining nucleolar morphology. An RNA interference strategy showed that the predominantly expressed variants, SUN1_888 and SUN1_916, were crucial for nucleolar morphology but functionally distinct. In addition, the depletion of either SUN1_888 or SUN1_916 altered the chromatin structure and affected the distribution of histone modifications. Based on these results, we propose a model in which the LINC complex plays a role in modulating nucleolar morphology and numbers via chromatin.
Collapse
Affiliation(s)
- Erina Satomi
- Graduate School of Health Sciences, Ehime Prefectural University of Health Sciences, Ehime, Japan
| | - Masako Ueda
- Graduate School of Health Sciences, Ehime Prefectural University of Health Sciences, Ehime, Japan
| | - Jun Katahira
- Department of Veterinary Sciences, Osaka Prefecture University, Osaka, Japan
| | - Miki Hieda
- Graduate School of Health Sciences, Ehime Prefectural University of Health Sciences, Ehime, Japan
| |
Collapse
|
85
|
Wang G, Wu X, Zhou L, Gao S, Yun D, Liang A, Sun F. Tethering of Telomeres to the Nuclear Envelope Is Mediated by SUN1-MAJIN and Possibly Promoted by SPDYA-CDK2 During Meiosis. Front Cell Dev Biol 2020; 8:845. [PMID: 33015044 PMCID: PMC7509418 DOI: 10.3389/fcell.2020.00845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/06/2020] [Indexed: 12/31/2022] Open
Abstract
During meiosis, telomeres attach to the nuclear envelope (NE) to promote homologous chromosome moving, pairing, synapsis, and recombination. The telomere-NE attachment is mediated by SUN1, TERB1-TERB2-MAJIN (TTM complex), and TRF1. The interaction of the TTM complex with shelterin is mediated by TERB1 and TRF1, but how SUN1 interacts with the TTM complex is not yet fully understood. In this study, we found that SUN1 not only interacted with TERB1 but also interacted with MAJIN, and the interaction of SUN1 with MAJIN is stronger than TERB1. We also found that SUN1 interacted with SPDYA, an activator of CDK2. The binding sites of MAJIN and SPDYA at SUN1 were mapped, and both MAJIN and SPDYA bound to the N-terminal domain of SUN1 and the two binding sites were close to each other. Furthermore, SPDYA bound to SUN1 via the Ringo domain and recruited CDK2 to SUN1. Then, we found that the interaction of SUN1 with MAJIN was decreased by the CDK2 inhibitors. Taken together, our results provide the possible mechanism of SUN1, MAJIN, and SPDYA-CDK2 in promoting the telomere-NE attachment during meiosis.
Collapse
Affiliation(s)
- Guishuan Wang
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Xiaolong Wu
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Liwei Zhou
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Sheng Gao
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Damin Yun
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Ajuan Liang
- Reproductive Medical Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fei Sun
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, China
| |
Collapse
|
86
|
Sánchez-Sáez F, Gómez-H L, Dunne OM, Gallego-Páramo C, Felipe-Medina N, Sánchez-Martín M, Llano E, Pendas AM, Davies OR. Meiotic chromosome synapsis depends on multivalent SYCE1-SIX6OS1 interactions that are disrupted in cases of human infertility. SCIENCE ADVANCES 2020; 6:6/36/eabb1660. [PMID: 32917591 PMCID: PMC7467691 DOI: 10.1126/sciadv.abb1660] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/17/2020] [Indexed: 05/14/2023]
Abstract
Meiotic reductional division depends on the synaptonemal complex (SC), a supramolecular protein assembly that mediates homologous chromosomes synapsis and promotes crossover formation. The mammalian SC has eight structural components, including SYCE1, the only central element protein with known causative mutations in human infertility. We combine mouse genetics, cellular, and biochemical studies to reveal that SYCE1 undergoes multivalent interactions with SC component SIX6OS1. The N terminus of SIX6OS1 binds and disrupts SYCE1's core dimeric structure to form a 1:1 complex, while their downstream sequences provide a distinct second interface. These interfaces are separately disrupted by SYCE1 mutations associated with nonobstructive azoospermia and premature ovarian failure (POF), respectively. Mice harboring SYCE1's POF mutation and a targeted deletion within SIX6OS1's N terminus are infertile with failure of chromosome synapsis. We conclude that both SYCE1-SIX6OS1 binding interfaces are essential for SC assembly, thus explaining how SYCE1's reported clinical mutations give rise to human infertility.
Collapse
Affiliation(s)
- Fernando Sánchez-Sáez
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Laura Gómez-H
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Orla M Dunne
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Cristina Gallego-Páramo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Natalia Felipe-Medina
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | | | - Elena Llano
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain
| | - Alberto M Pendas
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain.
| | - Owen R Davies
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
87
|
Wells D, Bitoun E, Moralli D, Zhang G, Hinch A, Jankowska J, Donnelly P, Green C, Myers SR. ZCWPW1 is recruited to recombination hotspots by PRDM9 and is essential for meiotic double strand break repair. eLife 2020; 9:53392. [PMID: 32744506 PMCID: PMC7494361 DOI: 10.7554/elife.53392] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
During meiosis, homologous chromosomes pair and recombine, enabling balanced segregation and generating genetic diversity. In many vertebrates, double-strand breaks (DSBs) initiate recombination within hotspots where PRDM9 binds, and deposits H3K4me3 and H3K36me3. However, no protein(s) recognising this unique combination of histone marks have been identified. We identified Zcwpw1, containing H3K4me3 and H3K36me3 recognition domains, as having highly correlated expression with Prdm9. Here, we show that ZCWPW1 has co-evolved with PRDM9 and, in human cells, is strongly and specifically recruited to PRDM9 binding sites, with higher affinity than sites possessing H3K4me3 alone. Surprisingly, ZCWPW1 also recognises CpG dinucleotides. Male Zcwpw1 knockout mice show completely normal DSB positioning, but persistent DMC1 foci, severe DSB repair and synapsis defects, and downstream sterility. Our findings suggest ZCWPW1 recognition of PRDM9-bound sites at DSB hotspots is critical for synapsis, and hence fertility. Sexual reproduction – that is, the combination of sex cells from two different individuals to produce an embryo – is one of the many mechanisms that have evolved to maintain genetic diversity. Most human cells contain 23 pairs of chromosomes, with each chromosome in a pair carrying either a paternal or maternal copy of the same gene. To form an embryo with the right number of chromosomes, each sex cell (the egg or sperm cell) must only contain one chromosome from each pair. Sex cells are produced from parent cells containing two sets of paternal and maternal chromosomes: these cells then divide twice to form four sex cells which contain only one chromosome from each pair. Before the parent cell divides, a process known as ‘recombination’ takes place, which allows chromosomes in a pair to exchange bits of genetic information. This reshuffling ensures that each chromosome in a sex cell is unique. A protein called PRDM9 helps control which sections of genetic information are recombined by modifying proteins attached to the chromosomes, marking them as locations for exchange. The DNA at each of these sites is then broken and repaired using the genetic sequence of the chromosome it is paired with as a template, thus causing the two chromosomes to swap genes. In 2019, a group of researchers found a set of genes in the testis of mice that are expressed at the same time as the gene for PRDM9. This suggested that another protein called ZCWPW1 is likely involved in recombination, but the precise role of this protein was unclear. To answer this question, Wells, Bitoun et al. – including many of the researchers involved in the 2019 study – examined human cells grown in the laboratory to determine where ZCWPW1 binds to in the chromosome. This revealed that ZCWPW1 can be found at the same sites as PRDM9, which is responsible for bringing it there. Furthermore, cells from male mice lacking the gene for ZCWPW1 cannot complete the exchange of genetic information between chromosomes, meaning that the mice are infertile. As such, ZCWPW1 seems to connect location selection by PRDM9 to the DNA repair mechanisms needed for gene exchange between chromosomes. Infertility is a significant issue for humans affecting as many as one in every six couples. Fertility is complex and many of the biological mechanisms involved are not fully understood. This work suggests that both PRDM9 and ZCWPW1 are key to the production of sex cells and may be worth investigating as factors that affect fertility in humans.
Collapse
Affiliation(s)
- Daniel Wells
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, United Kingdom.,Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Emmanuelle Bitoun
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, United Kingdom.,Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Daniela Moralli
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, United Kingdom
| | - Gang Zhang
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, United Kingdom
| | - Anjali Hinch
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, United Kingdom
| | - Julia Jankowska
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, United Kingdom
| | - Peter Donnelly
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, United Kingdom.,Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Catherine Green
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, United Kingdom
| | - Simon R Myers
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, United Kingdom.,Department of Statistics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
88
|
Hua R, Wei H, Liu C, Zhang Y, Liu S, Guo Y, Cui Y, Zhang X, Guo X, Li W, Liu M. FBXO47 regulates telomere-inner nuclear envelope integration by stabilizing TRF2 during meiosis. Nucleic Acids Res 2020; 47:11755-11770. [PMID: 31724724 PMCID: PMC7145685 DOI: 10.1093/nar/gkz992] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 02/06/2023] Open
Abstract
During meiosis, telomere attachment to the inner nuclear envelope is required for proper pairing of homologous chromosomes and recombination. Here, we identified F-box protein 47 (FBXO47) as a regulator of the telomeric shelterin complex that is specifically expressed during meiotic prophase I. Knockout of Fbxo47 in mice leads to infertility in males. We found that the Fbxo47 deficient spermatocytes are unable to form a complete synaptonemal complex. FBXO47 interacts with TRF1/2, and the disruption of Fbxo47 destabilizes TRF2, leading to unstable telomere attachment and slow traversing through the bouquet stage. Our findings uncover a novel mechanism of FBXO47 in telomeric shelterin subunit stabilization during meiosis.
Collapse
Affiliation(s)
- Rong Hua
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China
| | - Huafang Wei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yue Zhang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China
| | - Siyu Liu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China
| | - Xin Zhang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China
| |
Collapse
|
89
|
da Cruz I, Brochier-Armanet C, Benavente R. The TERB1-TERB2-MAJIN complex of mouse meiotic telomeres dates back to the common ancestor of metazoans. BMC Evol Biol 2020; 20:55. [PMID: 32408858 PMCID: PMC7227075 DOI: 10.1186/s12862-020-01612-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 04/15/2020] [Indexed: 02/15/2023] Open
Abstract
Background Meiosis is essential for sexual reproduction and generates genetically diverse haploid gametes from a diploid germ cell. Reduction of ploidy depends on active chromosome movements during early meiotic prophase I. Chromosome movements require telomere attachment to the nuclear envelope. This attachment is mediated by telomere adaptor proteins. Telomere adaptor proteins have to date been identified in fission yeast and mice. In the mouse, they form a complex composed of the meiotic proteins TERB1, TERB2, and MAJIN. No sequence similarity was observed between these three mouse proteins and the adaptor proteins of fission yeast, raising the question of the evolutionary history and significance of this specific protein complex. Result Here, we show the TERB1, TERB2, and MAJIN proteins are found throughout the Metazoa and even in early-branching non-bilateral phyla such as Cnidaria, Placozoa and Porifera. Metazoan TERB1, TERB2, and MAJIN showed comparable domain architecture across all clades. Furthermore, the protein domains involved in the formation of the complex as well as those involved for the interaction with the telomere shelterin protein and the LINC complexes revealed high sequence similarity. Finally, gene expression in the cnidarian Hydra vulgaris provided evidence that the TERB1-TERB2-MAJIN complex is selectively expressed in the germ line. Conclusion Our results indicate that the TERB1-TERB2-MAJIN complex has an ancient origin in metazoans, suggesting conservation of meiotic functions.
Collapse
Affiliation(s)
- Irene da Cruz
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Céline Brochier-Armanet
- Laboratoire de Biométrie et Biologie Evolutive, CNRS, UMR 5558, Université Lyon 1, F-69622, Villeurbanne, France
| | - Ricardo Benavente
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
90
|
Abstract
LINC complexes (Linker of Nucleoskeleton and Cytoskeleton), consisting of inner nuclear membrane SUN (Sad1, UNC-84) proteins and outer nuclear membrane KASH (Klarsicht, ANC-1, and Syne Homology) proteins, are essential for nuclear positioning, cell migration and chromosome dynamics. To test the in vivo functions of conserved interfaces revealed by crystal structures, Cain et al used a combination of Caenorhabditis elegans genetics, imaging in cultured NIH 3T3 fibroblasts, and Molecular Dynamic simulations, to study SUN-KASH interactions. Conserved aromatic residues at the -7 position of the C-termini of KASH proteins and conserved disulfide bonds in LINC complexes play important roles in force transmission across the nuclear envelope. Other properties of LINC complexes, such as the helices preceding the SUN domain, the longer coiled-coils spanning the perinuclear space and higher-order organization may also function to transmit mechanical forces generated by the cytoskeleton across the nuclear envelope.
Collapse
Affiliation(s)
- Hongyan Hao
- a Department of Molecular and Cellular Biology , University of California , Davis , CA USA
| | - Daniel A Starr
- a Department of Molecular and Cellular Biology , University of California , Davis , CA USA
| |
Collapse
|
91
|
Martins F, Sousa J, Pereira CD, Cruz e Silva OAB, Rebelo S. Nuclear envelope dysfunction and its contribution to the aging process. Aging Cell 2020; 19:e13143. [PMID: 32291910 PMCID: PMC7253059 DOI: 10.1111/acel.13143] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 12/25/2022] Open
Abstract
The nuclear envelope (NE) is the central organizing unit of the eukaryotic cell serving as a genome protective barrier and mechanotransduction interface between the cytoplasm and the nucleus. The NE is mainly composed of a nuclear lamina and a double membrane connected at specific points where the nuclear pore complexes (NPCs) form. Physiological aging might be generically defined as a functional decline across lifespan observed from the cellular to organismal level. Therefore, during aging and premature aging, several cellular alterations occur, including nuclear‐specific changes, particularly, altered nuclear transport, increased genomic instability induced by DNA damage, and telomere attrition. Here, we highlight and discuss proteins associated with nuclear transport dysfunction induced by aging, particularly nucleoporins, nuclear transport factors, and lamins. Moreover, changes in the structure of chromatin and consequent heterochromatin rearrangement upon aging are discussed. These alterations correlate with NE dysfunction, particularly lamins’ alterations. Finally, telomere attrition is addressed and correlated with altered levels of nuclear lamins and nuclear lamina‐associated proteins. Overall, the identification of molecular mechanisms underlying NE dysfunction, including upstream and downstream events, which have yet to be unraveled, will be determinant not only to our understanding of several pathologies, but as here discussed, in the aging process.
Collapse
Affiliation(s)
- Filipa Martins
- Neuroscience and Signaling Laboratory Institute of Biomedicine (iBiMED) Department of Medical Sciences University of Aveiro Aveiro Portugal
| | - Jéssica Sousa
- Neuroscience and Signaling Laboratory Institute of Biomedicine (iBiMED) Department of Medical Sciences University of Aveiro Aveiro Portugal
| | - Cátia D. Pereira
- Neuroscience and Signaling Laboratory Institute of Biomedicine (iBiMED) Department of Medical Sciences University of Aveiro Aveiro Portugal
| | - Odete A. B. Cruz e Silva
- Neuroscience and Signaling Laboratory Institute of Biomedicine (iBiMED) Department of Medical Sciences University of Aveiro Aveiro Portugal
- The Discoveries CTR Aveiro Portugal
| | - Sandra Rebelo
- Neuroscience and Signaling Laboratory Institute of Biomedicine (iBiMED) Department of Medical Sciences University of Aveiro Aveiro Portugal
| |
Collapse
|
92
|
Li M, Liu K. Protection of the shelterin complex is key for tethering telomeres to the nuclear envelope during meiotic prophase I†. Biol Reprod 2020; 102:771-772. [PMID: 31882992 DOI: 10.1093/biolre/ioz231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/21/2019] [Indexed: 01/05/2023] Open
Affiliation(s)
- Miao Li
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China and.,Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kui Liu
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China and.,Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
93
|
Viera A, Berenguer I, Ruiz-Torres M, Gómez R, Guajardo A, Barbero JL, Losada A, Suja JA. PDS5 proteins regulate the length of axial elements and telomere integrity during male mouse meiosis. EMBO Rep 2020; 21:e49273. [PMID: 32285610 DOI: 10.15252/embr.201949273] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 03/05/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Cohesin cofactors regulate the loading, maintenance, and release of cohesin complexes from chromosomes during mitosis but little is known on their role during vertebrate meiosis. One such cofactor is PDS5, which exists as two paralogs in somatic and germline cells, PDS5A and PDS5B, with unclear functions. Here, we have analyzed their distribution and functions in mouse spermatocytes. We show that simultaneous excision of Pds5A and Pds5B results in severe defects during early prophase I while their individual depletion does not, suggesting their functional redundancy. Shortened axial/lateral elements and a reduction of early recombination nodules are observed after the strong depletion of PDS5A/B proteins. Moreover, telomere integrity and their association to the nuclear envelope are severely compromised. As these defects occur without detectable reduction in chromosome-bound cohesin, we propose that the dynamic behavior of the complex, mediated by PDS5 proteins, is key for successful completion of meiotic prophase I.
Collapse
Affiliation(s)
- Alberto Viera
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Inés Berenguer
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel Ruiz-Torres
- Chromosome Dynamics Group, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Rocío Gómez
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Andrea Guajardo
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - José Luis Barbero
- Departamento de Biología Celular y Molecular, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - José A Suja
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
94
|
Mixing and Matching Chromosomes during Female Meiosis. Cells 2020; 9:cells9030696. [PMID: 32178277 PMCID: PMC7140621 DOI: 10.3390/cells9030696] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/08/2020] [Accepted: 03/11/2020] [Indexed: 01/17/2023] Open
Abstract
Meiosis is a key event in the manufacturing of an oocyte. During this process, the oocyte creates a set of unique chromosomes by recombining paternal and maternal copies of homologous chromosomes, and by eliminating one set of chromosomes to become haploid. While meiosis is conserved among sexually reproducing eukaryotes, there is a bewildering diversity of strategies among species, and sometimes within sexes of the same species, to achieve proper segregation of chromosomes. Here, we review the very first steps of meiosis in females, when the maternal and paternal copies of each homologous chromosomes have to move, find each other and pair. We explore the similarities and differences observed in C. elegans, Drosophila, zebrafish and mouse females.
Collapse
|
95
|
Gao Q, Khan R, Yu C, Alsheimer M, Jiang X, Ma H, Shi Q. The testis-specific LINC component SUN3 is essential for sperm head shaping during mouse spermiogenesis. J Biol Chem 2020; 295:6289-6298. [PMID: 32156700 DOI: 10.1074/jbc.ra119.012375] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/06/2020] [Indexed: 01/16/2023] Open
Abstract
Sperm head shaping is a key event in spermiogenesis and is tightly controlled via the acrosome-manchette network. Linker of nucleoskeleton and cytoskeleton (LINC) complexes consist of Sad1 and UNC84 domain-containing (SUN) and Klarsicht/ANC-1/Syne-1 homology (KASH) domain proteins and form conserved nuclear envelope bridges implicated in transducing mechanical forces from the manchette to sculpt sperm nuclei into a hook-like shape. However, the role of LINC complexes in sperm head shaping is still poorly understood. Here we assessed the role of SUN3, a testis-specific LINC component harboring a conserved SUN domain, in spermiogenesis. We show that CRISPR/Cas9-generated Sun3 knockout male mice are infertile, displaying drastically reduced sperm counts and a globozoospermia-like phenotype, including a missing, mislocalized, or fragmented acrosome, as well as multiple defects in sperm flagella. Further examination revealed that the sperm head abnormalities are apparent at step 9 and that the sperm nuclei fail to elongate because of the absence of manchette microtubules and perinuclear rings. These observations indicate that Sun3 deletion likely impairs the ability of the LINC complex to transduce the cytoskeletal force to the nuclear envelope, required for sperm head elongation. We also found that SUN3 interacts with SUN4 in mouse testes and that the level of SUN4 proteins is drastically reduced in Sun3-null mice. Altogether, our results indicate that SUN3 is essential for sperm head shaping and male fertility, providing molecular clues regarding the underlying pathology of the globozoospermia-like phenotype.
Collapse
Affiliation(s)
- Qian Gao
- First Affiliated Hospital of the University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Ranjha Khan
- First Affiliated Hospital of the University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Changping Yu
- First Affiliated Hospital of the University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Manfred Alsheimer
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Xiaohua Jiang
- First Affiliated Hospital of the University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Hui Ma
- First Affiliated Hospital of the University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Qinghua Shi
- First Affiliated Hospital of the University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
96
|
"The nuclear envelope, a meiotic jack-of-all-trades". Curr Opin Cell Biol 2020; 64:34-42. [PMID: 32109733 DOI: 10.1016/j.ceb.2019.12.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/12/2019] [Accepted: 12/30/2019] [Indexed: 12/16/2022]
Abstract
The nucleus is one of the membrane-bound organelles that are a distinguishing feature between eukaryotes and prokaryotes. During meiosis, the nuclear envelope takes on functions beyond separating the nucleoplasm from the cytoplasm. These include associations with meiotic chromosomes to mediate pairing, being a sensor for recombination progression, and supportive of enormous nuclear growth during oocyte formation. In this review, we highlight recent results that have contributed to our understanding of meiotic nuclear envelope function and dynamics.
Collapse
|
97
|
Loo TH, Ye X, Chai RJ, Ito M, Bonne G, Ferguson-Smith AC, Stewart CL. The mammalian LINC complex component SUN1 regulates muscle regeneration by modulating drosha activity. eLife 2019; 8:e49485. [PMID: 31686651 PMCID: PMC6853637 DOI: 10.7554/elife.49485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/27/2019] [Indexed: 01/13/2023] Open
Abstract
Here we show that a major muscle specific isoform of the murine LINC complex protein SUN1 is required for efficient muscle regeneration. The nucleoplasmic domain of the isoform specifically binds to and inhibits Drosha, a key component of the microprocessor complex required for miRNA synthesis. Comparison of the miRNA profiles between wildtype and SUN1 null myotubes identified a cluster of miRNAs encoded by a non-translated retrotransposon-like one antisense (Rtl1as) transcript that are decreased in the WT myoblasts due to SUN1 inhibition of Drosha. One of these miRNAs miR-127 inhibits the translation of the Rtl1 sense transcript, that encodes the retrotransposon-like one protein (RTL1), which is also required for muscle regeneration and is expressed in regenerating/dystrophic muscle. The LINC complex may therefore regulate gene expression during muscle regeneration by controlling miRNA processing. This provides new insights into the molecular pathology underlying muscular dystrophies and how the LINC complex may regulate mechanosignaling.
Collapse
Affiliation(s)
- Tsui Han Loo
- Developmental and Regenerative BiologyInstitute of Medical BiologySingaporeSingapore
| | - Xiaoqian Ye
- Developmental and Regenerative BiologyInstitute of Medical BiologySingaporeSingapore
| | - Ruth Jinfen Chai
- Developmental and Regenerative BiologyInstitute of Medical BiologySingaporeSingapore
| | - Mitsuteru Ito
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Gisèle Bonne
- Center of Research in Myology, Institut de MyologieSorbonne Universités, UPMC Univ Paris 06, INSERM UMRS 974, CNRS FRE 3617ParisFrance
| | | | - Colin L Stewart
- Developmental and Regenerative BiologyInstitute of Medical BiologySingaporeSingapore
| |
Collapse
|
98
|
Starr DA. A network of nuclear envelope proteins and cytoskeletal force generators mediates movements of and within nuclei throughout Caenorhabditis elegans development. Exp Biol Med (Maywood) 2019; 244:1323-1332. [PMID: 31495194 PMCID: PMC6880151 DOI: 10.1177/1535370219871965] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nuclear migration and anchorage, together referred to as nuclear positioning, are central to many cellular and developmental events. Nuclear positioning is mediated by a conserved network of nuclear envelope proteins that interacts with force generators in the cytoskeleton. At the heart of this network are li nker of n ucleoskeleton and c ytoskeleton (LINC) complexes made of S ad1 and UN C-84 (SUN) proteins at the inner nuclear membrane and K larsicht, A NC-1, and S yne homology (KASH) proteins in the outer nuclear membrane. LINC complexes span the nuclear envelope, maintain nuclear envelope architecture, designate the surface of nuclei distinctly from the contiguous endoplasmic reticulum, and were instrumental in the early evolution of eukaryotes. LINC complexes interact with lamins in the nucleus and with various cytoplasmic KASH effectors from the surface of nuclei. These effectors regulate the cytoskeleton, leading to a variety of cellular outputs including pronuclear migration, nuclear migration through constricted spaces, nuclear anchorage, centrosome attachment to nuclei, meiotic chromosome movements, and DNA damage repair. How LINC complexes are regulated and how they function are reviewed here. The focus is on recent studies elucidating the best-understood network of LINC complexes, those used throughout Caenorhabditis elegans development.
Collapse
Affiliation(s)
- Daniel A Starr
- Department of Molecular and Cellular Biology,
University of California, Davis, CA 95616, USA
| |
Collapse
|
99
|
Palmer N, Talib SZA, Kaldis P. Diverse roles for CDK-associated activity during spermatogenesis. FEBS Lett 2019; 593:2925-2949. [PMID: 31566717 PMCID: PMC6900092 DOI: 10.1002/1873-3468.13627] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/20/2019] [Accepted: 09/26/2019] [Indexed: 12/22/2022]
Abstract
The primary function of cyclin-dependent kinases (CDKs) in complex with their activating cyclin partners is to promote mitotic division in somatic cells. This canonical cell cycle-associated activity is also crucial for fertility as it allows the proliferation and differentiation of stem cells within the reproductive organs to generate meiotically competent cells. Intriguingly, several CDKs exhibit meiosis-specific functions and are essential for the completion of the two reductional meiotic divisions required to generate haploid gametes. These meiosis-specific functions are mediated by both known CDK/cyclin complexes and meiosis-specific CDK-regulators and are important for a variety of processes during meiotic prophase. The majority of meiotic defects observed upon deletion of these proteins occur during the extended prophase I of the first meiotic division. Importantly a lack of redundancy is seen within the meiotic arrest phenotypes described for many of these proteins, suggesting intricate layers of cell cycle control are required for normal meiotic progression. Using the process of male germ cell development (spermatogenesis) as a reference, this review seeks to highlight the diverse roles of selected CDKs their activators, and their regulators during gametogenesis.
Collapse
Affiliation(s)
- Nathan Palmer
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biochemistry, National University of Singapore (NUS), Singapore, Singapore
| | - S Zakiah A Talib
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biochemistry, National University of Singapore (NUS), Singapore, Singapore.,Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Malmö, Sweden
| |
Collapse
|
100
|
Spindler MC, Redolfi J, Helmprobst F, Kollmannsberger P, Stigloher C, Benavente R. Electron tomography of mouse LINC complexes at meiotic telomere attachment sites with and without microtubules. Commun Biol 2019; 2:376. [PMID: 31633067 PMCID: PMC6791847 DOI: 10.1038/s42003-019-0621-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/18/2019] [Indexed: 11/16/2022] Open
Abstract
Telomere movements during meiotic prophase I facilitate synapsis and recombination of homologous chromosomes. Hereby, chromosome movements depend on the dynamic attachment of meiotic telomeres to the nuclear envelope and generation of forces that actively move the telomeres. In most eukaryotes, forces that move telomeres are generated in the cytoplasm by microtubule-associated motor proteins and transduced into the nucleus through the LINC complexes of the nuclear envelope. Meiotic LINC complexes, in mouse comprised of SUN1/2 and KASH5, selectively localize to the attachment sites of meiotic telomeres. For a better understanding of meiotic telomere dynamics, here we provide quantitative information of telomere attachment sites that we have generated with the aid of electron microscope tomography (EM tomography). Our data on the number, length, width, distribution and relation with microtubules of the reconstructed structures indicate that an average number of 76 LINC complexes would be required to move a telomere attachment site.
Collapse
Affiliation(s)
- Marie-Christin Spindler
- Department of Cell and Developmental Biology, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Josef Redolfi
- Department of Cell and Developmental Biology, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Frederik Helmprobst
- Imaging Core Facility, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Philip Kollmannsberger
- Center for Computational and Theoretical Biology, University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Christian Stigloher
- Imaging Core Facility, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Ricardo Benavente
- Department of Cell and Developmental Biology, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany
| |
Collapse
|