51
|
Ng TM, Waples WG, Lavoie BD, Biggins S. Pericentromeric sister chromatid cohesion promotes kinetochore biorientation. Mol Biol Cell 2009; 20:3818-27. [PMID: 19605555 DOI: 10.1091/mbc.e09-04-0330] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Accurate chromosome segregation depends on sister kinetochores making bioriented attachments to microtubules from opposite poles. An essential regulator of biorientation is the Ipl1/Aurora B protein kinase that destabilizes improper microtubule-kinetochore attachments. To identify additional biorientation pathways, we performed a systematic genetic analysis between the ipl1-321 allele and all nonessential budding yeast genes. One of the mutants, mcm21Delta, precociously separates pericentromeres and this is associated with a defect in the binding of the Scc2 cohesin-loading factor at the centromere. Strikingly, Mcm21 becomes essential for biorientation when Ipl1 function is reduced, and this appears to be related to its role in pericentromeric cohesion. When pericentromeres are artificially tethered, Mcm21 is no longer needed for biorientation despite decreased Ipl1 activity. Taken together, these data reveal a specific role for pericentromeric linkage in ensuring kinetochore biorientation.
Collapse
Affiliation(s)
- Tessie M Ng
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
52
|
Guo Y. Evaluating the microtubule cytoskeleton and its interacting proteins in monocots by mining the rice genome. ANNALS OF BOTANY 2009; 103. [PMID: 19106179 PMCID: PMC2707882 DOI: 10.1093/aob/mcp023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Microtubules (MTs) are assembled by heterodimers of alpha- and beta-tubulins, which provide tracks for directional transport and frameworks for the spindle apparatus and the phragmoplast. MT nucleation and dynamics are regulated by components such as the gamma-tubulin complex which are conserved among eukaryotes, and other components which are unique to plants. Following remarkable progress made in the model plant Arabidopsis thaliana toward revealing key components regulating MT activities, the completed rice (Oryza sativa) genome has prompted a survey of the MT cytoskeleton in this important crop as a model for monocots. SCOPE The rice genome contains three alpha-tubulin genes, eight beta-tubulin genes and a single gamma-tubulin gene. A functional gamma-tubulin ring complex is expected to form in rice as genes encoding all components of the complex are present. Among proteins that interact with MTs, compared with A. thaliana, rice has more genes encoding some members such as the MAP65/Ase1p/PRC1 family, but fewer for the motor kinesins, the end-binding protein EB1 and the mitotic kinase Aurora. Although most known MT-interacting factors have apparent orthologues in rice, no orthologues of arabidopsis RIC1 and MAP18 have been identified in rice. Among all proteins surveyed here, only a few have had their functions characterized by genetic means in rice. Elucidating functions of proteins of the rice MT cytoskeleton, aided by recent technical advances made in this model monocot, will greatly advance our knowledge of how monocots employ their MTs to regulate their growth and form.
Collapse
|
53
|
Guo L, Ho CMK, Kong Z, Lee YRJ, Qian Q, Liu B. Evaluating the microtubule cytoskeleton and its interacting proteins in monocots by mining the rice genome. ANNALS OF BOTANY 2009; 103:387-402. [PMID: 19106179 PMCID: PMC2707338 DOI: 10.1093/aob/mcn248] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 10/20/2008] [Accepted: 11/17/2008] [Indexed: 05/20/2023]
Abstract
BACKGROUND Microtubules (MTs) are assembled by heterodimers of alpha- and beta-tubulins, which provide tracks for directional transport and frameworks for the spindle apparatus and the phragmoplast. MT nucleation and dynamics are regulated by components such as the gamma-tubulin complex which are conserved among eukaryotes, and other components which are unique to plants. Following remarkable progress made in the model plant Arabidopsis thaliana toward revealing key components regulating MT activities, the completed rice (Oryza sativa) genome has prompted a survey of the MT cytoskeleton in this important crop as a model for monocots. SCOPE The rice genome contains three alpha-tubulin genes, eight beta-tubulin genes and a single gamma-tubulin gene. A functional gamma-tubulin ring complex is expected to form in rice as genes encoding all components of the complex are present. Among proteins that interact with MTs, compared with A. thaliana, rice has more genes encoding some members such as the MAP65/Ase1p/PRC1 family, but fewer for the motor kinesins, the end-binding protein EB1 and the mitotic kinase Aurora. Although most known MT-interacting factors have apparent orthologues in rice, no orthologues of arabidopsis RIC1 and MAP18 have been identified in rice. Among all proteins surveyed here, only a few have had their functions characterized by genetic means in rice. Elucidating functions of proteins of the rice MT cytoskeleton, aided by recent technical advances made in this model monocot, will greatly advance our knowledge of how monocots employ their MTs to regulate their growth and form.
Collapse
Affiliation(s)
- Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Chin-Min Kimmy Ho
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Zhaosheng Kong
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Bo Liu
- Department of Plant Biology, University of California, Davis, CA 95616, USA
- For correspondence. E-mail:
| |
Collapse
|
54
|
Fu DH, Jiang W, Zheng JT, Zhao GY, Li Y, Yi H, Li ZR, Jiang JD, Yang KQ, Wang Y, Si SY. Jadomycin B, an Aurora-B kinase inhibitor discovered through virtual screening. Mol Cancer Ther 2008; 7:2386-93. [PMID: 18723485 DOI: 10.1158/1535-7163.mct-08-0035] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aurora kinases have emerged as promising targets for cancer therapy because of their critical role in mitosis. These kinases are well-conserved in all eukaryotes, and IPL1 gene encodes the single Aurora kinase in budding yeast. In a virtual screening attempt, 22 compounds were identified from nearly 15,000 microbial natural products as potential small-molecular inhibitors of human Aurora-B kinase. One compound, Jadomycin B, inhibits the growth of ipl1-321 temperature-sensitive mutant more dramatically than wild-type yeast cells, raising the possibility that this compound is an Aurora kinase inhibitor. Further in vitro biochemical assay using purified recombinant human Aurora-B kinase shows that Jadomycin B inhibits Aurora-B activity in a dose-dependent manner. Our results also indicate that Jadomycin B competes with ATP for the kinase domain, which is consistent with our docking prediction. Like other Aurora kinase inhibitors, Jadomycin B blocks the phosphorylation of histone H3 on Ser10 in vivo. We also present evidence suggesting that Jadomycin B induces apoptosis in tumor cells without obvious effects on cell cycle. All the results indicate that Jadomycin B is a new Aurora-B kinase inhibitor worthy of further investigation.
Collapse
Affiliation(s)
- Da-Hua Fu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences/Peking Union Medical College, Tiantan Xili #1, Beijing, P.R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Jwa M, Kim JH, Chan CSM. Regulation of Sli15/INCENP, kinetochore, and Cdc14 phosphatase functions by the ribosome biogenesis protein Utp7. ACTA ACUST UNITED AC 2008; 182:1099-111. [PMID: 18794331 PMCID: PMC2542472 DOI: 10.1083/jcb.200802085] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Sli15–Ipl1–Bir1 chromosomal passenger complex is essential for proper kinetochore–microtubule attachment and spindle stability in the budding yeast Saccharomyces cerevisiae. During early anaphase, release of the Cdc14 protein phosphatase from the nucleolus leads to the dephosphorylation of Sli15 and redistribution of this complex from kinetochores to the spindle. We show here that the predominantly nucleolar ribosome biogenesis protein Utp7 is also present at kinetochores and is required for normal organization of kinetochore proteins and proper chromosome segregation. Utp7 associates with and regulates the localization of Sli15 and Cdc14. Before anaphase onset, it prevents the premature nucleolar release of Cdc14 and the premature concentration of Sli15 on the spindle. Furthermore, Utp7 can regulate the localization and phosphorylation status of Sli15 independent of its effect on Cdc14 function. Thus, Utp7 is a multifunctional protein that plays essential roles in the vital cellular processes of ribosome biogenesis, chromosome segregation, and cell cycle control.
Collapse
Affiliation(s)
- Miri Jwa
- Institute for Cellular and Molecular Biology, The University of Texas, Austin, TX 78712, USA
| | | | | |
Collapse
|
56
|
Meadows JC, Millar J. Latrunculin A delays anaphase onset in fission yeast by disrupting an Ase1-independent pathway controlling mitotic spindle stability. Mol Biol Cell 2008; 19:3713-23. [PMID: 18562692 PMCID: PMC2526695 DOI: 10.1091/mbc.e08-02-0164] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 05/23/2008] [Accepted: 06/11/2008] [Indexed: 11/11/2022] Open
Abstract
It has been proposed previously that latrunculin A, an inhibitor of actin polymerization, delays the onset of anaphase by causing spindle misorientation in fission yeast. However, we show that Delta mto1 cells, which are defective in nucleation of cytoplasmic microtubules, have profoundly misoriented spindles but are not delayed in the timing of sister chromatid separation, providing compelling evidence that fission yeast does not possess a spindle orientation checkpoint. Instead, we show that latrunculin A delays anaphase onset by disrupting interpolar microtubule stability. This effect is abolished in a latrunculin A-insensitive actin mutant and exacerbated in cells lacking Ase1, which cross-links antiparallel interpolar microtubules at the spindle midzone both before and after anaphase. These data indicate that both Ase1 and an intact actin cytoskeleton are required for preanaphase spindle stability. Finally, we show that loss of Ase1 activates a checkpoint that requires only the Mad3, Bub1, and Mph1, but not Mad1, Mad2, or Bub3 checkpoint proteins.
Collapse
Affiliation(s)
- John C. Meadows
- *Division of Yeast Genetics, National Institute for Medical Research, London NW7 1AA, United Kingdom; and
- Cell Cycle Laboratory (M116), Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jonathan Millar
- *Division of Yeast Genetics, National Institute for Medical Research, London NW7 1AA, United Kingdom; and
- Cell Cycle Laboratory (M116), Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
57
|
Abstract
Establishment of proper attachments between chromosomes and microtubules is essential for the accurate division of the genome. Two recent studies indicate that these attachments are facilitated by the geometry of chromosomes and the bipolar arrangement of spindle microtubules.
Collapse
Affiliation(s)
- Jason Stumpff
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA.
| | | |
Collapse
|
58
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
59
|
Maure JF, Kitamura E, Tanaka TU. Mps1 kinase promotes sister-kinetochore bi-orientation by a tension-dependent mechanism. Curr Biol 2007; 17:2175-82. [PMID: 18060784 PMCID: PMC2515371 DOI: 10.1016/j.cub.2007.11.032] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 11/13/2007] [Accepted: 11/13/2007] [Indexed: 10/26/2022]
Abstract
Segregation of sister chromatids to opposite spindle poles during anaphase is dependent on the prior capture of sister kinetochores by microtubules extending from opposite spindle poles (bi-orientation). If sister kinetochores attach to microtubules from the same pole (syntelic attachment), the kinetochore-spindle pole connections must be re-oriented to be converted to proper bi-orientation. This re-orientation is facilitated by Aurora B kinase (Ipl1 in budding yeast), which eliminates kinetochore-spindle pole connections that do not generate tension. Mps1 is another evolutionarily conserved protein kinase, required for spindle-assembly checkpoint and, in some organisms, for duplication of microtubule-organizing centers. Separately from these functions, however, Mps1 has an important role in chromosome segregation. Here we show that, in budding yeast, Mps1 has a crucial role in establishing sister-kinetochore bi-orientation on the mitotic spindle. Failure in bi-orientation with inactive Mps1 is not due to a lack of kinetochore-spindle pole connections by microtubules, but due to a defect in properly orienting the connections. Mps1 promotes re-orientation of kinetochore-spindle pole connections and eliminates those that do not generate tension between sister kinetochores. We did not find evidence that Ipl1 regulates Mps1 or vice versa; therefore, they play similar, but possibly independent, roles in facilitating bi-orientation.
Collapse
Affiliation(s)
- Jean-François Maure
- Wellcome Trust Centre for Gene Regulation & Expression, College of Life Sciences, University of Dundee, MSI/WTB/JBC Complex, Dundee DD1 5EH, UK
| | - Etsushi Kitamura
- Wellcome Trust Centre for Gene Regulation & Expression, College of Life Sciences, University of Dundee, MSI/WTB/JBC Complex, Dundee DD1 5EH, UK
| | - Tomoyuki U. Tanaka
- Wellcome Trust Centre for Gene Regulation & Expression, College of Life Sciences, University of Dundee, MSI/WTB/JBC Complex, Dundee DD1 5EH, UK
| |
Collapse
|