51
|
WDFY2 restrains matrix metalloproteinase secretion and cell invasion by controlling VAMP3-dependent recycling. Nat Commun 2019; 10:2850. [PMID: 31253801 PMCID: PMC6599030 DOI: 10.1038/s41467-019-10794-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/25/2019] [Indexed: 01/30/2023] Open
Abstract
Cancer cells secrete matrix metalloproteinases to remodel the extracellular matrix, which enables them to overcome tissue barriers and form metastases. The membrane-bound matrix metalloproteinase MT1-MMP (MMP14) is internalized by endocytosis and recycled in endosomal compartments. It is largely unknown how endosomal sorting and recycling of MT1-MMP are controlled. Here, we show that the endosomal protein WDFY2 controls the recycling of MT1-MMP. WDFY2 localizes to endosomal tubules by binding to membranes enriched in phosphatidylinositol 3-phosphate (PtdIns3P). We identify the v-SNARE VAMP3 as an interaction partner of WDFY2. WDFY2 knockout causes a strong redistribution of VAMP3 into small vesicles near the plasma membrane. This is accompanied by increased, VAMP3-dependent secretion of MT1-MMP, enhanced degradation of extracellular matrix, and increased cell invasion. WDFY2 is frequently lost in metastatic cancers, most predominantly in ovarian and prostate cancer. We propose that WDFY2 acts as a tumor suppressor by serving as a gatekeeper for VAMP3 recycling. WDFY2 is known as a tumour suppressor but its function is unclear. Here, the authors show that WDFY2 interacts with the v-SNARE VAMP3, leading to a suppression of the metalloprotease MT1-MMP secretion, suggesting that WDFY2 acts a tumour suppressor by suppressing MT1-MMP secretion.
Collapse
|
52
|
Sahgal P, Alanko J, Icha J, Paatero I, Hamidi H, Arjonen A, Pietilä M, Rokka A, Ivaska J. GGA2 and RAB13 promote activity-dependent β1-integrin recycling. J Cell Sci 2019; 132:jcs.233387. [PMID: 31076515 DOI: 10.1242/jcs.233387] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 04/21/2019] [Indexed: 12/27/2022] Open
Abstract
β1-integrins mediate cell-matrix interactions and their trafficking is important in the dynamic regulation of cell adhesion, migration and malignant processes, including cancer cell invasion. Here, we employ an RNAi screen to characterize regulators of integrin traffic and identify the association of Golgi-localized gamma ear-containing Arf-binding protein 2 (GGA2) with β1-integrin, and its role in recycling of active but not inactive β1-integrin receptors. Silencing of GGA2 limits active β1-integrin levels in focal adhesions and decreases cancer cell migration and invasion, which is in agreement with its ability to regulate the dynamics of active integrins. By using the proximity-dependent biotin identification (BioID) method, we identified two RAB family small GTPases, i.e. RAB13 and RAB10, as novel interactors of GGA2. Functionally, RAB13 silencing triggers the intracellular accumulation of active β1-integrin, and reduces integrin activity in focal adhesions and cell migration similarly to GGA2 depletion, indicating that both facilitate active β1-integrin recycling to the plasma membrane. Thus, GGA2 and RAB13 are important specificity determinants for integrin activity-dependent traffic.
Collapse
Affiliation(s)
- Pranshu Sahgal
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Jonna Alanko
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Jaroslav Icha
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Ilkka Paatero
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Hellyeh Hamidi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Antti Arjonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Mika Pietilä
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Anne Rokka
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland .,Department of Biochemistry and Food Chemistry, University of Turku, Turku FIN-20520, Finland
| |
Collapse
|
53
|
Soto-Ribeiro M, Kastberger B, Bachmann M, Azizi L, Fouad K, Jacquier MC, Boettiger D, Bouvard D, Bastmeyer M, Hytönen VP, Wehrle-Haller B. β1D integrin splice variant stabilizes integrin dynamics and reduces integrin signaling by limiting paxillin recruitment. J Cell Sci 2019; 132:jcs.224493. [PMID: 30890648 DOI: 10.1242/jcs.224493] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/08/2019] [Indexed: 12/30/2022] Open
Abstract
Heterodimeric integrin receptors control cell adhesion, migration and extracellular matrix assembly. While the α integrin subunit determines extracellular ligand specificity, the β integrin chain binds to an acidic residue of the ligand, and cytoplasmic adapter protein families such as talins, kindlins and paxillin, to form mechanosensing cell matrix adhesions. Alternative splicing of the β1 integrin cytoplasmic tail creates ubiquitously expressed β1A, and the heart and skeletal muscle-specific β1D form. To study the physiological difference between these forms, we developed fluorescent β1 integrins and analyzed their dynamics, localization, and cytoplasmic adapter recruitment and effects on cell proliferation. On fibronectin, GFP-tagged β1A integrin showed dynamic exchange in peripheral focal adhesions, and long, central fibrillar adhesions. In contrast, GFP-β1D integrins exchanged slowly, forming immobile and short central adhesions. While adhesion recruitment of GFP-β1A integrin was sensitive to C-terminal tail mutagenesis, GFP-β1D integrin was recruited independently of the distal NPXY motif. In addition, a P786A mutation in the proximal, talin-binding NPXY783 motif switched β1D to a highly dynamic integrin. In contrast, the inverse A786P mutation in β1A integrin interfered with paxillin recruitment and proliferation. Thus, differential β1 integrin splicing controls integrin-dependent adhesion signaling, to adapt to the specific physiological needs of differentiated muscle cells.
Collapse
Affiliation(s)
- Martinho Soto-Ribeiro
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Birgit Kastberger
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Michael Bachmann
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland.,Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Latifeh Azizi
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland.,Fimlab Laboratories, Biokatu 4, FI-33520 Tampere, Finland
| | - Kenza Fouad
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Marie-Claude Jacquier
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - David Boettiger
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Daniel Bouvard
- Université Grenoble Alpes, Institute for Advanced Bioscience, INSERM U823, F-38042 Grenoble, France
| | - Martin Bastmeyer
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland.,Fimlab Laboratories, Biokatu 4, FI-33520 Tampere, Finland
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|
54
|
Lin L, Shi Y, Wang M, Wang C, Zhu J, Zhang R. Rab35/ACAP2 and Rab35/RUSC2 Complex Structures Reveal Molecular Basis for Effector Recognition by Rab35 GTPase. Structure 2019; 27:729-740.e3. [PMID: 30905672 DOI: 10.1016/j.str.2019.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/03/2019] [Accepted: 02/24/2019] [Indexed: 11/16/2022]
Abstract
Rab35, a master regulator of membrane trafficking, regulates diverse cellular processes and is associated with various human diseases. Although a number of effectors have been identified, the molecular basis of Rab35-effector interactions remains unclear. Here, we provide the high-resolution crystal structures of Rab35 in complex with its two specific effectors ACAP2 and RUSC2, respectively. In the Rab35/ACAP2 complex structure, Rab35 binds to the terminal ankyrin repeat and a C-terminal extended α helix of ACAP2, revealing a previously uncharacterized binding mode both for Rabs and ankyrin repeats. In the Rab35/RUSC2 complex structure, Arg1015 of RUSC2 functions as a "pseudo-arginine finger" that stabilizes the GTP-bound Rab35, thus facilitating the assembly of Rab35/RUSC2 complex. The structural analysis allows us to design specific Rab35 mutants capable of eliminating Rab35/ACAP2 and Rab35/RUSC2 interactions, but not interfering with other effector bindings. The atomic structures also offer possible explanations to disease-associated mutants identified at the Rab35-effector interfaces.
Collapse
Affiliation(s)
- Lin Lin
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai Science Research Center, 333 Haike Road, Shanghai 201210, China
| | - Yingdong Shi
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Mengli Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Chao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jinwei Zhu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai Science Research Center, 333 Haike Road, Shanghai 201210, China.
| | - Rongguang Zhang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai Science Research Center, 333 Haike Road, Shanghai 201210, China.
| |
Collapse
|
55
|
Wang J, Zhou P, Wang X, Yu Y, Zhu G, Zheng L, Xu Z, Li F, You Q, Yang Q, Zhuo W, Sun J, Chen Z. Rab25 promotes erlotinib resistance by activating the β1 integrin/AKT/β-catenin pathway in NSCLC. Cell Prolif 2019; 52:e12592. [PMID: 30848009 PMCID: PMC6536583 DOI: 10.1111/cpr.12592] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/23/2019] [Accepted: 01/30/2019] [Indexed: 02/06/2023] Open
Abstract
Objectives Epidermal growth factor receptor tyrosine kinase inhibitor (EGFR‐TKI) has significant therapeutic efficacy in non‐small‐cell lung cancer (NSCLC) patients. However, acquired resistance is inevitable and limits the long‐term efficacy of EGFR‐TKI. Our study aimed to investigate the role of ras‐associated binding protein 25 (Rab25) in mediating EGFR‐TKI resistance in NSCLC. Materials and Methods Rab25 expression in NSCLC patients was measured by immunohistochemical staining. Western blotting was used to analyse the expression of molecules in the Rab25, EGFR and Wnt signalling pathways. Lentiviral vectors were constructed to knock in and knock out Rab25. The biological function of Rab25 was demonstrated by cell‐counting kit‐8 and flow cytometry. The interaction between Rab25 and β1 integrin was confirmed by co‐immunoprecipitation. Results Rab25 overexpression induced erlotinib resistance, whereas Rab25 knockdown reversed this refractoriness in vitro and in vivo. Moreover, Rab25 interacts with β1 integrin and promotes its trafficking to the cytoplasmic membrane. The membrane‐β1 integrin induced protein kinase B (AKT) phosphorylation and subsequently activated the Wnt/β‐catenin signalling pathway, promoting cell proliferation. Furthermore, high Rab25 expression was associated with poor response to EGFR‐TKI treatment in NSCLC patients. Conclusions Rab25 mediates erlotinib resistance by activating the β1 integrin/AKT/β‐catenin signalling pathway. Rab25 may be a predictive biomarker and has potential therapeutic value in NSCLC patients with acquired resistance to EGFR‐TKI.
Collapse
Affiliation(s)
- Jianmin Wang
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Pu Zhou
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xudong Wang
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yongxin Yu
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Guangkuo Zhu
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Linpeng Zheng
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Zihan Xu
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Feng Li
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Qiai You
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Qiao Yang
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Wenlei Zhuo
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jianguo Sun
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Zhengtang Chen
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
56
|
Zou C, Fan J, He M, Xu Y, Wang K, Cai Y, Li M. Epigenetic silencing of Rab39a promotes epithelial to mesenchymal transition of cervical cancer through AKT signaling. Exp Cell Res 2019; 378:139-148. [PMID: 30826396 DOI: 10.1016/j.yexcr.2019.02.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/13/2019] [Accepted: 02/27/2019] [Indexed: 11/24/2022]
Abstract
The objective of this study was to investigate the functional role of Rab39a in human cervical cancer (CC) and the underlying molecular mechanisms. We first measured Rab39a mRNA expression in CC tissues and paired non-tumor tissues by quantitative real-time PCR (QRT-PCR). Overall survival of CC patients with different mRNA levels of Rab39a in The Cancer Genome Atlas (TCGA) database was assessed by Kaplan-Meier survival curves analysis. Next methylation-specific PCR (MSP) was performed to determine the expression mechanism of Rab39a. Then cell proliferation, migration and invasion of Rab39a-transfected or mock-transfected cervical cancer cells were determined by CCK-8, flow cytometry, wound healing, transwell migration and invasion assays, respectively. Finally, the molecular mechanism by which Rab39a modulated CC cell epithelial-mesenchymal transition (EMT) was explored. It was found that Rab39a mRNA was significantly down-regulated in the high-risk patients compared to the low-risk patients (p = 0.0054). Six of seven cancer tissues with lymph node metastasis express low Rab39a mRNA compared to the surrounding non-tumor tissues. Cervical cancer patients with low level of Rab39a were showed a poorly clinical outcome (p = 0.004). Loss of Rab39a expression in cervical cancer tissues was associated with the aberrant DNA methylation in the promoter of Rab39a gene. Disrupted Rab39a expression in cervical cancer cells could be restored after treatment with the demethylated agent 5-Aza-2'-deoxycytidine. Furthermore, it was found that Rab39a hardly influenced cell growth but significantly suppressed cell migration, invasion and EMT process. Rab39a exerted its potential suppressor functions through inhibiting AKT phosphorylation. The inhibition effects of Rab39a could be blocked by AKT pathway inhibitor. Collectively, our data shows that Rab39a is a potential epigenetic silenced tumor suppressor inhibiting cancer invasion and migration through modulating the AKT signaling.
Collapse
Affiliation(s)
- Chun Zou
- Department of Immunology, College of Basic Medical Science, Central South University, Changsha, Hunan 410008, PR China
| | - Jielin Fan
- Department of Gynecologic Tumor, Affiliated Cancer Hospital of Central South University, Changsha, Hunan 410013, PR China
| | - Mei He
- Department of Immunology, College of Basic Medical Science, Central South University, Changsha, Hunan 410008, PR China
| | - Yan Xu
- Department of Immunology, College of Basic Medical Science, Central South University, Changsha, Hunan 410008, PR China
| | - Kangtao Wang
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Yubo Cai
- Department of Immunology, College of Basic Medical Science, Central South University, Changsha, Hunan 410008, PR China
| | - Ming Li
- Department of Immunology, College of Basic Medical Science, Central South University, Changsha, Hunan 410008, PR China.
| |
Collapse
|
57
|
Rab25 and RCP in cancer progression. Arch Pharm Res 2019; 42:101-112. [DOI: 10.1007/s12272-019-01129-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/29/2019] [Indexed: 01/10/2023]
|
58
|
Moreno-Layseca P, Icha J, Hamidi H, Ivaska J. Integrin trafficking in cells and tissues. Nat Cell Biol 2019; 21:122-132. [PMID: 30602723 PMCID: PMC6597357 DOI: 10.1038/s41556-018-0223-z] [Citation(s) in RCA: 281] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/25/2018] [Indexed: 12/28/2022]
Abstract
Cell adhesion to the extracellular matrix is fundamental to metazoan multicellularity and is accomplished primarily through the integrin family of cell-surface receptors. Integrins are internalized and enter the endocytic-exocytic pathway before being recycled back to the plasma membrane. The trafficking of this extensive protein family is regulated in multiple context-dependent ways to modulate integrin function in the cell. Here, we discuss recent advances in understanding the mechanisms and cellular roles of integrin endocytic trafficking.
Collapse
Affiliation(s)
- Paulina Moreno-Layseca
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jaroslav Icha
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Hellyeh Hamidi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
- Department of Biochemistry, University of Turku, Turku, Finland.
| |
Collapse
|
59
|
Wilson BJ, Allen JL, Caswell PT. Vesicle trafficking pathways that direct cell migration in 3D matrices and in vivo. Traffic 2018; 19:899-909. [PMID: 30054969 PMCID: PMC6282850 DOI: 10.1111/tra.12605] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022]
Abstract
Cell migration is a vital process in development and disease, and while the mechanisms that control motility are relatively well understood on two-dimensional surfaces, the control of cell migration in three dimensions (3D) and in vivo has only recently begun to be understood. Vesicle trafficking pathways have emerged as a key regulatory element in migration and invasion, with the endocytosis and recycling of cell surface cargos, including growth factor and chemokine receptors, adhesion receptors and membrane-associated proteases, being of major importance. We highlight recent advances in our understanding of how endocytic trafficking controls the availability and local activity of these cargoes to influence the movement of cells in 3D matrix and in developing organisms. In particular, we discuss how endocytic trafficking of different receptor classes spatially restricts signals and activity, usually to the leading edge of invasive cells.
Collapse
Affiliation(s)
- Beverley J. Wilson
- Wellcome Trust Centre for Cell‐Matrix Research, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Jennifer L. Allen
- Wellcome Trust Centre for Cell‐Matrix Research, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Patrick T. Caswell
- Wellcome Trust Centre for Cell‐Matrix Research, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
| |
Collapse
|
60
|
Kindlin-1 Regulates Epidermal Growth Factor Receptor Signaling. J Invest Dermatol 2018; 139:369-379. [PMID: 30248333 PMCID: PMC6345584 DOI: 10.1016/j.jid.2018.08.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 01/04/2023]
Abstract
Kindler syndrome is an autosomal recessive genodermatosis that results from mutations in the FERMT1 gene encoding t kindlin-1. Kindlin-1 localizes to focal adhesion and is known to contribute to the activation of integrin receptors. Most cases of Kindler syndrome show a reduction or complete absence of kindlin-1 in keratinocytes, resulting in defective integrin activation, cell adhesion, and migration. However, roles for kindlin-1 beyond integrin activation remain poorly defined. In this study we show that skin and keratinocytes from Kindler syndrome patients have significantly reduced expression levels of the EGFR, resulting in defective EGF-dependent signaling and cell migration. Mechanistically, we show that kindlin-1 can associate directly with EGFR in vitro and in keratinocytes in an EGF-dependent, integrin-independent manner and that formation of this complex is required for EGF-dependent migration. We further show that kindlin-1 acts to protect EGFR from lysosomal-mediated degradation. This shows a new role for kindlin-1 that has implications for understanding Kindler syndrome disease pathology.
Collapse
|
61
|
Cho SH, Kuo IY, Lu PJF, Tzeng HT, Lai WW, Su WC, Wang YC. Rab37 mediates exocytosis of secreted frizzled-related protein 1 to inhibit Wnt signaling and thus suppress lung cancer stemness. Cell Death Dis 2018; 9:868. [PMID: 30158579 PMCID: PMC6115395 DOI: 10.1038/s41419-018-0915-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/27/2018] [Accepted: 07/27/2018] [Indexed: 02/06/2023]
Abstract
Recent studies have revealed that dysregulated Rab small GTPase-mediated vesicle trafficking pathways are associated with cancer progression. However, whether any of the Rabs plays a suppressor role in cancer stemness is least explored. Rab37 has been postulated as a tumor suppressive small GTPase for trafficking anti-tumor cargos. Here, we report a previously uncharacterized mechanism by which Rab37 mediates exocytosis of secreted frizzled-related protein-1 (SFRP1), an extracellular antagonist of Wnt, to suppress Wnt signaling and cancer stemness in vitro and in vivo. Reconstitution experiments indicate that SFRP1 secretion is crucial for Rab37-mediated cancer stemness suppression and treatment with SRPP1 recombinant protein reduces xenograft tumor initiation ability. Clinical results confirm that concordantly low Rab37, low SFRP1, and high Oct4 stemness protein expression profile can be used as a biomarker to predict poor prognosis in lung cancer patients. Our findings reveal that Rab37-mediated SFRP1 secretion suppresses cancer stemness, and dysregulated Rab37-SFRP1 pathway confers cancer stemness via the activation of Wnt signaling. Rab37-SFRP1-Wnt axis could be a potential therapeutic target for attenuating lung cancer stemness.
Collapse
Affiliation(s)
- Shu-Huei Cho
- Department of Pharmacology, National Cheng Kung University, Tainan 701, Tainan City, Taiwan
| | - I-Ying Kuo
- Department of Pharmacology, National Cheng Kung University, Tainan 701, Tainan City, Taiwan
| | - Pei-Jung Frank Lu
- Institute of Clinical Medicine, National Cheng Kung University, Tainan 701, Tainan City, Taiwan
| | - Hong-Tai Tzeng
- Department of Pharmacology, National Cheng Kung University, Tainan 701, Tainan City, Taiwan
| | - Wu-Wei Lai
- Division of Thoracic Surgery, Department of Surgery, National Cheng Kung University, Tainan 701, Tainan City, Taiwan
| | - Wu-Chou Su
- Division of Oncology, Department of Internal Medicine, National Cheng Kung University, Tainan 701, Tainan City, Taiwan
| | - Yi-Ching Wang
- Department of Pharmacology, National Cheng Kung University, Tainan 701, Tainan City, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Tainan City, Taiwan.
| |
Collapse
|
62
|
Visweshwaran SP, Thomason PA, Guerois R, Vacher S, Denisov EV, Tashireva LA, Lomakina ME, Lazennec-Schurdevin C, Lakisic G, Lilla S, Molinie N, Henriot V, Mechulam Y, Alexandrova AY, Cherdyntseva NV, Bièche I, Schmitt E, Insall RH, Gautreau A. The trimeric coiled-coil HSBP1 protein promotes WASH complex assembly at centrosomes. EMBO J 2018; 37:e97706. [PMID: 29844016 PMCID: PMC6028030 DOI: 10.15252/embj.201797706] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 12/11/2022] Open
Abstract
The Arp2/3 complex generates branched actin networks that exert pushing forces onto different cellular membranes. WASH complexes activate Arp2/3 complexes at the surface of endosomes and thereby fission transport intermediates containing endocytosed receptors, such as α5β1 integrins. How WASH complexes are assembled in the cell is unknown. Here, we identify the small coiled-coil protein HSBP1 as a factor that specifically promotes the assembly of a ternary complex composed of CCDC53, WASH, and FAM21 by dissociating the CCDC53 homotrimeric precursor. HSBP1 operates at the centrosome, which concentrates the building blocks. HSBP1 depletion in human cancer cell lines and in Dictyostelium amoebae phenocopies WASH depletion, suggesting a critical role of the ternary WASH complex for WASH functions. HSBP1 is required for the development of focal adhesions and of cell polarity. These defects impair the migration and invasion of tumor cells. Overexpression of HSBP1 in breast tumors is associated with increased levels of WASH complexes and with poor prognosis for patients.
Collapse
Affiliation(s)
- Sai P Visweshwaran
- Ecole Polytechnique, CNRS UMR7654, Université Paris-Saclay, Palaiseau, France
| | | | - Raphael Guerois
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sophie Vacher
- Pharmacogenomics Unit, Department of Genetics, Institut Curie, Paris, France
| | - Evgeny V Denisov
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
- Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
| | - Lubov A Tashireva
- Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - Maria E Lomakina
- Institute of Carcinogenesis, N.N. Blokhin Cancer Research Center, Moscow, Russia
| | | | - Goran Lakisic
- Ecole Polytechnique, CNRS UMR7654, Université Paris-Saclay, Palaiseau, France
| | - Sergio Lilla
- Beatson Institute for Cancer Research, Bearsden, UK
| | - Nicolas Molinie
- Ecole Polytechnique, CNRS UMR7654, Université Paris-Saclay, Palaiseau, France
| | - Veronique Henriot
- Ecole Polytechnique, CNRS UMR7654, Université Paris-Saclay, Palaiseau, France
| | - Yves Mechulam
- Ecole Polytechnique, CNRS UMR7654, Université Paris-Saclay, Palaiseau, France
| | | | - Nadezhda V Cherdyntseva
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - Ivan Bièche
- Pharmacogenomics Unit, Department of Genetics, Institut Curie, Paris, France
| | - Emmanuelle Schmitt
- Ecole Polytechnique, CNRS UMR7654, Université Paris-Saclay, Palaiseau, France
| | | | - Alexis Gautreau
- Ecole Polytechnique, CNRS UMR7654, Université Paris-Saclay, Palaiseau, France
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
63
|
Gulvady AC, Dubois F, Deakin NO, Goreczny GJ, Turner CE. Hic-5 expression is a major indicator of cancer cell morphology, migration, and plasticity in three-dimensional matrices. Mol Biol Cell 2018; 29:1704-1717. [PMID: 29771639 PMCID: PMC6080706 DOI: 10.1091/mbc.e18-02-0092] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The focal adhesion proteins Hic-5 and paxillin have been previously identified as key regulators of MDA-MB-231 breast cancer cell migration and morphologic mesenchymal-amoeboid plasticity in three-dimensional (3D) extracellular matrices (ECMs). However, their respective roles in other cancer cell types have not been evaluated. Herein, utilizing 3D cell-derived matrices and fibronectin-coated one-dimensional substrates, we show that across a variety of cancer cell lines, the level of Hic-5 expression serves as the major indicator of the cells primary morphology, plasticity, and in vitro invasiveness. Domain mapping studies reveal sites critical to the functions of both Hic-5 and paxillin in regulating phenotype, while ectopic expression of Hic-5 in cell lines with low endogenous levels of the protein is sufficient to induce a Rac1-dependent mesenchymal phenotype and, in turn, increase amoeboid-mesenchymal plasticity and invasion. We show that the activity of vinculin, when coupled to the expression of Hic-5 is required for the mesenchymal morphology in the 3D ECM. Taken together, our results identify Hic-5 as a critical modulator of tumor cell phenotype that could be utilized in predicting tumor cell migratory and invasive behavior in vivo.
Collapse
Affiliation(s)
- Anushree C Gulvady
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Fatemeh Dubois
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Nicholas O Deakin
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Gregory J Goreczny
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Christopher E Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
64
|
Hor CH, Tang BL, Goh EL. Rab23 and developmental disorders. Rev Neurosci 2018; 29:849-860. [DOI: 10.1515/revneuro-2017-0110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/03/2018] [Indexed: 02/07/2023]
Abstract
Abstract
Rab23 is a conserved member of the Rab family of small GTPases that regulates membrane trafficking in eukaryotes. It is unique amongst the Rabs in terms of its implicated role in mammalian development, as originally illustrated by the embryonic lethality and open neural tube phenotype of a spontaneous mouse mutant that carries homozygous mutation of open brain, a gene encoding Rab23. Rab23 was initially identified to act as an antagonist of Sonic hedgehog (Shh) signaling, and has since been implicated in a number of physiological and pathological roles, including oncogenesis. Interestingly, RAB23 null allele homozygosity in humans is not lethal, but instead causes the developmental disorder Carpenter’s syndrome (CS), which is characterized by craniofacial malformations, polysyndactyly, obesity and intellectual disability. CS bears some phenotypic resemblance to a spectrum of hereditary defects associated with the primary cilium, or the ciliopathies. Recent findings have in fact implicated Rab23 in protein traffic to the primary cilium, thus linking it with the primary cellular locale of Shh signaling. Rab23 also has Shh and cilia-independent functions. It is known to mediate the expression of Nodal at the mouse left lateral plate mesoderm and Kupffer’s vesicle, the zebrafish equivalent of the mouse node. It is thus important for the left-right patterning of vertebrate embryos. In this review, we discuss the developmental disorders associated with Rab23 and attempt to relate its cellular activities to its roles in development.
Collapse
Affiliation(s)
- Catherine H.H. Hor
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School , 8 College Road , Singapore 169857 , Singapore
- Department of Research , National Neuroscience Institute , Singapore 308433 , Singapore
| | - Bor Luen Tang
- Department of Biochemistry , Yong Loo Lin School of Medicine , National University of Singapore , Singapore 117597 , Singapore
- NUS Graduate School for Integrative Sciences and Engineering , National University of Singapore, Medical Drive , Singapore 117456 , Singapore
| | - Eyleen L.K. Goh
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School , 8 College Road , Singapore 169857 , Singapore
- Department of Research , National Neuroscience Institute , Singapore 308433 , Singapore
- Department of Physiology , Yong Loo Lin School of Medicine , National University of Singapore , 8 Medical Drive , Singapore 117597 , Singapore
- KK Research Center, KK Women’s and Children’s Hospital , Singapore 229899 , Singapore
| |
Collapse
|
65
|
Rab34 regulates adhesion, migration, and invasion of breast cancer cells. Oncogene 2018; 37:3698-3714. [PMID: 29622794 DOI: 10.1038/s41388-018-0202-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/07/2018] [Accepted: 02/03/2018] [Indexed: 02/06/2023]
Abstract
The small GTPase Rab34 regulates spatial distribution of the lysosomes, secretion, and macropinocytosis. In this study, we found that Rab34 is over-expressed in aggressive breast cancer cells, implying a potential role of Rab34 in breast cancer. Silencing Rab34 by shRNA inhibits cell migration, invasion, and adhesion of breast cancer cells. Rab34 specifically binds to the cytoplasmic tail of integrin β3, and depletion of Rab34 promotes the degradation of integrin β3. Interestingly, EGF induces the translocation of Rab34 to the membrane ruffle, which is greatly enhanced by the expression of Src kinase. Accordingly, Rab34 is tyrosine phosphorylated by Src at Y247 residue. A mutant mimicking phosphorylated form of Rab34 (Rab34Y247D) promotes cell migration and invasion. Importantly, the tyrosine phosphorylation of Rab34 is inhibited in cells in suspension, and increased with the cells re-adhesion. In addition, Rab34Y247D promotes cell adhesion, and enhances integrin β3 endocytosis and recycling. The results uncover a role of Rab34 in migration and invasion of breast cancer cells and its involvement in cancer metastasis, and provide a novel mechanism of tyrosine phosphorylation of Rab34 in regulating cell migration, invasion, and adhesion through modulating the endocytosis, stability, and recycling of integrin β3.
Collapse
|
66
|
El-Hachem N, Habel N, Naiken T, Bzioueche H, Cheli Y, Beranger GE, Jaune E, Rouaud F, Nottet N, Reinier F, Gaudel C, Colosetti P, Bertolotto C, Ballotti R. Uncovering and deciphering the pro-invasive role of HACE1 in melanoma cells. Cell Death Differ 2018. [PMID: 29515254 DOI: 10.1038/s41418-018-0090-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
HACE1 is an E3 ubiquitin ligase described as a tumour suppressor because HACE1-knockout mice develop multi-organ, late-onset cancers and because HACE1 expression is lost in several neoplasms, such as Wilms' tumours and colorectal cancer. However, a search of public databases indicated that HACE1 expression is maintained in melanomas. We demonstrated that HACE1 promoted melanoma cell migration and adhesion in vitro and was required for mouse lung colonisation by melanoma cells in vivo. Transcriptomic analysis of HACE1-depleted melanoma cells revealed an inhibition of ITGAV and ITGB1 as well changes in other genes involved in cell migration. We revealed that HACE1 promoted the K27 ubiquitination of fibronectin and regulated its secretion. Secreted fibronectin regulated ITGAV and ITGB1 expression, as well as melanoma cell adhesion and migration. Our findings disclose a novel molecular cascade involved in the regulation of fibronectin secretion, integrin expression and melanoma cell adhesion. By controlling this cascade, HACE1 displays pro-tumoural properties and is an important regulator of melanoma cell invasive properties.
Collapse
Affiliation(s)
- Najla El-Hachem
- Biology and pathologies of melanocytes, Team 1, Inserm U1065, Equipe labellisée ARC 2015, C3M, Université Nice Côte d'Azur, Nice, France
| | - Nadia Habel
- Biology and pathologies of melanocytes, Team 1, Inserm U1065, Equipe labellisée ARC 2015, C3M, Université Nice Côte d'Azur, Nice, France
| | - Tanesha Naiken
- Biology and pathologies of melanocytes, Team 1, Inserm U1065, Equipe labellisée ARC 2015, C3M, Université Nice Côte d'Azur, Nice, France
| | - Hanene Bzioueche
- Biology and pathologies of melanocytes, Team 1, Inserm U1065, Equipe labellisée ARC 2015, C3M, Université Nice Côte d'Azur, Nice, France
| | - Yann Cheli
- Biology and pathologies of melanocytes, Team 1, Inserm U1065, Equipe labellisée ARC 2015, C3M, Université Nice Côte d'Azur, Nice, France
| | - Guillaume E Beranger
- Biology and pathologies of melanocytes, Team 1, Inserm U1065, Equipe labellisée ARC 2015, C3M, Université Nice Côte d'Azur, Nice, France
| | - Emilie Jaune
- Biology and pathologies of melanocytes, Team 1, Inserm U1065, Equipe labellisée ARC 2015, C3M, Université Nice Côte d'Azur, Nice, France
| | - Florian Rouaud
- Biology and pathologies of melanocytes, Team 1, Inserm U1065, Equipe labellisée ARC 2015, C3M, Université Nice Côte d'Azur, Nice, France
| | - Nicolas Nottet
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Nice Côte d'Azur, Sophia Antipolis, France
| | - Frédéric Reinier
- Biology and pathologies of melanocytes, Team 1, Inserm U1065, Equipe labellisée ARC 2015, C3M, Université Nice Côte d'Azur, Nice, France
| | - Céline Gaudel
- Biology and pathologies of melanocytes, Team 1, Inserm U1065, Equipe labellisée ARC 2015, C3M, Université Nice Côte d'Azur, Nice, France
| | - Pascale Colosetti
- Inserm U1065, Team 2, C3M, Université Nice Côte d'Azur, Nice, France
| | - Corine Bertolotto
- Biology and pathologies of melanocytes, Team 1, Inserm U1065, Equipe labellisée ARC 2015, C3M, Université Nice Côte d'Azur, Nice, France
| | - Robert Ballotti
- Biology and pathologies of melanocytes, Team 1, Inserm U1065, Equipe labellisée ARC 2015, C3M, Université Nice Côte d'Azur, Nice, France.
| |
Collapse
|
67
|
Diggins NL, Kang H, Weaver A, Webb DJ. α5β1 integrin trafficking and Rac activation are regulated by APPL1 in a Rab5-dependent manner to inhibit cell migration. J Cell Sci 2018; 131:jcs.207019. [PMID: 29361527 DOI: 10.1242/jcs.207019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 01/09/2018] [Indexed: 01/04/2023] Open
Abstract
Cell migration is a tightly coordinated process that requires the spatiotemporal regulation of many molecular components. Because adaptor proteins can serve as integrators of cellular events, they are being increasingly studied as regulators of cell migration. The adaptor protein containing a pleckstrin-homology (PH) domain, phosphotyrosine binding (PTB) domain, and leucine zipper motif 1 (APPL1) is a 709 amino acid endosomal protein that plays a role in cell proliferation and survival as well as endosomal trafficking and signaling. However, its function in regulating cell migration is poorly understood. Here, we show that APPL1 hinders cell migration by modulating both trafficking and signaling events controlled by Rab5 in cancer cells. APPL1 decreases internalization and increases recycling of α5β1 integrin, leading to higher levels of α5β1 integrin at the cell surface that hinder adhesion dynamics. Furthermore, APPL1 decreases the activity of the GTPase Rac and its effector PAK, which in turn regulate cell migration. Thus, we demonstrate a novel role for the interaction between APPL1 and Rab5 in governing crosstalk between signaling and trafficking pathways on endosomes to affect cancer cell migration.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Nicole L Diggins
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Alissa Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Donna J Webb
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA.,Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
68
|
Hong KS, Jeon EY, Chung SS, Kim KH, Lee RA. Epidermal growth factor-mediated Rab25 pathway regulates integrin β1 trafficking in colon cancer. Cancer Cell Int 2018. [PMID: 29515334 PMCID: PMC5836438 DOI: 10.1186/s12935-018-0526-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background Integrins play a critical role in carcinogenesis. Integrin β1 localization is regulated by the guanosine-5′-triphosphate hydrolase Rab25 and integrin β1 levels are elevated in the serum of colon cancer patients; thus, the present study examined the effects of epidermal growth factor (EGF) and Rab25 on integrin β1 localization in colon cancer cells. Methods HCT116 human colon cancer cells were treated with increasing concentrations of EGF, and cell proliferation and protein expression were monitored by MTT and western blot analyses, respectively. Cell fractionation was performed to determine integrin β1 localization in the membrane and cytosol. Integrin β1 extracellular shedding was monitored by enzyme-linked immunosorbent assays (ELISAs) with culture supernatants from stimulated cells. HCT116 cells were transfected with Rab25-specific siRNA to determine the significance of Rab25 in integrin β1 trafficking in the presence of EGF. Results Total integrin β1 expression increased in response to EGF and subsequently decreased at 24 h post-stimulation. A similar decrease was observed in purified membrane fractions, whereas no changes were observed in cytosolic levels. ELISAs using media from stimulated cell cultures demonstrated increased integrin β1 levels corresponding to the decrease observed in membrane fractions, suggesting that EGF induces integrin receptor shedding. EGF stimulation in Rab25-knockdown cells resulted in integrin β1 accumulation in the membrane, suggesting that Rab25 promotes integrin endocytosis. Conclusions Integrin β1 is shed from colon cancer cells in response to EGF stimulation in a Rab25-dependent manner. These results further the present understanding of the role of integrin β1 in colon cancer progression.
Collapse
Affiliation(s)
- Kyung Sook Hong
- 1Department of Surgery and Critical Care Medicine, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Eun-Young Jeon
- 2Ewha Medical Research Institute, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Soon Sup Chung
- 3Department of Surgery, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Kwang Ho Kim
- 3Department of Surgery, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Ryung-Ah Lee
- 3Department of Surgery, Ewha Womans University College of Medicine, Seoul, South Korea
| |
Collapse
|
69
|
Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 2018. [PMID: 29239692 DOI: 10.1080/215412481397833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Rab GTPases are important regulators of intracellular membrane trafficking in eukaryotes. Both activating and inactivating mutations in Rab genes have been identified and implicated in human diseases ranging from neurological disorders to cancer. In addition, altered Rab expression is often associated with disease prognosis. As such, the study of diseases associated with Rabs or Rab-interacting proteins has shed light on the important role of intracellular membrane trafficking in disease etiology. In this review, we cover recent advances in the field with an emphasis on cellular mechanisms.
Collapse
Affiliation(s)
- Marcellus J Banworth
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Guangpu Li
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
70
|
Thakuri PS, Liu C, Luker GD, Tavana H. Biomaterials-Based Approaches to Tumor Spheroid and Organoid Modeling. Adv Healthc Mater 2018; 7:e1700980. [PMID: 29205942 PMCID: PMC5867257 DOI: 10.1002/adhm.201700980] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/21/2017] [Indexed: 12/22/2022]
Abstract
Evolving understanding of structural and biological complexity of tumors has stimulated development of physiologically relevant tumor models for cancer research and drug discovery. A major motivation for developing new tumor models is to recreate the 3D environment of tumors and context-mediated functional regulation of cancer cells. Such models overcome many limitations of standard monolayer cancer cell cultures. Under defined culture conditions, cancer cells self-assemble into 3D constructs known as spheroids. Additionally, cancer cells may recapitulate steps in embryonic development to self-organize into 3D cultures known as organoids. Importantly, spheroids and organoids reproduce morphology and biologic properties of tumors, providing valuable new tools for research, drug discovery, and precision medicine in cancer. This Progress Report discusses uses of both natural and synthetic biomaterials to culture cancer cells as spheroids or organoids, specifically highlighting studies that demonstrate how these models recapitulate key properties of native tumors. The report concludes with the perspectives on the utility of these models and areas of need for future developments to more closely mimic pathologic events in tumors.
Collapse
Affiliation(s)
- Pradip Shahi Thakuri
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Chun Liu
- Departments of Radiology, Biomedical Engineering and Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Gary D Luker
- Departments of Radiology, Biomedical Engineering and Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA
| |
Collapse
|
71
|
Rab25 acts as an oncogene in luminal B breast cancer and is causally associated with Snail driven EMT. Oncotarget 2018; 7:40252-40265. [PMID: 27259233 PMCID: PMC5130006 DOI: 10.18632/oncotarget.9730] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/10/2016] [Indexed: 12/13/2022] Open
Abstract
The Rab GTPases regulate vesicular trafficking machinery that transports and delivers a diverse pool of cargo, including growth factor receptors, integrins, nutrient receptors and junction proteins to specific intracellular sites. The trafficking machinery is indeed a major posttranslational modifier and is critical for cellular homeostasis. Deregulation of this stringently controlled system leads to a wide spectrum of disorders including cancer. Herein we demonstrate that Rab25, a key GTPase, mostly decorating the apical recycling endosome, is a dichotomous variable in breast cancer cell lines with higher mRNA and protein expression in Estrogen Receptor positive (ER+ve) lines. Rab25 and its effector, Rab Coupling Protein (RCP) are frequently coamplified and coordinately elevated in ER+ve breast cancers. In contrast, Rab25 levels are decreased in basal-like and almost completely lost in claudin-low tumors. This dichotomy exists despite the presence of the 1q amplicon that hosts Rab25 across breast cancer subtypes and is likely due to differential methylation of the Rab25 promoter. Functionally, elevated levels of Rab25 drive major hallmarks of cancer including indefinite growth and metastasis but in case of luminal B breast cancer only. Importantly, in such ER+ve tumors, coexpression of Rab25 and its effector, RCP is significantly associated with a markedly worsened clinical outcome. Importantly, in claudin-low cell lines, exogenous Rab25 markedly inhibits cell migration. Similarly, during Snail-induced epithelial to mesenchymal transition (EMT) exogenous Rab25 potently reverses Snail-driven invasion. Overall, this study substantiates a striking context dependent role of Rab25 in breast cancer where Rab25 is amplified and enhances aggressiveness in luminal B cancers while in claudin-low tumors, Rab25 is lost indicating possible anti-tumor functions.
Collapse
|
72
|
Sigismund S, Avanzato D, Lanzetti L. Emerging functions of the EGFR in cancer. Mol Oncol 2018; 12:3-20. [PMID: 29124875 PMCID: PMC5748484 DOI: 10.1002/1878-0261.12155] [Citation(s) in RCA: 980] [Impact Index Per Article: 140.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 12/31/2022] Open
Abstract
The physiological function of the epidermal growth factor receptor (EGFR) is to regulate epithelial tissue development and homeostasis. In pathological settings, mostly in lung and breast cancer and in glioblastoma, the EGFR is a driver of tumorigenesis. Inappropriate activation of the EGFR in cancer mainly results from amplification and point mutations at the genomic locus, but transcriptional upregulation or ligand overproduction due to autocrine/paracrine mechanisms has also been described. Moreover, the EGFR is increasingly recognized as a biomarker of resistance in tumors, as its amplification or secondary mutations have been found to arise under drug pressure. This evidence, in addition to the prominent function that this receptor plays in normal epithelia, has prompted intense investigations into the role of the EGFR both at physiological and at pathological level. Despite the large body of knowledge obtained over the last two decades, previously unrecognized (herein defined as 'noncanonical') functions of the EGFR are currently emerging. Here, we will initially review the canonical ligand-induced EGFR signaling pathway, with particular emphasis to its regulation by endocytosis and subversion in human tumors. We will then focus on the most recent advances in uncovering noncanonical EGFR functions in stress-induced trafficking, autophagy, and energy metabolism, with a perspective on future therapeutic applications.
Collapse
Affiliation(s)
- Sara Sigismund
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM)MilanItaly
| | - Daniele Avanzato
- Department of OncologyUniversity of Torino Medical SchoolItaly,Candiolo Cancer InstituteFPO ‐ IRCCSCandiolo, TorinoItaly
| | - Letizia Lanzetti
- Department of OncologyUniversity of Torino Medical SchoolItaly,Candiolo Cancer InstituteFPO ‐ IRCCSCandiolo, TorinoItaly
| |
Collapse
|
73
|
Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 2017; 9:158-181. [PMID: 29239692 DOI: 10.1080/21541248.2017.1397833] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rab GTPases are important regulators of intracellular membrane trafficking in eukaryotes. Both activating and inactivating mutations in Rab genes have been identified and implicated in human diseases ranging from neurological disorders to cancer. In addition, altered Rab expression is often associated with disease prognosis. As such, the study of diseases associated with Rabs or Rab-interacting proteins has shed light on the important role of intracellular membrane trafficking in disease etiology. In this review, we cover recent advances in the field with an emphasis on cellular mechanisms.
Collapse
Affiliation(s)
- Marcellus J Banworth
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Guangpu Li
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
74
|
Samuelsson M, Potrzebowska K, Lehtonen J, Beech JP, Skorova E, Uronen-Hansson H, Svensson L. RhoB controls the Rab11-mediated recycling and surface reappearance of LFA-1 in migrating T lymphocytes. Sci Signal 2017; 10:10/509/eaai8629. [PMID: 29233918 DOI: 10.1126/scisignal.aai8629] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The regulation of cell adhesion and motility is complex and requires the intracellular trafficking of integrins to and from sites of cell adhesion, especially in fast-moving cells such as leukocytes. The Rab family of guanosine triphosphatases (GTPases) is essential for vesicle transport, and vesicles mediate intracellular integrin trafficking. We showed that RhoB regulates the vesicular transport of the integrin LFA-1 along the microtubule network in migrating T lymphocytes. Impairment in RhoB function resulted in the accumulation of both LFA-1 and the recycling endosomal marker Rab11 at the rear of migrating T lymphocytes and decreased the association between these molecules. T lymphocytes lacking functional RhoB exhibited impaired recycling and subsequently decreased surface amounts of LFA-1, leading to reduced T cell adhesion and migration mediated by the cell adhesion molecule ICAM-1 (intercellular adhesion molecule-1). We propose that vesicle-associated RhoB is a regulator of the Rab11-mediated recycling of LFA-1 to the cell surface, an event that is necessary for T lymphocyte motility.
Collapse
Affiliation(s)
- Malin Samuelsson
- Department of Experimental Medical Science, Lund University, SE-22184 Lund, Sweden
| | | | - Janne Lehtonen
- Department of Experimental Medical Science, Lund University, SE-22184 Lund, Sweden
| | - Jason P Beech
- Department of Solid State Physics, Lund University, SE-22184 Lund, Sweden
| | - Ekatarina Skorova
- Department of Experimental Medical Science, Lund University, SE-22184 Lund, Sweden
| | - Heli Uronen-Hansson
- Department of Experimental Medical Science, Lund University, SE-22184 Lund, Sweden
| | - Lena Svensson
- Department of Experimental Medical Science, Lund University, SE-22184 Lund, Sweden. .,The School of Medical Sciences, Örebro University, SE-70182 Örebro, Sweden
| |
Collapse
|
75
|
Kaukonen R, Jacquemet G, Hamidi H, Ivaska J. Cell-derived matrices for studying cell proliferation and directional migration in a complex 3D microenvironment. Nat Protoc 2017; 12:2376-2390. [PMID: 29048422 DOI: 10.1038/nprot.2017.107] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
2D surfaces offer simple analysis of cells in culture, yet these often yield different cell morphologies and responses from those observed in vivo. Considerable effort has therefore been expended on the generation of more tissue-like environments for the study of cell behavior in vitro. Purified matrix proteins provide a 3D scaffold that better mimics the in vivo situation; however, these are far removed from the complex tissue composition seen in vivo. Cell-derived matrices (CDMs) offer a more physiologically relevant alternative for studying in vivo-like cell behavior in vitro. In the protocol described here, fibroblasts cultured on gelatin-coated surfaces are maintained in the presence of ascorbic acid to strengthen matrix deposition over 1-3 weeks. The resulting fibrillar CDMs are denuded of cells, and other cells are subsequently cultured on them, after which their behavior is monitored. We also demonstrate how to use CDMs as an in vivo-relevant reductionist model for studying tumor-stroma-induced changes in carcinoma cell proliferation and migration.
Collapse
Affiliation(s)
- Riina Kaukonen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Guillaume Jacquemet
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Hellyeh Hamidi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.,Department of Biochemistry, University of Turku, Turku, Finland
| |
Collapse
|
76
|
Prashar A, Schnettger L, Bernard EM, Gutierrez MG. Rab GTPases in Immunity and Inflammation. Front Cell Infect Microbiol 2017; 7:435. [PMID: 29034219 PMCID: PMC5627064 DOI: 10.3389/fcimb.2017.00435] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/21/2017] [Indexed: 12/19/2022] Open
Abstract
Strict spatiotemporal control of trafficking events between organelles is critical for maintaining homeostasis and directing cellular responses. This regulation is particularly important in immune cells for mounting specialized immune defenses. By controlling the formation, transport and fusion of intracellular organelles, Rab GTPases serve as master regulators of membrane trafficking. In this review, we discuss the cellular and molecular mechanisms by which Rab GTPases regulate immunity and inflammation.
Collapse
Affiliation(s)
| | | | | | - Maximiliano G. Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, Francis Crick Institute, London, United Kingdom
| |
Collapse
|
77
|
Stapled peptide inhibitors of RAB25 target context-specific phenotypes in cancer. Nat Commun 2017; 8:660. [PMID: 28939823 PMCID: PMC5610242 DOI: 10.1038/s41467-017-00888-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022] Open
Abstract
Recent evidence has established a role for the small GTPase RAB25, as well as related effector proteins, in enacting both pro-oncogenic and anti-oncogenic phenotypes in specific cellular contexts. Here we report the development of all-hydrocarbon stabilized peptides derived from the RAB-binding FIP-family of proteins to target RAB25. Relative to unmodified peptides, optimized stapled peptides exhibit increased structural stability, binding affinity, cell permeability, and inhibition of RAB25:FIP complex formation. Treatment of cancer cell lines in which RAB25 is pro-oncogenic with an optimized stapled peptide, RFP14, inhibits migration, and proliferation in a RAB25-dependent manner. In contrast, RFP14 treatment augments these phenotypes in breast cancer cells in which RAB25 is tumor suppressive. Transcriptional profiling identified significantly altered transcripts in response to RAB25 expression, and treatment with RFP14 opposes this expression profile. These data validate the first cell-active chemical probes targeting RAB-family proteins and support the role of RAB25 in regulating context-specific oncogenic phenotypes. The Ras-family small GTPase RAB25 can exert both pro- and anti-oncogenic functions. Here, the authors develop all-hydrocarbon stabilized peptides targeting RAB25 and influencing the context-specificity phenotypes in cancer cell lines.
Collapse
|
78
|
Rab11 family expression in the human placenta: Localization at the maternal-fetal interface. PLoS One 2017; 12:e0184864. [PMID: 28922401 PMCID: PMC5602629 DOI: 10.1371/journal.pone.0184864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/03/2017] [Indexed: 11/19/2022] Open
Abstract
Rab proteins are a family of small GTPases involved in a variety of cellular processes. The Rab11 subfamily in particular directs key steps of intracellular functions involving vesicle trafficking of the endosomal recycling pathway. This Rab subfamily works through a series of effector proteins including the Rab11-FIPs (Rab11 Family-Interacting Proteins). While the Rab11 subfamily has been well characterized at the cellular level, its function within human organ systems is still being explored. In an effort to further study these proteins, we conducted a preliminary investigation of a subgroup of endosomal Rab proteins in a range of human cell lines by Western blotting. The results from this analysis indicated that Rab11a, Rab11c(Rab25) and Rab14 were expressed in a wide range of cell lines, including the human placental trophoblastic BeWo cell line. These findings encouraged us to further analyse the localization of these Rabs and their common effector protein, the Rab Coupling Protein (RCP), by immunofluorescence microscopy and to extend this work to normal human placental tissue. The placenta is a highly active exchange interface, facilitating transfer between mother and fetus during pregnancy. As Rab11 proteins are closely involved in transcytosis we hypothesized that the placenta would be an interesting human tissue model system for Rab investigation. By immunofluorescence microscopy, Rab11a, Rab11c(Rab25), Rab14 as well as their common FIP effector RCP showed prominent expression in the placental cell lines. We also identified the expression of these proteins in human placental lysates by Western blot analysis. Further, via fluorescent immunohistochemistry, we noted abundant localization of these proteins within key functional areas of primary human placental tissues, namely the outer syncytial layer of placental villous tissue and the endothelia of fetal blood vessels. Overall these findings highlight the expression of the Rab11 family within the human placenta, with novel localization at the maternal-fetal interface.
Collapse
|
79
|
Secretory RAB GTPase 3C modulates IL6-STAT3 pathway to promote colon cancer metastasis and is associated with poor prognosis. Mol Cancer 2017; 16:135. [PMID: 28784136 PMCID: PMC5547507 DOI: 10.1186/s12943-017-0687-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 06/26/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND RAB GTPases are important in the regulation of membrane trafficking and cell movement. Recently, exocytic RABs have received increasing attention in cancer research. However, the functional roles of exocytic RABs in colorectal carcinogenesis remain to be elucidated. METHODS Immunohistochemistry analysis of a microarray containing 215 colorectal adenocarcinoma tissues was used to identify the association between exocytic RABs and patient prognosis. Complementary functional RAB3C overexpression and knockdown experiments were performed. The molecular mechanism of RAB3C in inducing colon cancer cell metastasis was determined. RESULTS High RAB3C expression in patients was found to be significantly associated with advanced pathological stage, distant metastasis and poor prognosis. Multivariate analyses showed that high RAB3C expression was an independent prognostic marker in overall (P = 0.001) and disease-free survival (P < 0.001). Furthermore, our experimental results showed an increase in the migration and invasion ability of RAB3C-overexpressing colon cancer cells and increased metastatic nodules in a mouse metastasis model. The effect of RAB3C-overexpressing cell-conditioned medium was found to significantly promote the migration ability of parental colon cancer cells, thus suggesting that the promotion of migration is exocytosis dependent. Upregulation of other exocytic RABs was also seen in RAB3C-overexpressing cells. Through microarray and proteomics analyses, increased production of multiple cytokines was observed in RAB3C-overexpressing cell lines, and the IL-6 pathway was the top pathway whose members exhibited gene expression changes after RAB3C overexpression, according to Ingenuity Pathway Analysis. Blocking IL-6 with IL-6 antibody treatment or IL-6 knockdown significantly inhibited the migration potential of RAB3C-overexpressing colon cancer cells. In addition, IL-6 was found to induce STAT3 phosphorylation in RAB3C-overexpressing colon cancer cells, thus promoting migration. Ruxolitinib, a JAK2 inhibitor, was found to significantly inhibit RAB3C-induced colon cancer cell migration. CONCLUSIONS Our study revealed that RAB3C overexpression promotes tumor metastasis and is associated with poor prognosis in colorectal cancer, through modulating the ability of cancer cells to release IL-6 through exocytosis and activate the JAK2-STAT3 signaling pathway. These results further suggest that inhibition of STAT3 phosphorylation in the RAB3C-IL-6-STAT3 axis by using Ruxolitinib may be a new therapeutic strategy to combat metastatic colon cancers.
Collapse
|
80
|
Wieczorek K, Wiktorska M, Sacewicz-Hofman I, Boncela J, Lewiński A, Kowalska MA, Niewiarowska J. Filamin A upregulation correlates with Snail-induced epithelial to mesenchymal transition (EMT) and cell adhesion but its inhibition increases the migration of colon adenocarcinoma HT29 cells. Exp Cell Res 2017; 359:163-170. [PMID: 28778796 DOI: 10.1016/j.yexcr.2017.07.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/20/2017] [Accepted: 07/29/2017] [Indexed: 01/27/2023]
Abstract
Filamin A (FLNA) is actin filament cross-linking protein involved in cancer progression. Its importance in regulating cell motility is directly related to the epithelial to mesenchymal transition (EMT) of tumor cells. However, little is known about the mechanism of action of FLNA at this early stage of cancer invasion. Using immunochemical methods, we evaluated the levels and localization of FLNA, pFLNA[Ser2152], β1 integrin, pβ1 integrin[Thr788/9], FAK, pFAK[Y379], and talin in stably transfected HT29 adenocarcinoma cells overexpressing Snail and looked for the effect of Snail in adhesion and migration assays on fibronectin-coated surfaces before and after FLNA silencing. Our findings indicate that FLNA upregulation correlates with Snail-induced EMT in colorectal carcinoma. FLNA localizes in the cytoplasm and at the sites of focal adhesion (FA) of invasive cells. Silencing of FLNA inhibits Snail-induced cell adhesion, reduces the size of FA sites, induces the relocalization of talin from the cytoplasm to the membrane area and augments cell migratory properties. Our findings suggest that FLNA may not act as a classic integrin inhibitor in invasive carcinoma cells, but is involved in other pro-invasive pathways. FLNA upregulation, which correlates with cell metastatic properties, maybe an additional target for combination therapy in colorectal carcinoma tumor progression.
Collapse
Affiliation(s)
- Katarzyna Wieczorek
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Lodz, Poland; Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, Lodz, Poland
| | - Magdalena Wiktorska
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Lodz, Poland
| | | | - Joanna Boncela
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Andrzej Lewiński
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, Lodz, Poland
| | - M Anna Kowalska
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Jolanta Niewiarowska
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
81
|
Wang S, Hu C, Wu F, He S. Rab25 GTPase: Functional roles in cancer. Oncotarget 2017; 8:64591-64599. [PMID: 28969096 PMCID: PMC5610028 DOI: 10.18632/oncotarget.19571] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/19/2017] [Indexed: 12/17/2022] Open
Abstract
Rab25, a small GTPase belongs to the Rab protein family, has a pivotal role in cancer pathophysiology. Rab25 governs cell-surface receptors recycling and cellular signaling pathways activation, allowing it to control a diverse range of cellular functions, including cell proliferation, cell motility and cell death. Aberrant expression of Rab25 was linked to cancer development. Majority of research findings revealed that Rab25 is an oncogene. Elevated expression of Rab25 was correlated with poor prognosis and aggressiveness of renal, lung, breast, ovarian and other cancers. However, tumor suppressor function of Rab25 was reported in several cancers, such as colorectal cancer, indicating the tumor type-specific function of Rab25. In this review, we recapitulate the current knowledge of Rab25 in cancer development and therapy.
Collapse
Affiliation(s)
- Sisi Wang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunhong Hu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shasha He
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
82
|
Inside the Cell: Integrins as New Governors of Nuclear Alterations? Cancers (Basel) 2017; 9:cancers9070082. [PMID: 28684679 PMCID: PMC5532618 DOI: 10.3390/cancers9070082] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/26/2017] [Accepted: 07/04/2017] [Indexed: 02/07/2023] Open
Abstract
Cancer cell migration is a complex process that requires coordinated structural changes and signals in multiple cellular compartments. The nucleus is the biggest and stiffest organelle of the cell and might alter its physical properties to allow cancer cell movement. Integrins are transmembrane receptors that mediate cell-cell and cell-extracellular matrix interactions, which regulate numerous intracellular signals and biological functions under physiological conditions. Moreover, integrins orchestrate changes in tumor cells and their microenvironment that lead to cancer growth, survival and invasiveness. Most of the research efforts have focused on targeting integrin-mediated adhesion and signaling. Recent exciting data suggest the crucial role of integrins in controlling internal cellular structures and nuclear alterations during cancer cell migration. Here we review the emerging role of integrins in nuclear biology. We highlight increasing evidence that integrins are critical for changes in multiple nuclear components, the positioning of the nucleus and its mechanical properties during cancer cell migration. Finally, we discuss how integrins are integral proteins linking the plasma membrane and the nucleus, and how they control cell migration to enable cancer invasion and infiltration. The functional connections between these cell receptors and the nucleus will serve to define new attractive therapeutic targets.
Collapse
|
83
|
Klunder LJ, Faber KN, Dijkstra G, van IJzendoorn SCD. Mechanisms of Cell Polarity-Controlled Epithelial Homeostasis and Immunity in the Intestine. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a027888. [PMID: 28213466 DOI: 10.1101/cshperspect.a027888] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intestinal epithelial cell polarity is instrumental to maintain epithelial homeostasis and balance communications between the gut lumen and bodily tissue, thereby controlling the defense against gastrointestinal pathogens and maintenance of immune tolerance to commensal bacteria. In this review, we highlight recent advances with regard to the molecular mechanisms of cell polarity-controlled epithelial homeostasis and immunity in the human intestine.
Collapse
Affiliation(s)
- Leon J Klunder
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Sven C D van IJzendoorn
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| |
Collapse
|
84
|
Takahashi Y, Tanikawa C, Miyamoto T, Hirata M, Wang G, Ueda K, Komatsu T, Matsuda K. Regulation of tubular recycling endosome biogenesis by the p53-MICALL1 pathway. Int J Oncol 2017; 51:724-736. [DOI: 10.3892/ijo.2017.4060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 06/23/2017] [Indexed: 11/05/2022] Open
|
85
|
Margiotta A, Progida C, Bakke O, Bucci C. Characterization of the role of RILP in cell migration. Eur J Histochem 2017; 61:2783. [PMID: 28735522 PMCID: PMC5460375 DOI: 10.4081/ejh.2017.2783] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/13/2017] [Accepted: 05/18/2017] [Indexed: 12/15/2022] Open
Abstract
Rab-interacting lysosomal protein (RILP) is a regulator of late stages of endocytosis. Recent work proved that depletion of RILP promotes migration of breast cancer cells in wound healing assay, whereas its overexpression influences re-arrangements of actin cytoskeleton. Here, we further characterized the role of RILP in cell migration by analyzing several aspects of this process. We showed that RILP is fundamental also for migration of lung cancer cells regulating cell velocity. RILP silencing did not affect Golgi apparatus nor microtubules reorientation during migration. However, both RILP over-expression and expression of its mutated form, RILPC33, impair cell adhesion and spreading. In conclusion, our results demonstrate that RILP has important regulatory roles in cell motility affecting migration velocity but also in cell adhesion and cell spreading.
Collapse
Affiliation(s)
- Azzurra Margiotta
- University of Salento, Department of Biological and Environmental Sciences and Technologies.
| | | | | | | |
Collapse
|
86
|
Qin X, Wang J, Wang X, Liu F, Jiang B, Zhang Y. Targeting Rabs as a novel therapeutic strategy for cancer therapy. Drug Discov Today 2017; 22:1139-1147. [PMID: 28390930 DOI: 10.1016/j.drudis.2017.03.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 02/18/2017] [Accepted: 03/21/2017] [Indexed: 12/13/2022]
Abstract
Rab GTPases constitute the largest family of small GTPases. Rabs regulate not only membrane trafficking but also cell signaling, growth and survival, and development. Increasingly, Rabs and their effectors are shown to be overexpressed or subject to loss-of-function mutations in a variety of disease settings, including cancer progression. This review provides an overview of dysregulated Rab proteins in cancer, and highlights the signaling and secretory pathways in which they operate, with the aim of identifying potential avenues for therapeutic intervention. Recent progress and perspectives for direct and/or indirect targeting of Rabs are also summarized.
Collapse
Affiliation(s)
- Xiaoyu Qin
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Jiongyi Wang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Xinxin Wang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Feng Liu
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Bin Jiang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China.
| | - Yanjie Zhang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China.
| |
Collapse
|
87
|
Lanzetti L, Di Fiore PP. Behind the Scenes: Endo/Exocytosis in the Acquisition of Metastatic Traits. Cancer Res 2017; 77:1813-1817. [PMID: 28373181 DOI: 10.1158/0008-5472.can-16-3403] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/01/2017] [Indexed: 11/16/2022]
Abstract
Alterations of endo/exocytic proteins have long been associated with malignant transformation, and genes encoding membrane trafficking proteins have been identified as bona fide drivers of tumorigenesis. Focusing on the mechanisms underlying the impact of endo/exocytic proteins in cancer, a scenario emerges in which altered trafficking routes/networks appear to be preferentially involved in the acquisition of prometastatic traits. This involvement in metastasis frequently occurs through the integration of programs leading to migratory/invasive phenotypes, survival and resistance to environmental stresses, epithelial-to-mesenchymal transition, and the emergence of cancer stem cells. These findings might have important implications in the clinical setting for the development of metastasis-specific drugs and for patient stratification to optimize the use of available therapies. Cancer Res; 77(8); 1813-7. ©2017 AACR.
Collapse
Affiliation(s)
- Letizia Lanzetti
- Membrane Trafficking Laboratory at Candiolo Cancer Institute - FPO, IRCCS, Candiolo, Italy. .,Department of Oncology, University of Turin Medical School, Turin, Italy
| | - Pier Paolo Di Fiore
- IFOM, The FIRC Institute for Molecular Oncology Foundation, Milan, Italy. .,DIPO, Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Molecular Medicine Program, European Institute of Oncology, Milan, Italy
| |
Collapse
|
88
|
Ding B, Cui B, Gao M, Li Z, Xu C, Fan S, He W. Knockdown of Ras-Related Protein 25 (Rab25) Inhibits the In Vitro Cytotoxicity and In Vivo Antitumor Activity of Human Glioblastoma Multiforme Cells. Oncol Res 2017; 25:331-340. [PMID: 28281975 PMCID: PMC7841148 DOI: 10.3727/096504016x14736286083065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Ras-related protein 25 (Rab25) is a member of the Rab family, and it has been reported to play an important role in tumorigenesis. However, its direct involvement in human glioblastoma multiforme (GBM) is still unclear. The aim of the current study was to investigate the potential role of Rab25 in the growth, proliferation, invasion, and migration of human GBM. Our results showed that Rab25 expression was significantly higher in human GBM cell lines compared with a normal astrocyte cell line. In vitro functional studies revealed that knockdown of Rab25 reduced cell proliferation and inhibited invasion and migration of GBM cells. In vivo experiments showed that knockdown of Rab25 attenuated the tumor growth in nude mice. Finally, knockdown of Rab25 significantly inhibited the phosphorylation levels of PI3K and AKT in GBM cells. Taken together, these findings indicate that Rab25 may act as a tumor promoter in human GBM and that approaches to target Rab25 may provide a novel strategy to treat this disease.
Collapse
|
89
|
Chang J, Xu W, Liu G, Du X, Li X. Downregulation of Rab23 in Prostate Cancer Inhibits Tumor Growth In Vitro and In Vivo. Oncol Res 2017; 25:241-248. [PMID: 28277196 PMCID: PMC7840735 DOI: 10.3727/096504016x14742891049118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Rab23, a novel member of the Rab GTPase family, was found to be implicated in the progression of some human cancers. However, what role Rab23 plays in prostate cancer (PCa) remains to be illustrated. In the present study, we investigated the expression pattern and roles of Rab23 in PCa. The study results showed that Rab23 was upregulated in PCa tissues and cell lines. Moreover, downregulation of Rab23 remarkably suppressed the proliferation, migration, and invasion of PCa cells. In addition, downregulation of Rab23 significantly downregulated the protein expression levels of Shh and Gli1. Furthermore, we found that the Gli1 inhibitor GANT-61 greatly enhanced the suppressive effect of Rab23 downregulation on PCa cells. In conclusion, we suggested Rab23 as a potential therapeutic target for PCa treatment.
Collapse
Affiliation(s)
- Junkai Chang
- Department of Urology, Huaihe Hospital of Henan University, Kaifeng, Henan Province, P.R. China
| | | | | | | | | |
Collapse
|
90
|
Varadaraj A, Jenkins LM, Singh P, Chanda A, Snider J, Lee NY, Amsalem-Zafran AR, Ehrlich M, Henis YI, Mythreye K. TGF-β triggers rapid fibrillogenesis via a novel TβRII-dependent fibronectin-trafficking mechanism. Mol Biol Cell 2017; 28:1195-1207. [PMID: 28298487 PMCID: PMC5415016 DOI: 10.1091/mbc.e16-08-0601] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 02/02/2023] Open
Abstract
There is increased recycling of soluble fibronectin from the cell surface for fibrillogenesis. This recycling is regulated by TGF-β in a transcription- and SMAD-independent manner via specific TβRII and integrin α5β1 interactions. The recycling of fibronectin is Rab11 dependent and is required for TGF-β–induced cell migration. Fibronectin (FN) is a critical regulator of extracellular matrix (ECM) remodeling through its availability and stepwise polymerization for fibrillogenesis. Availability of FN is regulated by its synthesis and turnover, and fibrillogenesis is a multistep, integrin-dependent process essential for cell migration, proliferation, and tissue function. Transforming growth factor β (TGF-β) is an established regulator of ECM remodeling via transcriptional control of ECM proteins. Here we show that TGF-β, through increased FN trafficking in a transcription- and SMAD-independent manner, is a direct and rapid inducer of the fibrillogenesis required for TGF-β–induced cell migration. Whereas TGF-β signaling is dispensable for rapid fibrillogenesis, stable interactions between the cytoplasmic domain of the type II TGF-β receptor (TβRII) and the FN receptor (α5β1 integrin) are required. We find that, in response to TGF-β, cell surface–internalized FN is not degraded by the lysosome but instead undergoes recycling and incorporation into fibrils, a process dependent on TβRII. These findings are the first to show direct use of trafficked and recycled FN for fibrillogenesis, with a striking role for TGF-β in this process. Given the significant physiological consequences associated with FN availability and polymerization, our findings provide new insights into the regulation of fibrillogenesis for cellular homeostasis.
Collapse
Affiliation(s)
- Archana Varadaraj
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208
| | - Laura M Jenkins
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208
| | - Priyanka Singh
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208
| | - Anindya Chanda
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29201
| | - John Snider
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208
| | - N Y Lee
- Division of Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH 43210
| | | | - Marcelo Ehrlich
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yoav I Henis
- Department of Neurobiology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Karthikeyan Mythreye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 .,Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC 29208
| |
Collapse
|
91
|
Guo B, Wang W, Zhao Z, Li Q, Zhou K, Zhao L, Wang L, Yang J, Huang C. Rab14 Act as Oncogene and Induce Proliferation of Gastric Cancer Cells via AKT Signaling Pathway. PLoS One 2017; 12:e0170620. [PMID: 28107526 PMCID: PMC5249107 DOI: 10.1371/journal.pone.0170620] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/06/2017] [Indexed: 01/08/2023] Open
Abstract
Rab14 is a member of RAS oncogene family, and its dysfunction has been reported to be involved in various types of human cancer. However, its expression and function were still unclear in gastric cancer. The aim of this study was to investigate the function and mechanism of Rab14 in gastric cancer cell lines. Quantitative real-time PCR (qRT-PCR) was performed in 17 gastric adenocarcinoma tissues and 4 cell lines to detect the expression of Rab14. 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT), colony formation and flow cytometry assays were employed to determine the proliferative ability, cell cycle transition and apoptosis in vitro in BGC-823 or SGC-7901 cells. Western blot was performed to investigate the pathways and mechanism of Rab14 regulation. In this study, we show that Rab14 presents a significant up-regulated expression among the paired tissue samples and cell lines in gastric cancer. When we overexpressed Rab14 in SGC-7901 cells or silenced Rab14 in BGC-823 cells, we found that Rab14 could modify cell growth, cell cycle or apoptosis, which accompanied with an obvious regulation of CCND1, CDK2 and BAX involving in AKT signaling pathway. In conclusion, this study provides a new evidence on that Rab14 functions as a novel tumor oncogene and could be a potential therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Bo Guo
- Department of cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P. R. China
| | - Wenjing Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Zhenghao Zhao
- Department of cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P. R. China
| | - Qian Li
- Department of cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P. R. China
| | - Kaiyue Zhou
- Program in Plant Biology and Conservation, Biological Sciences, Weinberg College of Arts and Sciences, Northwestern University, Evanston, Illinois, United States of America
| | - Lingyu Zhao
- Department of cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P. R. China
| | - Lumin Wang
- Department of cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P. R. China
| | - Juan Yang
- Department of cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P. R. China
| | - Chen Huang
- Department of cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P. R. China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi’an, Shaanxi, P. R. China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education of China, Xi’an, Shaanxi, P. R. China
| |
Collapse
|
92
|
Integrins and Cell Metabolism: An Intimate Relationship Impacting Cancer. Int J Mol Sci 2017; 18:ijms18010189. [PMID: 28106780 PMCID: PMC5297821 DOI: 10.3390/ijms18010189] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/26/2016] [Accepted: 01/06/2017] [Indexed: 12/19/2022] Open
Abstract
Integrins are important regulators of cell survival, proliferation, adhesion and migration. Once activated, integrins establish a regulated link between the extracellular matrix and the cytoskeleton. Integrins have well-established functions in cancer, such as in controlling cell survival by engagement of many specific intracellular signaling pathways and in facilitating metastasis. Integrins and associated proteins are regulated by control of transcription, membrane traffic, and degradation, as well as by a number of post-translational modifications including glycosylation, allowing integrin function to be modulated to conform to various cellular needs and environmental conditions. In this review, we examine the control of integrin function by cell metabolism, and the impact of this regulation in cancer. Within this context, nutrient sufficiency or deprivation is sensed by a number of metabolic signaling pathways such as AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR) and hypoxia-inducible factor (HIF) 1, which collectively control integrin function by a number of mechanisms. Moreover, metabolic flux through specific pathways also controls integrins, such as by control of integrin glycosylation, thus impacting integrin-dependent cell adhesion and migration. Integrins also control various metabolic signals and pathways, establishing the reciprocity of this regulation. As cancer cells exhibit substantial changes in metabolism, such as a shift to aerobic glycolysis, enhanced glucose utilization and a heightened dependence on specific amino acids, the reciprocal regulation of integrins and metabolism may provide important clues for more effective treatment of various cancers.
Collapse
|
93
|
Han MZ, Huang B, Chen AJ, Zhang X, Xu R, Wang J, Li XG. High expression of RAB43 predicts poor prognosis and is associated with epithelial-mesenchymal transition in gliomas. Oncol Rep 2017; 37:903-912. [DOI: 10.3892/or.2017.5349] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/06/2016] [Indexed: 11/06/2022] Open
|
94
|
Abstract
ABSTRACT
Three-dimensional (3D) cell motility underlies essential processes, such as embryonic development, tissue repair and immune surveillance, and is involved in cancer progression. Although the cytoskeleton is a well-studied regulator of cell migration, most of what we know about its functions originates from studies conducted in two-dimensional (2D) cultures. This research established that the microtubule network mediates polarized trafficking and signaling that are crucial for cell shape and movement in 2D. In parallel, developments in light microscopy and 3D cell culture systems progressively allowed to investigate cytoskeletal functions in more physiologically relevant settings. Interestingly, several studies have demonstrated that microtubule involvement in cell morphogenesis and motility can differ in 2D and 3D environments. In this Commentary, we discuss these differences and their relevance for the understanding the role of microtubules in cell migration in vivo. We also provide an overview of microtubule functions that were shown to control cell shape and motility in 3D matrices and discuss how they can be investigated further by using physiologically relevant models.
Collapse
Affiliation(s)
- Benjamin P. Bouchet
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| |
Collapse
|
95
|
Tzeng HT, Tsai CH, Yen YT, Cheng HC, Chen YC, Pu SW, Wang YS, Shan YS, Tseng YL, Su WC, Lai WW, Wu LW, Wang YC. Dysregulation of Rab37-Mediated Cross-talk between Cancer Cells and Endothelial Cells via Thrombospondin-1 Promotes Tumor Neovasculature and Metastasis. Clin Cancer Res 2016; 23:2335-2345. [PMID: 28151721 DOI: 10.1158/1078-0432.ccr-16-1520] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/05/2016] [Accepted: 11/07/2016] [Indexed: 11/16/2022]
Abstract
Purpose: Accumulating evidence indicates that factors secreted by cancer epithelial cells shape the tumor microenvironment to promote cancer invasion and metastasis. Recent studies also shed light on alterations of Rab small GTPase-mediated exocytosis in tumorigenesis. However, the mechanisms for Rab-mediated exocytosis in tumor microenvironment remain elusive. We aimed to investigate the interplay between Rab37-mediated exocytosis and tumor microenvironment, focusing on endothelial cell motility and angiogenesis.Experimental Design: We performed fluorescence IHC for Rab37, thrombospondin-1 (TSP1, an antiangiogenesis factor), and angiogenesis marker CD31 in 183 surgically resected esophageal squamous cell carcinoma (ESCC) patient samples. Cell migration, invasion, angiogenesis, and tumor metastasis were measured.Results: ESCC patients with low expression of Rab37 or TSP1 significantly correlated with high CD31 expression and were associated with worse progression-free survival. The multivariate Cox regression analysis showed that concordant low expression of both Rab37 and TSP1 was an independent prognostic factor of ESCC patients. Rab37-mediated exocytosis of TSP1 led to the inhibition of neovasculature in vitro and in vivo Secreted TSP1 from cancer cells with Rab37 exocytic function inhibited the p-FAK/p-paxillin/p-ERK migration signaling in both cancer epithelial cells and their surrounding endothelial cells. Dysfunction of Rab37 or loss of TSP1 abrogated the suppressive effects on angiogenesis and metastasis.Conclusions: Our findings suggest that Rab37-mediated TSP1 secretion in cancer cells suppresses metastasis and angiogenesis via a cross-talk with endothelial cells and reveal a novel component of the vesicular exocytic machinery in tumor microenvironment and tumor progression. Dysregulation of Rab37/TSP1 axis has clinical implications for prognosis prediction. Clin Cancer Res; 23(9); 2335-45. ©2016 AACR.
Collapse
Affiliation(s)
- Hong-Tai Tzeng
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Han Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ting Yen
- Division of Thoracic Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Chi Cheng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Chieh Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Wen Pu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Shiuan Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Shen Shan
- Division of Thoracic Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yau-Lin Tseng
- Division of Thoracic Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wu-Chou Su
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wu-Wei Lai
- Division of Thoracic Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Li-Wha Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
96
|
Jacob A, Linklater E, Bayless BA, Lyons T, Prekeris R. The role and regulation of Rab40b-Tks5 complex during invadopodia formation and cancer cell invasion. J Cell Sci 2016; 129:4341-4353. [PMID: 27789576 PMCID: PMC5201011 DOI: 10.1242/jcs.193904] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/30/2016] [Indexed: 12/12/2022] Open
Abstract
Invadopodia formation and extracellular matrix degradation are key events during cancer cell invasion, yet little is known about mechanisms mediating these processes. Here, we report that Rab40b plays a key role in mediating invadopodia function during breast cancer cell invasion. We also identify Tks5 (also known as SH3PXD2A), a known Src kinase substrate, as a new Rab40b effector protein and show that Tks5 functions as a tether that mediates Rab40b-dependent targeting of transport vesicles containing MMP2 and MMP9 to the extending invadopodia. Importantly, we also demonstrate that Rab40b and Tks5 levels are regulated by known tumor suppressor microRNA miR-204. This is the first study that identifies a new Rab40b–Tks5- and miR-204-dependent invadopodia transport pathway that regulates MMP2 and MMP9 secretion, and extracellular matrix remodeling during cancer progression. Highlighted Article: Rab40b plays a key role in mediating invadopodia function during breast cancer cell invasion by binding to Tks5 and functioning as a tether mediating MMP2 and MMP9 targeting to the extending invadopodia.
Collapse
Affiliation(s)
- Abitha Jacob
- Department of Cell and Developmental Biology, School of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA
| | - Erik Linklater
- Department of Cell and Developmental Biology, School of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA
| | - Brian A Bayless
- Department of Cell and Developmental Biology, School of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA
| | - Traci Lyons
- Department of Medicine/Division of Medical Oncology, School of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, School of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
97
|
Qu F, Lorenzo DN, King SJ, Brooks R, Bear JE, Bennett V. Ankyrin-B is a PI3P effector that promotes polarized α5β1-integrin recycling via recruiting RabGAP1L to early endosomes. eLife 2016; 5. [PMID: 27718357 PMCID: PMC5089861 DOI: 10.7554/elife.20417] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 10/07/2016] [Indexed: 01/03/2023] Open
Abstract
Endosomal membrane trafficking requires coordination between phosphoinositide lipids, Rab GTPases, and microtubule-based motors to dynamically determine endosome identity and promote long-range organelle transport. Here we report that ankyrin-B (AnkB), through integrating all three systems, functions as a critical node in the protein circuitry underlying polarized recycling of α5β1-integrin in mouse embryonic fibroblasts, which enables persistent fibroblast migration along fibronectin gradients. AnkB associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles in fibroblasts and binds dynactin to promote their long-range motility. We demonstrate that AnkB binds to Rab GTPase Activating Protein 1-Like (RabGAP1L) and recruits it to PI3P-positive organelles, where RabGAP1L inactivates Rab22A, and promotes polarized trafficking to the leading edge of migrating fibroblasts. We further determine that α5β1-integrin depends on an AnkB/RabGAP1L complex for polarized recycling. Our results reveal AnkB as an unexpected key element in coordinating polarized transport of α5β1-integrin and likely of other specialized endocytic cargos.
Collapse
Affiliation(s)
- Fangfei Qu
- Department of Biochemistry, Duke University Medical Center, Durham, United States.,Department of Cell Biology, Duke University Medical Center, Durham, United States.,Department of Neurobiology, Duke University Medical Center, Durham, United States.,Howard Hughes Medical Institute, Duke University Medical Center, Durham, United States
| | - Damaris N Lorenzo
- Department of Biochemistry, Duke University Medical Center, Durham, United States.,Department of Cell Biology, Duke University Medical Center, Durham, United States.,Department of Neurobiology, Duke University Medical Center, Durham, United States.,Howard Hughes Medical Institute, Duke University Medical Center, Durham, United States
| | - Samantha J King
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Durham, United States.,Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Rebecca Brooks
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Durham, United States.,Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - James E Bear
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Durham, United States.,Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Vann Bennett
- Department of Biochemistry, Duke University Medical Center, Durham, United States.,Department of Cell Biology, Duke University Medical Center, Durham, United States.,Department of Neurobiology, Duke University Medical Center, Durham, United States.,Howard Hughes Medical Institute, Duke University Medical Center, Durham, United States
| |
Collapse
|
98
|
Abstract
A large group of small Rab GTPases which mediate secretory and endosomal membrane transport, as well as autophagosome biogenesis, are essential components of vesicle trafficking machinery. Specific Rab protein together with the cognate effectors coordinates the dynamics of trafficking pathway and determines the cargo proteins destination. Functional impairments of Rab proteins by mutations or post-translational modifications disrupting the regulatory network of vesicle trafficking have been implicated in tumorigenesis. Therefore, the vesicle transport regulators play essential roles in the mediation of cancer cell biology, including uncontrolled cell growth, invasion and metastasis. The context-dependent role of the same Rab to act as either an oncoprotein or tumor suppressor in different cancers is found. Such discrepancies may be due in part to the interaction of specific Rab protein with different effectors or cargos in various tumors. Here, we review recent advances in the roles of Rab GTPases in communicating with other effectors in tumor progression. In this review, we also emphasize dysregulation of Rab-mediated membrane delivery shifting normal cell behaviors toward malignancy. Thus, recovery of the dysregulated vesicle trafficking systems in cancer cells may provide future directions for potential strategy to restrain tumor progression.
Collapse
Affiliation(s)
- Hong-Tai Tzeng
- Department of Pharmacology, National Cheng Kung University, College of Medicine, No.1, University Road, Tainan, 70101, Taiwan, People's Republic of China
| | - Yi-Ching Wang
- Department of Pharmacology, National Cheng Kung University, College of Medicine, No.1, University Road, Tainan, 70101, Taiwan, People's Republic of China. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan, People's Republic of China.
| |
Collapse
|
99
|
Abstract
Integrins are a family of heterodimeric receptors that bind to components of the extracellular matrix and influence cellular processes as varied as proliferation and migration. These effects are achieved by tight spatiotemporal control over intracellular signalling pathways, including those that mediate cytoskeletal reorganisation. The ability of integrins to bind to ligands is governed by integrin conformation, or activity, and this is widely acknowledged to be an important route to the regulation of integrin function. Over the last 15 years, however, the pathways that regulate endocytosis and recycling of integrins have emerged as major players in controlling integrin action, and studying integrin trafficking has revealed fresh insight into the function of this fascinating class of extracellular matrix receptors, in particular in the context of cell migration and invasion. Here, we review our current understanding of the contribution of integrin trafficking to cell motility.
Collapse
Affiliation(s)
- Nikki R Paul
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M13 9PT, UK
| | - Guillaume Jacquemet
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M13 9PT, UK
| | - Patrick T Caswell
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M13 9PT, UK.
| |
Collapse
|
100
|
Rab11 and phosphoinositides: A synergy of signal transducers in the control of vesicular trafficking. Adv Biol Regul 2016; 63:132-139. [PMID: 27658318 DOI: 10.1016/j.jbior.2016.09.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 09/13/2016] [Indexed: 12/11/2022]
Abstract
Rab11 and phosphoinositides are signal transducers able to direct the delivery of membrane components to the cell surface. Rab11 is a small GTPase that, by cycling from an active to an inactive state, controls key events of vesicular transport, while phosphoinositides are major determinants of membrane identity, modulating compartmentalized small GTPase function. By sharing common effectors, these two signal transducers synergistically direct vesicular traffic to specific intracellular membranes. This review focuses on the latest advances regarding the mechanisms that ensure the compartmentalized regulation of Rab11 function through its interaction with phosphoinositides.
Collapse
|