51
|
Crim1 has cell-autonomous and paracrine roles during embryonic heart development. Sci Rep 2016; 6:19832. [PMID: 26821812 PMCID: PMC4731764 DOI: 10.1038/srep19832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/16/2015] [Indexed: 12/31/2022] Open
Abstract
The epicardium has a critical role during embryonic development, contributing epicardium-derived lineages to the heart, as well as providing regulatory and trophic signals necessary for myocardial development. Crim1 is a unique trans-membrane protein expressed by epicardial and epicardially-derived cells but its role in cardiogenesis is unknown. Using knockout mouse models, we observe that loss of Crim1 leads to congenital heart defects including epicardial defects and hypoplastic ventricular compact myocardium. Epicardium-restricted deletion of Crim1 results in increased epithelial-to-mesenchymal transition and invasion of the myocardium in vivo, and an increased migration of primary epicardial cells. Furthermore, Crim1 appears to be necessary for the proliferation of epicardium-derived cells (EPDCs) and for their subsequent differentiation into cardiac fibroblasts. It is also required for normal levels of cardiomyocyte proliferation and apoptosis, consistent with a role in regulating epicardium-derived trophic factors that act on the myocardium. Mechanistically, Crim1 may also modulate key developmentally expressed growth factors such as TGFβs, as changes in the downstream effectors phospho-SMAD2 and phospho-ERK1/2 are observed in the absence of Crim1. Collectively, our data demonstrates that Crim1 is essential for cell-autonomous and paracrine aspects of heart development.
Collapse
|
52
|
Ruiz-Villalba A, Hoppler S, van den Hoff MJB. Wnt signaling in the heart fields: Variations on a common theme. Dev Dyn 2016; 245:294-306. [PMID: 26638115 DOI: 10.1002/dvdy.24372] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 12/27/2022] Open
Abstract
Wnt signaling plays an essential role in development and differentiation. Heart development is initiated with the induction of precardiac mesoderm requiring the tightly and spatially controlled regulation of canonical and noncanonical Wnt signaling pathways. The role of Wnt signaling in subsequent development of the heart fields is to a large extent unclear. We will discuss the role of Wnt signaling in the development of the arterial and venous pole of the heart, highlighting the dual roles of Wnt signaling with respect to its time- and dosage-dependent effects and the balance between the canonical and noncanonical signaling. Canonical signaling appears to be involved in retaining the cardiac precursors in a proliferative and precursor state, whereas noncanonical signaling promotes their differentiation. Thereafter, both canonical and noncanonical signaling regulate specific steps in differentiation of the cardiac compartments. Because heart development is a contiguous, rather than a sequential, process, analyses tend only to show a single timeframe of development. The repetitive alternating and reciprocal effect of canonical and noncanonical signaling is lost when studied in homogenates. Without the simultaneous in vivo visualization of the different Wnt signaling pathways, the mechanism of Wnt signaling in heart development remains elusive.
Collapse
Affiliation(s)
- Adrián Ruiz-Villalba
- Academic Medical Center, Department of Anatomy, Embryology and Physiology, Amsterdam, The Netherlands
| | - Stefan Hoppler
- Cardiovascular Biology and Medicine Research Programme, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Maurice J B van den Hoff
- Academic Medical Center, Department of Anatomy, Embryology and Physiology, Amsterdam, The Netherlands
| |
Collapse
|
53
|
Fang M, Xiang FL, Braitsch CM, Yutzey KE. Epicardium-derived fibroblasts in heart development and disease. J Mol Cell Cardiol 2015; 91:23-7. [PMID: 26718723 DOI: 10.1016/j.yjmcc.2015.12.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/18/2015] [Accepted: 12/20/2015] [Indexed: 12/16/2022]
Abstract
The majority of cardiac fibroblasts in a mature mammalian heart are derived from the epicardium during prenatal development and reactivate developmental programs during the progression of fibrotic disease. In addition, epicardial activation, proliferation, and fibrosis occur with ischemic, but not hypertensive injury. Here we review cellular and molecular mechanisms that control epicardium-derived cell lineages during development and disease with a focus on cardiac fibroblasts. This article is part of a special issue entitled "Fibrosis and Myocardial Remodeling".
Collapse
Affiliation(s)
- Ming Fang
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, ML 7020, Cincinnati, OH 45229, USA
| | - Fu-Li Xiang
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, ML 7020, Cincinnati, OH 45229, USA
| | - Caitlin M Braitsch
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, ML 7020, Cincinnati, OH 45229, USA
| | - Katherine E Yutzey
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, ML 7020, Cincinnati, OH 45229, USA.
| |
Collapse
|
54
|
Shahbazi MN, Perez-Moreno M. Connections between cadherin-catenin proteins, spindle misorientation, and cancer. Tissue Barriers 2015; 3:e1045684. [PMID: 26451345 DOI: 10.1080/21688370.2015.1045684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/18/2015] [Accepted: 04/21/2015] [Indexed: 10/25/2022] Open
Abstract
Cadherin-catenin mediated adhesion is an important determinant of tissue architecture in multicellular organisms. Cancer progression and maintenance is frequently associated with loss of their expression or functional activity, which not only leads to decreased cell-cell adhesion, but also to enhanced tumor cell proliferation and loss of differentiated characteristics. This review is focused on the emerging implications of cadherin-catenin proteins in the regulation of polarized divisions through their connections with the centrosomes, cytoskeleton, tissue tension and signaling pathways; and illustrates how alterations in cadherin-catenin levels or functional activity may render cells susceptible to transformation through the loss of their proliferation-differentiation balance.
Collapse
Affiliation(s)
- Marta N Shahbazi
- Department of Physiology, Development, and Neuroscience; University of Cambridge ; Cambridge, UK
| | - Mirna Perez-Moreno
- Epithelial Cell Biology Group; Cancer Cell Biology Program; Spanish National Cancer Research Centre ; Madrid, Spain
| |
Collapse
|
55
|
Wei K, Díaz-Trelles R, Liu Q, Diez-Cuñado M, Scimia MC, Cai W, Sawada J, Komatsu M, Boyle JJ, Zhou B, Ruiz-Lozano P, Mercola M. Developmental origin of age-related coronary artery disease. Cardiovasc Res 2015; 107:287-94. [PMID: 26054850 DOI: 10.1093/cvr/cvv167] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/21/2015] [Indexed: 11/14/2022] Open
Abstract
AIM Age and injury cause structural and functional changes in coronary artery smooth muscle cells (caSMCs) that influence the pathogenesis of coronary artery disease. Although paracrine signalling is widely believed to drive phenotypic changes in caSMCs, here we show that developmental origin within the fetal epicardium can have a profound effect as well. METHODS AND RESULTS Fluorescent dye and transgene pulse-labelling techniques in mice revealed that the majority of caSMCs are derived from Wt1(+), Gata5-Cre(+) cells that migrate before E12.5, whereas a minority of cells are derived from a later-emigrating, Wt1(+), Gata5-Cre(-) population. We functionally evaluated the influence of early emigrating cells on coronary artery development and disease by Gata5-Cre excision of Rbpj, which prevents their contribution to coronary artery smooth muscle cells. Ablation of the Gata5-Cre(+) population resulted in coronary arteries consisting solely of Gata5-Cre(-) caSMCs. These coronary arteries appeared normal into early adulthood; however, by 5-8 months of age, they became progressively fibrotic, lost the adventitial outer elastin layer, were dysfunctional and leaky, and animals showed early mortality. CONCLUSION Taken together, these data reveal heterogeneity in the fetal epicardium that is linked to coronary artery integrity, and that distortion of the coronaries epicardial origin predisposes to adult onset disease.
Collapse
Affiliation(s)
- Ke Wei
- Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA Sanford-Burnham Medical Research Institute, 6400 Sanger Road, Orlando, FL 32827, USA Department of Bioengineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA 92037, USA
| | - Ramon Díaz-Trelles
- Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA Sanford-Burnham Medical Research Institute, 6400 Sanger Road, Orlando, FL 32827, USA Department of Bioengineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA 92037, USA
| | - Qiaozhen Liu
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Marta Diez-Cuñado
- Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA Sanford-Burnham Medical Research Institute, 6400 Sanger Road, Orlando, FL 32827, USA Department of Bioengineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA 92037, USA Stanford University School of Medicine, 300 Pasteur Dr, Stanford, CA 94305, USA
| | - Maria-Cecilia Scimia
- Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA Sanford-Burnham Medical Research Institute, 6400 Sanger Road, Orlando, FL 32827, USA
| | - Wenqing Cai
- Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA Sanford-Burnham Medical Research Institute, 6400 Sanger Road, Orlando, FL 32827, USA Department of Bioengineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA 92037, USA
| | - Junko Sawada
- Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA Sanford-Burnham Medical Research Institute, 6400 Sanger Road, Orlando, FL 32827, USA
| | - Masanobu Komatsu
- Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA Sanford-Burnham Medical Research Institute, 6400 Sanger Road, Orlando, FL 32827, USA
| | - Joseph J Boyle
- Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Bin Zhou
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pilar Ruiz-Lozano
- Stanford University School of Medicine, 300 Pasteur Dr, Stanford, CA 94305, USA
| | - Mark Mercola
- Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA Sanford-Burnham Medical Research Institute, 6400 Sanger Road, Orlando, FL 32827, USA Department of Bioengineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
56
|
Wu M, Li J. Numb family proteins: novel players in cardiac morphogenesis and cardiac progenitor cell differentiation. Biomol Concepts 2015; 6:137-48. [PMID: 25883210 PMCID: PMC4589147 DOI: 10.1515/bmc-2015-0003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/16/2015] [Indexed: 11/15/2022] Open
Abstract
Vertebrate heart formation is a spatiotemporally regulated morphogenic process that initiates with bilaterally symmetric cardiac primordial cells migrating toward the midline to form a linear heart tube. The heart tube then elongates and undergoes a series of looping morphogenesis, followed by expansions of regions that are destined to become primitive heart chambers. During the cardiac morphogenesis, cells derived from the first heart field contribute to the primary heart tube, and cells from the secondary heart field, cardiac neural crest, and pro-epicardial organ are added to the heart tube in a precise spatiotemporal manner. The coordinated addition of these cells and the accompanying endocardial cushion morphogenesis yield the atrial, ventricular, and valvular septa, resulting in the formation of a four-chambered heart. Perturbation of progenitor cells' deployment and differentiation leads to a spectrum of congenital heart diseases. Two of the genes that were recently discovered to be involved in cardiac morphogenesis are Numb and Numblike. Numb, an intracellular adaptor protein, distinguishes sibling cell fates by its asymmetric distribution between the two daughter cells and its ability to inhibit Notch signaling. Numb regulates cardiac progenitor cell differentiation in Drosophila and controls heart tube laterality in Zebrafish. In mice, Numb and Numblike, the Numb family proteins (NFPs), function redundantly and have been shown to be essential for epicardial development, cardiac progenitor cell differentiation, outflow tract alignment, atrioventricular septum morphogenesis, myocardial trabeculation, and compaction. In this review, we will summarize the functions of NFPs in cardiac development and discuss potential mechanisms of NFPs in the regulation of cardiac development.
Collapse
Affiliation(s)
- M Wu
- Cardiovascular Science Center, Albany Medical College, Albany NY 12208
| | - J Li
- Cardiovascular Science Center, Albany Medical College, Albany NY 12208
| |
Collapse
|
57
|
Di Vito A, Mignogna C, Donato G. The mysterious pathways of cardiac myxomas: a review of histogenesis, pathogenesis and pathology. Histopathology 2014; 66:321-32. [DOI: 10.1111/his.12531] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Anna Di Vito
- Department of Clinical and Experimental Medicine; University of Catanzaro ‘Magna Graecia Medical School; Catanzaro Italy
| | - Chiara Mignogna
- Department of Health Science, Pathology Unit; University of Catanzaro ‘Magna Graecia Medical School; Catanzaro Italy
| | - Giuseppe Donato
- Department of Health Science, Pathology Unit; University of Catanzaro ‘Magna Graecia Medical School; Catanzaro Italy
| |
Collapse
|
58
|
Diman NYSG, Brooks G, Kruithof BPT, Elemento O, Seidman JG, Seidman CE, Basson CT, Hatcher CJ. Tbx5 is required for avian and Mammalian epicardial formation and coronary vasculogenesis. Circ Res 2014; 115:834-44. [PMID: 25245104 DOI: 10.1161/circresaha.115.304379] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Holt-Oram syndrome is an autosomal dominant heart-hand syndrome caused by mutations in the TBX5 gene. Overexpression of Tbx5 in the chick proepicardial organ impaired coronary blood vessel formation. However, the potential activity of Tbx5 in the epicardium itself, and the role of Tbx5 in mammalian coronary vasculogenesis, remains largely unknown. OBJECTIVE To evaluate the consequences of altered Tbx5 gene dosage during proepicardial organ and epicardial development in the embryonic chick and mouse. METHODS AND RESULTS Retroviral-mediated knockdown or upregulation of Tbx5 expression in the embryonic chick proepicardial organ and proepicardial-specific deletion of Tbx5 in the embryonic mouse (Tbx5(epi-/)) impaired normal proepicardial organ cell development, inhibited epicardial and coronary blood vessel formation, and altered developmental gene expression. The generation of epicardial-derived cells and their migration into the myocardium were impaired between embryonic day (E) 13.5 to 15.5 in mutant hearts because of delayed epicardial attachment to the myocardium and subepicardial accumulation of epicardial-derived cells. This caused defective coronary vasculogenesis associated with impaired vascular smooth muscle cell recruitment and reduced invasion of cardiac fibroblasts and endothelial cells into myocardium. In contrast to wild-type hearts that exhibited an elaborate ventricular vascular network, Tbx5(epi-/-) hearts displayed a marked decrease in vascular density that was associated with myocardial hypoxia as exemplified by hypoxia inducible factor-1α upregulation and increased binding of hypoxyprobe-1. Tbx5(epi-/-) mice with such myocardial hypoxia exhibited reduced exercise capacity when compared with wild-type mice. CONCLUSIONS Our findings support a conserved Tbx5 dose-dependent requirement for both proepicardial and epicardial progenitor cell development in chick and in mouse coronary vascular formation.
Collapse
Affiliation(s)
- Nata Y S-G Diman
- From the Center for Molecular Cardiology, Greenberg Division of Cardiology (N.Y.S.-G.D., G.B., B.P.T.K., C.T.B., C.J.H.) and Department of Physiology and Biophysics (O.E.), Weill Cornell Medical College, New York, NY; Department of Genetics, Harvard Medical School, Boston, MA (J.G.S., C.E.S.); and Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, PA (C.J.H.)
| | - Gabriel Brooks
- From the Center for Molecular Cardiology, Greenberg Division of Cardiology (N.Y.S.-G.D., G.B., B.P.T.K., C.T.B., C.J.H.) and Department of Physiology and Biophysics (O.E.), Weill Cornell Medical College, New York, NY; Department of Genetics, Harvard Medical School, Boston, MA (J.G.S., C.E.S.); and Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, PA (C.J.H.)
| | - Boudewijn P T Kruithof
- From the Center for Molecular Cardiology, Greenberg Division of Cardiology (N.Y.S.-G.D., G.B., B.P.T.K., C.T.B., C.J.H.) and Department of Physiology and Biophysics (O.E.), Weill Cornell Medical College, New York, NY; Department of Genetics, Harvard Medical School, Boston, MA (J.G.S., C.E.S.); and Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, PA (C.J.H.)
| | - Olivier Elemento
- From the Center for Molecular Cardiology, Greenberg Division of Cardiology (N.Y.S.-G.D., G.B., B.P.T.K., C.T.B., C.J.H.) and Department of Physiology and Biophysics (O.E.), Weill Cornell Medical College, New York, NY; Department of Genetics, Harvard Medical School, Boston, MA (J.G.S., C.E.S.); and Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, PA (C.J.H.)
| | - J G Seidman
- From the Center for Molecular Cardiology, Greenberg Division of Cardiology (N.Y.S.-G.D., G.B., B.P.T.K., C.T.B., C.J.H.) and Department of Physiology and Biophysics (O.E.), Weill Cornell Medical College, New York, NY; Department of Genetics, Harvard Medical School, Boston, MA (J.G.S., C.E.S.); and Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, PA (C.J.H.)
| | - Christine E Seidman
- From the Center for Molecular Cardiology, Greenberg Division of Cardiology (N.Y.S.-G.D., G.B., B.P.T.K., C.T.B., C.J.H.) and Department of Physiology and Biophysics (O.E.), Weill Cornell Medical College, New York, NY; Department of Genetics, Harvard Medical School, Boston, MA (J.G.S., C.E.S.); and Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, PA (C.J.H.)
| | - Craig T Basson
- From the Center for Molecular Cardiology, Greenberg Division of Cardiology (N.Y.S.-G.D., G.B., B.P.T.K., C.T.B., C.J.H.) and Department of Physiology and Biophysics (O.E.), Weill Cornell Medical College, New York, NY; Department of Genetics, Harvard Medical School, Boston, MA (J.G.S., C.E.S.); and Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, PA (C.J.H.).
| | - Cathy J Hatcher
- From the Center for Molecular Cardiology, Greenberg Division of Cardiology (N.Y.S.-G.D., G.B., B.P.T.K., C.T.B., C.J.H.) and Department of Physiology and Biophysics (O.E.), Weill Cornell Medical College, New York, NY; Department of Genetics, Harvard Medical School, Boston, MA (J.G.S., C.E.S.); and Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, PA (C.J.H.).
| |
Collapse
|
59
|
Chin HMS, Nandra K, Clark J, Draviam VM. Need for multi-scale systems to identify spindle orientation regulators relevant to tissue disorganization in solid cancers. Front Physiol 2014; 5:278. [PMID: 25120491 PMCID: PMC4110440 DOI: 10.3389/fphys.2014.00278] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/08/2014] [Indexed: 12/13/2022] Open
Affiliation(s)
| | | | | | - Viji M. Draviam
- Department of Genetics, Cancer Cell Biology, University of CambridgeCambridge, UK
| |
Collapse
|
60
|
Spindle orientation processes in epithelial growth and organisation. Semin Cell Dev Biol 2014; 34:124-32. [PMID: 24997348 DOI: 10.1016/j.semcdb.2014.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/30/2014] [Accepted: 06/16/2014] [Indexed: 02/08/2023]
Abstract
This review focuses on the role of orientated cell division (OCD) in two aspects of epithelial growth, namely layer formation and growth in the epithelial plane. Epithelial stratification is invariably associated with fate asymmetric cell divisions. We discuss this through the example of epidermal stratification where cell division plane regulation facilitates concomitant thickening and cell differentiation. Embryonic neuroepithelia are considered as a special case of epithelial stratification. We highlight early ectodermal layer specification, which sets the epidermal versus neuronal fates, as well as later neurogenesis in vertebrates and mammals. We also discuss the heart epicardium as an example of coordinating OCDs with delamination and subsequent differentiation. Epithelial planar growth is examined both in the context of uniform growth, such as in Xenopus epiboly, the Drosophila wing disc and the mammalian intestinal crypt as well as in anisotropic growth, or elongation, such as Drosophila and vertebrate axial elongation and the mouse palate. Coupling between growth perpendicular to and within epithelial planes is recognised, but so are exceptions, as is the often passive role of spindle orientation sometimes hitherto considered to be an active driver of directional growth.
Collapse
|
61
|
Zhao C, Guo H, Li J, Myint T, Pittman W, Yang L, Zhong W, Schwartz RJ, Schwarz JJ, Singer HA, Tallquist MD, Wu M. Numb family proteins are essential for cardiac morphogenesis and progenitor differentiation. Development 2013; 141:281-95. [PMID: 24335256 DOI: 10.1242/dev.093690] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Numb family proteins (NFPs), including Numb and numb-like (Numbl), are cell fate determinants for multiple progenitor cell types. Their functions in cardiac progenitor differentiation and cardiac morphogenesis are unknown. To avoid early embryonic lethality and study NFP function in later cardiac development, Numb and Numbl were deleted specifically in heart to generate myocardial double-knockout (MDKO) mice. MDKOs were embryonic lethal and displayed a variety of defects in cardiac progenitor differentiation, cardiomyocyte proliferation, outflow tract (OFT) and atrioventricular septation, and OFT alignment. By ablating NFPs in different cardiac populations followed by lineage tracing, we determined that NFPs in the second heart field (SHF) are required for OFT and atrioventricular septation and OFT alignment. MDKOs displayed an SHF progenitor cell differentiation defect, as revealed by a variety of methods including mRNA deep sequencing. Numb regulated cardiac progenitor cell differentiation in an endocytosis-dependent manner. Studies including the use of a transgenic Notch reporter line showed that Notch signaling was upregulated in the MDKO. Suppression of Notch1 signaling in MDKOs rescued defects in p57 expression, proliferation and trabecular thickness. Further studies showed that Numb inhibits Notch1 signaling by promoting the degradation of the Notch1 intracellular domain in cardiomyocytes. This study reveals that NFPs regulate trabecular thickness by inhibiting Notch1 signaling, control cardiac morphogenesis in a Notch1-independent manner, and regulate cardiac progenitor cell differentiation in an endocytosis-dependent manner. The function of NFPs in cardiac progenitor differentiation and cardiac morphogenesis suggests that NFPs might be potential therapeutic candidates for cardiac regeneration and congenital heart diseases.
Collapse
Affiliation(s)
- Chen Zhao
- Cardiovascular Science Center, Albany Medical College, Albany, NY 12208, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
|
63
|
Rudat C, Norden J, Taketo MM, Kispert A. Epicardial function of canonical Wnt-, Hedgehog-, Fgfr1/2-, and Pdgfra-signalling. Cardiovasc Res 2013; 100:411-21. [PMID: 24000064 DOI: 10.1093/cvr/cvt210] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS The embryonic epicardium is a source of smooth muscle cells and fibroblasts of the coronary vasculature and of the myocardium, but the signalling pathways that control mobilization and differentiation of epicardial cells are only partly known. We aimed to (re-)evaluate the relevance of canonical Wnt-, Hedgehog (Hh)-, Fibroblast growth factor receptor (Fgfr)1/2-, and platelet-derived growth factor receptor alpha (Pdgfra)-signalling in murine epicardial development. METHODS AND RESULTS We used a T-box 18 (Tbx18)(cre)-mediated conditional approach to delete and to stabilize, respectively, the downstream mediator of canonical Wnt-signalling, beta-catenin (Ctnnb1), to delete and activate the mediator of Hh-signalling, smoothened (Smo), and to delete Fgfr1/Fgfr2 and Pdgfra in murine epicardial development. We show that epicardial loss of Ctnnb1, Smo, or Fgfr1/Fgfr2 does not affect cardiac development, whereas the loss of Pdgfra prevents the differentiation of epicardium-derived cells into mature fibroblasts. Epicardial expression of a stabilized version of Ctnnb1 results in the formation of hyperproliferative epicardial cell clusters; epicardial expression of a constitutively active version of Smo leads to epicardial thickening and loss of epicardial mobilization. CONCLUSION Canonical Wnt-, Hh-, and Fgfr1/Fgfr2-signalling are dispensable for epicardial development, but Pdgfra-signalling is crucial for the differentiation of cardiac fibroblasts from epicardium-derived cells.
Collapse
Affiliation(s)
- Carsten Rudat
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str.1, Hannover D-30625, Germany
| | | | | | | |
Collapse
|
64
|
Velecela V, Lettice LA, Chau YY, Slight J, Berry RL, Thornburn A, Gunst QD, van den Hoff M, Reina M, Martínez FO, Hastie ND, Martínez-Estrada OM. WT1 regulates the expression of inhibitory chemokines during heart development. Hum Mol Genet 2013; 22:5083-95. [PMID: 23900076 DOI: 10.1093/hmg/ddt358] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The embryonic epicardium is an important source of cardiovascular precursor cells and paracrine factors that are required for adequate heart formation. Signaling pathways regulated by WT1 that promote heart development have started to be described; however, there is little information on signaling pathways regulated by WT1 that could act in a negative manner. Transcriptome analysis of Wt1KO epicardial cells reveals an unexpected role for WT1 in repressing the expression of interferon-regulated genes that could be involved in a negative regulation of heart morphogenesis. Here, we showed that WT1 is required to repress the expression of the chemokines Ccl5 and Cxcl10 in epicardial cells. We observed an inverse correlation of Wt1 and the expression of Cxcl10 and Ccl5 during epicardium development. Chemokine receptor analyses of hearts from Wt1(gfp/+) mice demonstrate the differential expression of their chemokine receptors in GFP(+) epicardial enriched cells and GFP(-) cells. Functional assays demonstrate that CXCL10 and CCL5 inhibit epicardial cells migration and the proliferation of cardiomyocytes respectively. WT1 regulates the expression levels of Cxcl10 and Ccl5 in epicardial cells directly and indirectly through increasing the levels of IRF7. As epicardial cell reactivation after a myocardial damage is linked with WT1 expression, the present work has potential implications in adult heart repair.
Collapse
Affiliation(s)
- Victor Velecela
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Edinburgh EH4 2XU, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Abstract
Epicardial derivatives, including vascular smooth muscle cells and cardiac fibroblasts, are crucial for proper development of the coronary vasculature and cardiac fibrous matrix, both of which support myocardial integrity and function in the normal heart. Epicardial formation, epithelial-to-mesenchymal transition (EMT), and epicardium-derived cell (EPDC) differentiation are precisely regulated by complex interactions among signaling molecules and transcription factors. Here we review the roles of critical transcription factors that are required for specific aspects of epicardial development, EMT, and EPDC lineage specification in development and disease. Epicardial cells and subepicardial EPDCs express transcription factors including Wt1, Tcf21, Tbx18, and Nfatc1. As EPDCs invade the myocardium, epicardial progenitor transcription factors such as Wt1 are downregulated. EPDC differentiation into SMC and fibroblast lineages is precisely regulated by a complex network of transcription factors, including Tcf21 and Tbx18. These and other transcription factors also regulate epicardial EMT, EPDC invasion, and lineage maturation. In addition, there is increasing evidence that epicardial transcription factors are reactivated with adult cardiac ischemic injury. Determining the function of reactivated epicardial cells in myocardial infarction and fibrosis may improve our understanding of the pathogenesis of heart disease.
Collapse
|
66
|
|
67
|
McGowan SE, McCoy DM. Platelet-derived growth factor-A and sonic hedgehog signaling direct lung fibroblast precursors during alveolar septal formation. Am J Physiol Lung Cell Mol Physiol 2013; 305:L229-39. [PMID: 23748534 DOI: 10.1152/ajplung.00011.2013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alveolar septal formation is required to support the respiration of growing mammals; in humans effacement of the alveolar surface and impaired gas exchange are critical features of emphysema and pulmonary fibrosis. Platelet-derived growth factor-A (PDGF-A) and its receptor PDGF-receptor-α (PDGFRα) are required for secondary septal elongation in mice during postnatal days 4 through 12 and they regulate the proliferation and septal location of interstitial fibroblasts. We examined lung fibroblasts (LF) to learn whether PDGFRα expression distinguished a population of precursor cells, with enhanced proliferative and migratory capabilities. We identified a subpopulation of LF that expresses sonic hedgehog (Shh) and stem cell antigen-1 (Sca1). PDGF-A and Shh both increased cytokinesis and chemotaxis in vitro, but through different mechanisms. In primary LF cultures, Shh signaled exclusively through a noncanonical pathway involving generation of Rac1-GTP, whereas both the canonical and noncanonical pathways were used by the Mlg neonatal mouse LF cell line. LF preferentially oriented their primary cilia toward their anterior pole during migration. Furthermore, a larger proportion of PDGFRα-expressing LF, which are more abundant at the septal tips, bore primary cilia compared with other alveolar cells. In pulmonary emphysema, destroyed alveolar septa do not regenerate, in part because cells fail to assume a configuration that allows efficient gas exchange. Better understanding how LF are positioned during alveolar development could identify signaling pathways, which promote alveolar septal regeneration.
Collapse
Affiliation(s)
- Stephen E McGowan
- Department of Veterans Affairs Research Service, Iowa City, IA, USA.
| | | |
Collapse
|
68
|
Tao G, Miller LJ, Lincoln J. Snai1 is important for avian epicardial cell transformation and motility. Dev Dyn 2013; 242:699-708. [PMID: 23553854 DOI: 10.1002/dvdy.23967] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/21/2013] [Accepted: 03/25/2013] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Formation of the epicardium requires several cellular processes including migration, transformation, invasion, and differentiation in order to give rise to fibroblast, smooth muscle, coronary endothelial and myocyte cell lineages within the developing myocardium. Snai1 is a zinc finger transcription factor that plays an important role in regulating cell survival and fate during embryonic development and under pathological conditions. However, its role in avian epicardial development has not been examined. RESULTS Here we show that Snai1 is highly expressed in epicardial cells from as early as the proepicardial cell stage and its expression is maintained as proepicardial cells migrate and spread over the surface of the myocardium and undergo epicardial-to-mesenchymal transformation in the generation of epicardial-derived cells. Using multiple in vitro assays, we show that Snai1 overexpression in chick explants enhances proepicardial cell migration at Hamburger Hamilton Stage (HH St.) 16, and epicardial-to-mesenchymal transformation, cell migration, and invasion at HH St. 24. Further, we demonstrate that Snai1-mediated cell migration requires matrix metalloproteinase activity, and MMP15 is sufficient for this process. CONCLUSIONS Together our data provide new insights into the multiple roles that Snai1 has in regulating avian epicardial development.
Collapse
Affiliation(s)
- Ge Tao
- Molecular Cell and Developmental Biology Graduate Program, Leonard M. Miller School of Medicine, Miami, Florida, USA
| | | | | |
Collapse
|
69
|
Nakajima Y, Imanaka-Yoshida K. New insights into the developmental mechanisms of coronary vessels and epicardium. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 303:263-317. [PMID: 23445813 DOI: 10.1016/b978-0-12-407697-6.00007-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During heart development, the epicardium, which originates from the proepicardial organ (PE), is a source of coronary vessels. The PE develops from the posterior visceral mesoderm of the pericardial coelom after stimulation with a combination of weak bone morphogenetic protein and strong fibroblast growth factor (FGF) signaling. PE-derived cells migrate across the heart surface to form the epicardial sheet, which subsequently seeds multipotent subepicardial mesenchymal cells via epithelial-mesenchymal transition, which is regulated by several signaling pathways including retinoic acid, FGF, sonic hedgehog, Wnt, transforming growth factor-β, and platelet-derived growth factor. Subepicardial endothelial progenitors eventually generate the coronary vascular plexus, which acquires an arterial or venous phenotype, connects with the sinus venosus and aortic sinuses, and then matures through the recruitment of vascular smooth muscle cells under the regulation of complex growth factor signaling pathways. These developmental programs might be activated in the adult heart after injury and play a role in the regeneration/repair of the myocardium.
Collapse
Affiliation(s)
- Yuji Nakajima
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan.
| | | |
Collapse
|
70
|
Abstract
Epithelial-mesenchymal transition (EMT) is a crucial, evolutionarily conserved process that occurs during development and is essential for shaping embryos. Also implicated in cancer, this morphological transition is executed through multiple mechanisms in different contexts, and studies suggest that the molecular programs governing EMT, albeit still enigmatic, are embedded within developmental programs that regulate specification and differentiation. As we review here, knowledge garnered from studies of EMT during gastrulation, neural crest delamination and heart formation have furthered our understanding of tumor progression and metastasis.
Collapse
Affiliation(s)
- Jormay Lim
- Institute of Molecular Cell Biology, ASTAR, 61 Biopolis Drive, Singapore
| | | |
Collapse
|
71
|
Numb/Numbl-Opo antagonism controls retinal epithelium morphogenesis by regulating integrin endocytosis. Dev Cell 2012; 23:782-95. [PMID: 23041384 DOI: 10.1016/j.devcel.2012.09.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 06/04/2012] [Accepted: 09/06/2012] [Indexed: 12/25/2022]
Abstract
Polarized trafficking of adhesion receptors plays a pivotal role in controlling cellular behavior during morphogenesis. Particularly, clathrin-dependent endocytosis of integrins has long been acknowledged as essential for cell migration. However, little is known about the contribution of integrin trafficking to epithelial tissue morphogenesis. Here we show how the transmembrane protein Opo, previously described for its essential role during optic cup folding, plays a fundamental role in this process. Through interaction with the PTB domain of the clathrin adaptors Numb and Numbl via an integrin-like NPxF motif, Opo antagonizes Numb/Numbl function and acts as a negative regulator of integrin endocytosis in vivo. Accordingly, numb/numbl gain-of-function experiments in teleost embryos mimic the retinal malformations observed in opo mutants. We propose that developmental regulator Opo enables polarized integrin localization by modulating Numb/Numbl, thus directing the basal constriction that shapes the vertebrate retina epithelium.
Collapse
|
72
|
Thomason RT, Bader DM, Winters NI. Comprehensive timeline of mesodermal development in the quail small intestine. Dev Dyn 2012; 241:1678-94. [PMID: 22930586 DOI: 10.1002/dvdy.23855] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND To generate the mature intestine, splanchnic mesoderm diversifies into six different tissue layers each with multiple cell types through concurrent and complex morphogenetic events. Hindering the progress of research in the field is the lack of a detailed description of the fundamental morphological changes that constitute development of the intestinal mesoderm. RESULTS We used immunofluorescence and morphometric analyses of wild-type and Tg(tie1:H2B-eYFP) quail embryos to establish a comprehensive timeline of mesodermal development in the avian intestine. The following landmark features were analyzed from appearance of the intestinal primordium through generation of the definitive structure: radial compartment formation, basement membrane dynamics, mesothelial differentiation, mesenchymal expansion and growth patterns, smooth muscle differentiation, and maturation of the vasculature. In this way, structural relationships between mesodermal components were identified over time. CONCLUSIONS This integrated analysis presents a roadmap for investigators and clinicians to evaluate diverse experimental data obtained at individual stages of intestinal development within the longitudinal context of intestinal morphogenesis.
Collapse
Affiliation(s)
- Rebecca T Thomason
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | | | | |
Collapse
|
73
|
Niessen MT, Iden S, Niessen CM. The in vivo function of mammalian cell and tissue polarity regulators--how to shape and maintain the epidermal barrier. J Cell Sci 2012; 125:3501-10. [PMID: 22935653 DOI: 10.1242/jcs.092890] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The establishment and maintenance of cell and tissue polarity is crucial for a range of biological processes, such as oriented division, migration, adhesion and barrier function. The molecular pathways that regulate cell and tissue polarity have been extensively studied in lower organisms as well as in mammalian cell culture. By contrast, relatively little is still known about how polarization regulates the in vivo formation and homeostasis of mammalian tissues. Several recent papers have identified crucial roles for mammalian polarity proteins in a range of in vivo processes, including stem cell behavior, cell fate determination, junction formation and maintenance and organ development. Using the epidermis of the skin as a model system, this Commentary aims to discuss the in vivo significance of cell and tissue polarity in the regulation of mammalian tissue morphogenesis, homeostasis and disease. Specifically, we discuss the mechanisms by which the molecular players previously identified to determine polarity in vitro and/or in lower organisms regulate epidermal stratification; orient cell division to drive cell fate determination within the epidermal lineage; and orient hair follicles. We also describe how altered polarity signaling contributes to skin cancer.
Collapse
Affiliation(s)
- Michaela T Niessen
- Department of Dermatology, Center for Molecular Medicine, Robert Kochstrasse 21, 50931 Cologne, Germany
| | | | | |
Collapse
|
74
|
Bhattacharya A, Klann E. The molecular basis of cognitive deficits in pervasive developmental disorders. Learn Mem 2012; 19:434-43. [PMID: 22904374 DOI: 10.1101/lm.025007.111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Persons with pervasive developmental disorders (PDD) exhibit a range of cognitive deficits that hamper their quality of life, including difficulties involving communication, sociability, and perspective-taking. In recent years, a variety of studies in mice that model genetic syndromes with a high risk of PDD have provided insights into the underlying molecular mechanisms associated with these disorders. What is less appreciated is how the molecular anomalies affect neuronal and circuit function to give rise to the cognitive deficits associated with PDD. In this review, we describe genetic mutations that cause PDD and discuss how they alter fundamental social and cognitive processes. We then describe efforts to correct cognitive impairments associated with these disorders and identify areas of further inquiry in the search for molecular targets for therapeutics for PDD.
Collapse
Affiliation(s)
- Aditi Bhattacharya
- Center for Neural Science, New York University, New York, New York 10003, USA
| | | |
Collapse
|
75
|
von Gise A, Pu WT. Endocardial and epicardial epithelial to mesenchymal transitions in heart development and disease. Circ Res 2012; 110:1628-45. [PMID: 22679138 DOI: 10.1161/circresaha.111.259960] [Citation(s) in RCA: 311] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Epithelial to mesenchymal transition (EMT) converts epithelial cells to mobile and developmentally plastic mesenchymal cells. All cells in the heart arise from one or more EMTs. Endocardial and epicardial EMTs produce most of the noncardiomyocyte lineages of the mature heart. Endocardial EMT generates valve progenitor cells and is necessary for formation of the cardiac valves and for complete cardiac septation. Epicardial EMT is required for myocardial growth and coronary vessel formation, and it generates cardiac fibroblasts, vascular smooth muscle cells, a subset of coronary endothelial cells, and possibly a subset of cardiomyocytes. Emerging studies suggest that these developmental mechanisms are redeployed in adult heart valve disease, in cardiac fibrosis, and in myocardial responses to ischemic injury. Redirection and amplification of disease-related EMTs offer potential new therapeutic strategies and approaches for treatment of heart disease. Here, we review the role and molecular regulation of endocardial and epicardial EMT in fetal heart development, and we summarize key literature implicating reactivation of endocardial and epicardial EMT in adult heart disease.
Collapse
Affiliation(s)
- Alexander von Gise
- Department of Cardiology, Children's Hospital Boston, 300 Longwood Ave, Boston, MA 02115, USA
| | | |
Collapse
|
76
|
Yang J, Bücker S, Jungblut B, Böttger T, Cinnamon Y, Tchorz J, Müller M, Bettler B, Harvey R, Sun QY, Schneider A, Braun T. Inhibition of Notch2 by Numb/Numblike controls myocardial compaction in the heart. Cardiovasc Res 2012; 96:276-85. [PMID: 22865640 DOI: 10.1093/cvr/cvs250] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AIMS The ventricular wall of the heart is composed of trabeculated and compact layers, which are separated by yet unknown processes during embryonic development. Here, we wanted to explore the role of Notch2 and Numb/Numblike for myocardial trabeculation and compaction. METHODS AND RESULTS We found that Notch2 activity is specifically down-regulated in the compact layer during cardiac development in the mouse. The biological role of Notch2 down-regulation was investigated by the expression of constitutively active Notch2 in the myocardium of transgenic mice, resulting in hypertrabeculation, reduced compaction, and ventricular septum defects. To disclose the mechanism that inhibited Notch2 activity during the formation of myocardial layers, we analysed potential suppressors of Notch signalling. We unveiled that concomitant but not separate ablation of Numb and Numblike in the developing heart leads to increased Notch2 activity along with hypertrabeculation, reduced compaction, and ventricular septum defects, phenocopying effects gained by overexpression of constitutively active Notch2. Expression profiling revealed a strong up-regulation of Bmp10 in Numb/Numblike mutant hearts, which might also interfere with trabeculation and compaction. CONCLUSION This study identified potential novel roles of Numb/Numblike in regulating trabeculation and compaction by inhibiting Notch2 and Bmp10 signalling.
Collapse
Affiliation(s)
- Jiwen Yang
- Department of Cardiac Development and Remodelling, Max-Planck-Institute for Heart and Lung Research, Ludwigstr. 43, Bad Nauheim 61231, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Winters NI, Thomason RT, Bader DM. Identification of a novel developmental mechanism in the generation of mesothelia. Development 2012; 139:2926-34. [PMID: 22764055 PMCID: PMC3403102 DOI: 10.1242/dev.082396] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2012] [Indexed: 01/16/2023]
Abstract
Mesothelium is the surface layer of all coelomic organs and is crucial for the generation of their vasculature. Still, our understanding of the genesis of this essential cell type is restricted to the heart where a localized exogenous population of cells, the proepicardium, migrates to and envelops the myocardium supplying mesothelial, vascular and stromal cell lineages. Currently it is not known whether this pattern of development is specific to the heart or applies broadly to other coelomic organs. Using two independent long-term lineage-tracing studies, we demonstrate that mesothelial progenitors of the intestine are intrinsic to the gut tube anlage. Furthermore, a novel chick-quail chimera model of gut morphogenesis reveals these mesothelial progenitors are broadly distributed throughout the gut primordium and are not derived from a localized and exogenous proepicardium-like source of cells. These data demonstrate an intrinsic origin of mesothelial cells to a coelomic organ and provide a novel mechanism for the generation of mesothelial cells.
Collapse
Affiliation(s)
- Nichelle I. Winters
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Rebecca T. Thomason
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - David M. Bader
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
78
|
Kovacic JC, Mercader N, Torres M, Boehm M, Fuster V. Epithelial-to-mesenchymal and endothelial-to-mesenchymal transition: from cardiovascular development to disease. Circulation 2012; 125:1795-808. [PMID: 22492947 DOI: 10.1161/circulationaha.111.040352] [Citation(s) in RCA: 339] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jason C Kovacic
- Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA.
| | | | | | | | | |
Collapse
|
79
|
Schlueter J, Brand T. Epicardial progenitor cells in cardiac development and regeneration. J Cardiovasc Transl Res 2012; 5:641-53. [PMID: 22653801 DOI: 10.1007/s12265-012-9377-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 05/15/2012] [Indexed: 01/25/2023]
Abstract
The epicardium forms an epithelial layer on the surface of the heart. It is derived from a cluster of mesothelial cells, which is termed the proepicardium. The proepicardium gives rise not only to the epicardium but also to epicardium-derived cells. These cells populate the myocardial wall and differentiate into smooth muscle cells, fibroblast, and possibly endothelial cells. In this review, the formation of the proepicardium is discussed. Marker genes, suitable to identify these cells in the embryo and in the adult, are introduced. Recent evidence suggests that the PE is made up of distinct cell populations. These cell lineages can be distinguished on the basis of marker gene expression and differ in their differentiation potential. The role of the epicardium as a resource for cardiac stem cells and its importance in cardiac regeneration is also discussed.
Collapse
Affiliation(s)
- Jan Schlueter
- Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, Hill End Road, Harefield, Middlesex, UK
| | | |
Collapse
|
80
|
The role of Wt1 in regulating mesenchyme in cancer, development, and tissue homeostasis. Trends Genet 2012; 28:515-24. [PMID: 22658804 DOI: 10.1016/j.tig.2012.04.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/17/2012] [Accepted: 04/30/2012] [Indexed: 12/17/2022]
Abstract
From both the fundamental and clinical perspectives, there is growing interest in mesenchymal cells and the mechanisms that regulate the two-way switch between mesenchymal and epithelial states. Here, we review recent findings showing that the Wilms' tumor gene (Wt1) is a key regulator of mesenchyme maintenance and the mesenchyme to epithelial balance in the development of certain mesodermal organs. We summarize recent experiments demonstrating, unexpectedly, that Wt1 is also essential for the integrity or function of multiple adult tissues, mainly, we argue, through regulating mesenchymal cells. We also discuss growing evidence that implicates Wt1 in tissue repair and regeneration. Drawing on these findings, we highlight the similarities between Wt1-expressing cells in different tissues. We believe that future studies aimed at elucidating the mechanisms underlying the functions of Wt1 in adult cells will reveal key cell types, pathways, and molecules regulating adult tissue homeostasis and repair.
Collapse
|
81
|
Organogenesis of the vertebrate heart. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:17-29. [DOI: 10.1002/wdev.68] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
82
|
Wessels A, van den Hoff MJB, Adamo RF, Phelps AL, Lockhart MM, Sauls K, Briggs LE, Norris RA, van Wijk B, Perez-Pomares JM, Dettman RW, Burch JBE. Epicardially derived fibroblasts preferentially contribute to the parietal leaflets of the atrioventricular valves in the murine heart. Dev Biol 2012; 366:111-24. [PMID: 22546693 DOI: 10.1016/j.ydbio.2012.04.020] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 04/11/2012] [Accepted: 04/16/2012] [Indexed: 12/27/2022]
Abstract
The importance of the epicardium for myocardial and valvuloseptal development has been well established; perturbation of epicardial development results in cardiac abnormalities, including thinning of the ventricular myocardial wall and malformations of the atrioventricular valvuloseptal complex. To determine the spatiotemporal contribution of epicardially derived cells to the developing fibroblast population in the heart, we have used a mWt1/IRES/GFP-Cre mouse to trace the fate of EPDCs from embryonic day (ED)10 until birth. EPDCs begin to populate the compact ventricular myocardium around ED12. The migration of epicardially derived fibroblasts toward the interface between compact and trabecular myocardium is completed around ED14. Remarkably, epicardially derived fibroblasts do not migrate into the trabecular myocardium until after ED17. Migration of EPDCs into the atrioventricular cushion mesenchyme commences around ED12. As development progresses, the number of EPDCs increases significantly, specifically in the leaflets which derive from the lateral atrioventricular cushions. In these developing leaflets the epicardially derived fibroblasts eventually largely replace the endocardially derived cells. Importantly, the contribution of EPDCs to the leaflets derived from the major AV cushions is very limited. The differential contribution of EPDCs to the various leaflets of the atrioventricular valves provides a new paradigm in valve development and could lead to new insights into the pathogenesis of abnormalities that preferentially affect individual components of this region of the heart. The notion that there is a significant difference in the contribution of epicardially and endocardially derived cells to the individual leaflets of the atrioventricular valves has also important pragmatic consequences for the use of endocardial and epicardial cre-mouse models in studies of heart development.
Collapse
Affiliation(s)
- Andy Wessels
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Abstract
The epicardium, the tissue layer covering the cardiac muscle (myocardium), develops from the proepicardium, a mass of coelomic progenitors located at the venous pole of the embryonic heart. Proepicardium cells attach to and spread over the myocardium to form the primitive epicardial epithelium. The epicardium subsequently undergoes an epithelial-to-mesenchymal transition to give rise to a population of epicardium-derived cells, which in turn invade the heart and progressively differentiate into various cell types, including cells of coronary blood vessels and cardiac interstitial cells. Epicardial cells and epicardium-derived cells signal to the adjacent cardiac muscle in a paracrine fashion, promoting its proliferation and expansion. Recently, high expectations have been raised about the epicardium as a candidate source of cells for the repair of the damaged heart. Because of its developmental importance and therapeutic potential, current research on this topic focuses on the complex signals that control epicardial biology. This review describes the signaling pathways involved in the different stages of epicardial development and discusses the potential of epicardial signals as targets for the development of therapies to repair the diseased heart.
Collapse
|
84
|
Poulson ND, Lechler T. Asymmetric cell divisions in the epidermis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 295:199-232. [PMID: 22449491 DOI: 10.1016/b978-0-12-394306-4.00012-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Generation of three-dimensional tissues with distinct cell types is required for the development of all organs. On its own, mitotic spindle orientation allows tissues to change in length or shape. In combination with intrinsic or extrinsic cues, this can also be coupled to the generation of diverse cell fates-a process known as asymmetric cell division (ACD). Understanding ACDs has been greatly aided by studies in invertebrate model systems, where genetics and live imaging have provided the basis for much of what we know. ACDs also drive the development and differentiation of the epidermis in mammals. While similar to the invertebrate models, the epidermis is distinct in balancing symmetric and asymmetric divisions to yield a tissue of the correct surface area and thickness. Here, we review the roles of spindle orientation in driving both morphogenesis and cell fate decisions. We highlight the epidermis as a unique model system to study not only basic mechanisms of ACD but also their regulation during development.
Collapse
Affiliation(s)
- Nicholas D Poulson
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | | |
Collapse
|
85
|
Abstract
The formation of the heart involves diversification of lineages which differentiate into distinct cardiac cell types or contribute to different regions such as the four cardiac chambers. The heart is the first organ to form in the embryo. However, in parallel with the growth of the organism, before or after birth, the heart has to adapt its size to maintain pumping efficiency. The adult heart has only a mild regeneration potential; thus, strategies to repair the heart after injury are based on the mobilisation of resident cardiac stem cells or the transplantation of external sources of stem cells. We discuss current knowledge on these aspects and raise questions for future research.
Collapse
|
86
|
Abstract
Abstract
The embryonic heart initially consists of only two cell layers, the endocardium and the myocardium. The epicardium, which forms an epithelial layer on the surface of the heart, is derived from a cluster of mesothelial cells developing at the base of the venous inflow tract of the early embryonic heart. This cell cluster is termed the proepicardium and gives rise not only to the epicardium but also to epicardium-derived cells. These cells populate the myocardial wall and differentiate into smooth muscle cells and fibroblasts, while the contribution to the vascular endothelial lineage is uncertain. In this review we will discuss the signaling molecules involved in recruiting mesodermal cells to undergo proepicardium formation and guide these cells to the myocardial surface. Marker genes which are suitable to follow these cells during proepicardium formation and cell migration will be introduced. We will address whether the proepicardium consists of a homogenous cell population or whether different cell lineages are present. Finally the role of the epicardium as a source for cardiac stem cells and its importance in cardiac regeneration, in particular in the zebrafish and mouse model systems is discussed.
Collapse
Affiliation(s)
- Jan Schlueter
- 1Harefield Heart Science Centre, National Heart
and Lung Institute, Imperial College London, Hill End Road, Harefield,
Middlesex, UB9 6JH, United Kingdom
| | - Thomas Brand
- 1Harefield Heart Science Centre, National Heart
and Lung Institute, Imperial College London, Hill End Road, Harefield,
Middlesex, UB9 6JH, United Kingdom
| |
Collapse
|
87
|
Abstract
After years of extensive scientific discovery much has been learned about the networks that regulate epithelial homeostasis. Loss of expression or functional activity of cell adhesion and cell polarity proteins (including the PAR, crumbs (CRB) and scribble (SCRIB) complexes) is intricately related to advanced stages of tumour progression and invasiveness. But the key roles of these proteins in crosstalk with the Hippo and liver kinase B1 (LKB1)-AMPK pathways and in epithelial function and proliferation indicate that they may also be associated with the early stages of tumorigenesis. For example, deregulation of adhesion and polarity proteins can cause misoriented cell divisions and increased self-renewal of adult epithelial stem cells. In this Review, we highlight some advances in the understanding of how loss of epithelial cell polarity contributes to tumorigenesis.
Collapse
Affiliation(s)
- Fernando Martin-Belmonte
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain.
| | | |
Collapse
|
88
|
Singh MK, Lu MM, Massera D, Epstein JA. MicroRNA-processing enzyme Dicer is required in epicardium for coronary vasculature development. J Biol Chem 2011; 286:41036-45. [PMID: 21969379 DOI: 10.1074/jbc.m111.268573] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The epicardium is a sheet of epithelial cells covering the heart during early cardiac development. In recent years, the epicardium has been identified as an important contributor to cardiovascular development, and epicardium-derived cells have the potential to differentiate into multiple cardiac cell lineages. Some epicardium-derived cells that undergo epithelial-to-mesenchymal transition and delaminate from the surface of the developing heart subsequently invade the myocardium and differentiate into vascular smooth muscle of the developing coronary vasculature. MicroRNAs (miRNAs) have been implicated broadly in tissue patterning and development, including in the heart, but a role in epicardium is unknown. To examine the role of miRNAs during epicardial development, we conditionally deleted the miRNA-processing enzyme Dicer in the proepicardium using Gata5-Cre mice. Epicardial Dicer mutant mice are born in expected Mendelian ratios but die immediately after birth with profound cardiac defects, including impaired coronary vessel development. We found that loss of Dicer leads to impaired epicardial epithelial-to-mesenchymal transition and a reduction in epicardial cell proliferation and differentiation into coronary smooth muscle cells. These results demonstrate a critical role for Dicer, and by implication miRNAs, in murine epicardial development.
Collapse
Affiliation(s)
- Manvendra K Singh
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | |
Collapse
|
89
|
Vega-Hernández M, Kovacs A, De Langhe S, Ornitz DM. FGF10/FGFR2b signaling is essential for cardiac fibroblast development and growth of the myocardium. Development 2011; 138:3331-40. [PMID: 21750042 PMCID: PMC3133922 DOI: 10.1242/dev.064410] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2011] [Indexed: 11/20/2022]
Abstract
The epicardium serves as a source of growth factors that regulate myocardial proliferation and as a source of epicardial-derived cells (EPDC), which give rise to interstitial cardiac fibroblasts and perivascular cells. These progenitors populate the compact myocardium to become part of the mature coronary vasculature and fibrous skeleton of the heart. Little is known about the mechanisms that regulate EPDC migration into the myocardium or the functions carried out by these cells once they enter the myocardium. However, it has been proposed that cardiac fibroblasts are important for growth of the heart during late gestation and are a source of homeostatic factors in the adult. Here, we identify a myocardial to epicardial fibroblast growth factor (FGF) signal, mediated by FGF10 and FGFR2b, that is essential for movement of cardiac fibroblasts into the compact myocardium. Inactivation of this signaling pathway results in fewer epicardial derived cells within the compact myocardium, decreased myocardial proliferation and a resulting smaller thin-walled heart.
Collapse
Affiliation(s)
- Mónica Vega-Hernández
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Attila Kovacs
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Stijn De Langhe
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | - David M. Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
90
|
Pease JC, Tirnauer JS. Mitotic spindle misorientation in cancer--out of alignment and into the fire. J Cell Sci 2011; 124:1007-16. [PMID: 21402874 DOI: 10.1242/jcs.081406] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mitotic spindle orientation can influence tissue organization and vice versa. Cells orient their spindles by rotating them parallel or perpendicular to the cell--and hence the tissue--axis. Spindle orientation in turn controls the placement of daughter cells within a tissue, influencing tissue morphology. Recent findings implicating tumor suppressor proteins in spindle orientation bring to the forefront a connection between spindle misorientation and cancer. In this Commentary, we focus on the role of three major human tumor suppressors--adenomatous polyposis coli (APC), E-cadherin and von Hippel-Lindau (VHL)--in spindle orientation. We discuss how, in addition to their better-known functions, these proteins affect microtubule stability and cell polarity, and how their loss of function causes spindles to become misoriented. We also consider how other cancer-associated features, such as oncogene mutations, centrosome amplification and the tumor microenvironment, might influence spindle orientation. Finally, we speculate on the role of spindle misorientation in cancer development and progression. We conclude that spindle misorientation alone is unlikely to be tumorigenic, but it has the potential to synergize with cancer-associated changes to facilitate genomic instability, tissue disorganization, metastasis and expansion of cancer stem cell compartments.
Collapse
Affiliation(s)
- Jillian C Pease
- Center for Molecular Medicine, University of Connecticut Health Center, Farmington, CT 06030-3101, USA
| | | |
Collapse
|
91
|
Chua KN, Poon KL, Lim J, Sim WJ, Huang RYJ, Thiery JP. Target cell movement in tumor and cardiovascular diseases based on the epithelial-mesenchymal transition concept. Adv Drug Deliv Rev 2011; 63:558-67. [PMID: 21335038 DOI: 10.1016/j.addr.2011.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/07/2011] [Accepted: 02/09/2011] [Indexed: 01/04/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a fundamental mechanism in development driving body plan formation. EMT describes a transition process wherein polarized epithelial cells lose their characteristics and acquire a mesenchymal phenotype. The apico-basal polarity of epithelial cells is replaced by a front-rear polarity in mesenchymal cells which favor cell-extracellular matrix than intercellular adhesion. These events serve as a prerequisite to the context-dependent migratory and invasive functions of mesenchymal cells. In solid tumors, carcinoma cells undergoing EMT not only invade and metastasize but also exhibit cancer stem cell-like properties, providing resistance to conventional and targeted therapies. In cardiovascular systems, epicardial cells engaged in EMT contribute to myocardial regeneration. Conversely, cardiovascular endothelial cells undergoing EMT cause cardiac fibrosis. Growing evidence has shed light on the potential development of novel therapeutics that target cell movement by applying the EMT concept, and this may provide new therapeutic strategies for the treatment of cancer and heart diseases.
Collapse
Affiliation(s)
- Kian-Ngiap Chua
- Institute of Molecular Cell Biology, Experimental Therapeutic Centre, Biopolis A*STAR, Cancer Science Institute National University of Singapore and Department of Obstetrics and Gynaecology, National University Hospital, Singapore, Republic of Singapore
| | | | | | | | | | | |
Collapse
|
92
|
Norden J, Greulich F, Rudat C, Taketo MM, Kispert A. Wnt/β-catenin signaling maintains the mesenchymal precursor pool for murine sinus horn formation. Circ Res 2011; 109:e42-50. [PMID: 21757651 DOI: 10.1161/circresaha.111.245340] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Canonical (β-catenin [Ctnnb1]-dependent) wingless-related MMTV integration site (Wnt) signaling plays an important role in the development of second heart field-derived structures of the heart by regulating precursor cell proliferation. The signaling pathways that regulate the most posterior elongation of the heart, that is, the addition of the systemic venous return from a Tbx18(+) precursor population, have remained elusive. OBJECTIVE To define the role of Ctnnb1-dependent Wnt signaling in the development of the cardiac venous pole. METHODS AND RESULTS We show by in situ hybridization analysis that Wnt pathway components are expressed and canonical Wnt signaling is active in the developing sinus horns. We analyzed sinus horn (Tbx18(cre))-specific Ctnnb1 loss- and gain-of-function mutant embryos. In Ctnnb1-deficient embryos, the dorsal part of the sinus horns is not myocardialized but consists of cells with at least partial fibroblast identity; the sinoatrial node is unaffected. Stabilization of Ctnnb1 in this domain results in the formation of undifferentiated cell aggregates. Analysis of cellular changes revealed a role of canonical Wnt signaling in proliferation of the Tbx18(+) mesenchymal progenitor cell population. CONCLUSIONS Wnt/β-catenin signaling maintains the Tbx18(+)Nkx2-5(-) mesenchymal precursor pool for murine sinus horn formation.
Collapse
Affiliation(s)
- Julia Norden
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Hannover, Germany
| | | | | | | | | |
Collapse
|
93
|
Barnes RM, Firulli BA, VanDusen NJ, Morikawa Y, Conway SJ, Cserjesi P, Vincentz JW, Firulli AB. Hand2 loss-of-function in Hand1-expressing cells reveals distinct roles in epicardial and coronary vessel development. Circ Res 2011; 108:940-9. [PMID: 21350214 PMCID: PMC3086599 DOI: 10.1161/circresaha.110.233171] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 02/10/2011] [Indexed: 12/31/2022]
Abstract
RATIONALE The basic helix-loop-helix (bHLH) transcription factors Hand1 and Hand2 are essential for embryonic development. Given their requirement for cardiogenesis, it is imperative to determine their impact on cardiovascular function. OBJECTIVE To deduce the role of Hand2 within the epicardium. METHOD AND RESULTS We engineered a Hand1 allele expressing Cre recombinase. Cardiac Hand1 expression is largely limited to cells of the primary heart field, overlapping little with Hand2 expression. Hand1 is expressed within the septum transversum, and the Hand1 lineage marks the proepicardial organ and epicardium. To examine Hand factor functional overlap, we conditionally deleted Hand2 from Hand1-expressing cells. Hand2 mutants display defective epicardialization and fail to form coronary arteries, coincident with altered extracellular matrix deposition and Pdgfr expression. CONCLUSIONS These data demonstrate a hierarchal relationship whereby transient Hand1 septum transversum expression defines epicardial precursors that are subsequently dependent on Hand2 function.
Collapse
Affiliation(s)
- Ralston M. Barnes
- Riley Heart Research Center, Wells Center for Pediatric Research, Division of Pediatric Cardiology, Departments of Anatomy and Medical and Molecular Genetics, Indiana Medical School, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Beth A. Firulli
- Riley Heart Research Center, Wells Center for Pediatric Research, Division of Pediatric Cardiology, Departments of Anatomy and Medical and Molecular Genetics, Indiana Medical School, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Nathan J. VanDusen
- Riley Heart Research Center, Wells Center for Pediatric Research, Division of Pediatric Cardiology, Departments of Anatomy and Medical and Molecular Genetics, Indiana Medical School, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Yuka Morikawa
- Department of Cell and Molecular Biology, Tulane University, 2000 Percival Stern Hall, New Orleans, LA 70118, USA
| | - Simon J. Conway
- Riley Heart Research Center, Wells Center for Pediatric Research, Division of Pediatric Cardiology, Departments of Anatomy and Medical and Molecular Genetics, Indiana Medical School, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Peter Cserjesi
- Department of Pathology and Cell Biology, Columbia University, 630 W 168 Street, New York, NY 10032, USA
| | - Joshua W. Vincentz
- Riley Heart Research Center, Wells Center for Pediatric Research, Division of Pediatric Cardiology, Departments of Anatomy and Medical and Molecular Genetics, Indiana Medical School, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Anthony B. Firulli
- Riley Heart Research Center, Wells Center for Pediatric Research, Division of Pediatric Cardiology, Departments of Anatomy and Medical and Molecular Genetics, Indiana Medical School, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| |
Collapse
|
94
|
Schnabel K, Wu CC, Kurth T, Weidinger G. Regeneration of cryoinjury induced necrotic heart lesions in zebrafish is associated with epicardial activation and cardiomyocyte proliferation. PLoS One 2011; 6:e18503. [PMID: 21533269 PMCID: PMC3075262 DOI: 10.1371/journal.pone.0018503] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 03/02/2011] [Indexed: 12/17/2022] Open
Abstract
In mammals, myocardial cell death due to infarction results in scar formation and little regenerative response. In contrast, zebrafish have a high capacity to regenerate the heart after surgical resection of myocardial tissue. However, whether zebrafish can also regenerate lesions caused by cell death has not been tested. Here, we present a simple method for induction of necrotic lesions in the adult zebrafish heart based on cryoinjury. Despite widespread tissue death and loss of cardiomyocytes caused by these lesions, zebrafish display a robust regenerative response, which results in substantial clearing of the necrotic tissue and little scar formation. The cellular mechanisms underlying regeneration appear to be similar to those activated in response to ventricular resection. In particular, the epicardium activates a developmental gene program, proliferates and covers the lesion. Concomitantly, mature uninjured cardiomyocytes become proliferative and invade the lesion. Our injury model will be a useful tool to study the molecular mechanisms of natural heart regeneration in response to necrotic cell death.
Collapse
Affiliation(s)
- Kristin Schnabel
- Biotechnology Center and Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | - Chi-Chung Wu
- Biotechnology Center and Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | - Thomas Kurth
- Biotechnology Center and Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | - Gilbert Weidinger
- Biotechnology Center and Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
95
|
Grieskamp T, Rudat C, Lüdtke THW, Norden J, Kispert A. Notch Signaling Regulates Smooth Muscle Differentiation of Epicardium-Derived Cells. Circ Res 2011; 108:813-23. [DOI: 10.1161/circresaha.110.228809] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Thomas Grieskamp
- From the Institut für Molekularbiologie, Medizinische Hochschule Hannover, Germany
| | - Carsten Rudat
- From the Institut für Molekularbiologie, Medizinische Hochschule Hannover, Germany
| | - Timo H.-W. Lüdtke
- From the Institut für Molekularbiologie, Medizinische Hochschule Hannover, Germany
| | - Julia Norden
- From the Institut für Molekularbiologie, Medizinische Hochschule Hannover, Germany
| | - Andreas Kispert
- From the Institut für Molekularbiologie, Medizinische Hochschule Hannover, Germany
| |
Collapse
|
96
|
Combs MD, Braitsch CM, Lange AW, James JF, Yutzey KE. NFATC1 promotes epicardium-derived cell invasion into myocardium. Development 2011; 138:1747-57. [PMID: 21447555 DOI: 10.1242/dev.060996] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Epicardium-derived cells (EPDCs) contribute to formation of coronary vessels and fibrous matrix of the mature heart. Nuclear factor of activated T-cells cytoplasmic 1 (NFATC1) is expressed in cells of the proepicardium (PE), epicardium and EPDCs in mouse and chick embryos. Conditional loss of NFATC1 expression in EPDCs in mice causes embryonic death by E18.5 with reduced coronary vessel and fibrous matrix penetration into myocardium. In osteoclasts, calcineurin-mediated activation of NFATC1 by receptor activator of NFκB ligand (RANKL) signaling induces cathepsin K (CTSK) expression for extracellular matrix degradation and cell invasion. RANKL/NFATC1 pathway components also are expressed in EPDCs, and loss of NFATC1 in EPDCs causes loss of CTSK expression in the myocardial interstitium in vivo. Likewise, RANKL treatment induces Ctsk expression in PE-derived cell cultures via a calcineurin-dependent mechanism. In chicken embryo hearts, RANKL treatment increases the distance of EPDC invasion into myocardium, and this response is calcineurin dependent. Together, these data demonstrate a crucial role for the RANKL/NFATC1 signaling pathway in promoting invasion of EPDCs into the myocardium by induction of extracellular matrix-degrading enzyme gene expression.
Collapse
Affiliation(s)
- Michelle D Combs
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center ML7020, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
97
|
Pece S, Confalonieri S, R Romano P, Di Fiore PP. NUMB-ing down cancer by more than just a NOTCH. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1815:26-43. [PMID: 20940030 DOI: 10.1016/j.bbcan.2010.10.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 09/30/2010] [Accepted: 10/02/2010] [Indexed: 02/07/2023]
Abstract
The protein Numb does not live up to its name. This passive-sounding protein is anything but spent. Originally identified as a cell-fate determinant in Drosophila development, Numb received a good deal of attention as an inhibitor of the Notch receptor signaling pathway. It turns out, however, that Numb does a lot more than simply regulate Notch. It has been implicated in a variety of biochemical pathways connected with signaling (it regulates Notch-, Hedgehog- and TP53-activated pathways), endocytosis (it is involved in cargo internalization and recycling), determination of polarity (it interacts with the PAR complex, and regulates adherens and tight junctions), and ubiquitination (it exploits this mechanism to regulate protein function and stability). This complex biochemical network lies at the heart of Numb's involvement in diverse cellular phenotypes, including cell fate developmental decisions, maintenance of stem cell compartments, regulation of cell polarity and adhesion, and migration. Considering its multifaceted role in cellular homeostasis, it is not surprising that Numb has been implicated in cancer as a tumor suppressor. Our major goal here is to explain the cancer-related role of Numb based on our understanding of its role in cell physiology. We will attempt to do this by reviewing the present knowledge of Numb at the biochemical and functional level, and by integrating its apparently heterogeneous functions into a unifying scenario, based on our recently proposed concept of the "endocytic matrix". Finally, we will discuss the role of Numb in the maintenance of the normal stem cell compartment, as a starting point to interpret the tumor suppressor function of Numb in the context of the cancer stem cell hypothesis.
Collapse
Affiliation(s)
- Salvatore Pece
- Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139, Milan, Italy
| | | | | | | |
Collapse
|