51
|
Hasenpusch-Theil K, Watson JA, Theil T. Direct Interactions Between Gli3, Wnt8b, and Fgfs Underlie Patterning of the Dorsal Telencephalon. Cereb Cortex 2018; 27:1137-1148. [PMID: 26656997 DOI: 10.1093/cercor/bhv291] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A key step in the development of the cerebral cortex is a patterning process, which subdivides the telencephalon into several molecularly distinct domains and is critical for cortical arealization. This process is dependent on a complex network of interactions between signaling molecules of the Fgf and Wnt gene families and the Gli3 transcription factor gene, but a better knowledge of the molecular basis of the interplay between these factors is required to gain a deeper understanding of the genetic circuitry underlying telencephalic patterning. Using DNA-binding and reporter gene assays, we here investigate the possibility that Gli3 and these signaling molecules interact by directly regulating each other's expression. We show that Fgf signaling is required for Wnt8b enhancer activity in the cortical hem, whereas Wnt/β-catenin signaling represses Fgf17 forebrain enhancer activity. In contrast, Fgf and Wnt/β-catenin signaling cooperate to regulate Gli3 expression. Taken together, these findings indicate that mutual interactions between Gli3, Wnt8b, and Fgf17 are crucial elements of the balance between these factors thereby conferring robustness to the patterning process. Hence, our study provides a framework for understanding the genetic circuitry underlying telencephalic patterning and how defects in this process can affect the formation of cortical areas.
Collapse
Affiliation(s)
- Kerstin Hasenpusch-Theil
- Centre for Integrative Physiology, Hugh Robson Building, University of Edinburgh, EdinburghEH8 9XD, UK
| | - Julia A Watson
- Centre for Integrative Physiology, Hugh Robson Building, University of Edinburgh, EdinburghEH8 9XD, UK
| | - Thomas Theil
- Centre for Integrative Physiology, Hugh Robson Building, University of Edinburgh, EdinburghEH8 9XD, UK
| |
Collapse
|
52
|
Zone of Polarizing Activity Regulatory Sequence Mutations/Duplications with Preaxial Polydactyly and Longitudinal Preaxial Ray Deficiency in the Phenotype: A Review of Human Cases, Animal Models, and Insights Regarding the Pathogenesis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1573871. [PMID: 29651423 PMCID: PMC5832050 DOI: 10.1155/2018/1573871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/19/2017] [Accepted: 01/16/2018] [Indexed: 02/06/2023]
Abstract
Clinicians and scientists interested in developmental biology have viewed preaxial polydactyly (PPD) and longitudinal preaxial ray deficiency (LPAD) as two different entities. Point mutations and duplications in the zone of polarizing activity regulatory sequence (ZRS) are associated with anterior ectopic expression of Sonic Hedgehog (SHH) in the limb bud and usually result in a PPD phenotype. However, some of these mutations/duplications also have LPAD in the phenotype. This unusual PPD-LPAD association in ZRS mutations/duplications has not been specifically reviewed in the literature. The author reviews this unusual entity and gives insights regarding its pathogenesis.
Collapse
|
53
|
Abstract
Two groups have studied the loss of limbs in snake evolution by focusing on a long-distance cis-acting enhancer of Sonic Hedgehog. They find a progressive degeneration of binding sites for key transcription factors, mirroring the progressive limblessness occurring in these reptiles.
Collapse
Affiliation(s)
- Maria M Kaltcheva
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Mark Lewandoski
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
54
|
Leal F, Cohn MJ. Developmental, genetic, and genomic insights into the evolutionary loss of limbs in snakes. Genesis 2017; 56. [DOI: 10.1002/dvg.23077] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/29/2017] [Accepted: 10/06/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Francisca Leal
- Howard Hughes Medical Institute, UF Genetics Institute, University of Florida; Gainesville FL 32610
- Department of Biology; University of Florida; Gainesville FL 32610
| | - Martin J. Cohn
- Department of Biology; University of Florida; Gainesville FL 32610
- Department of Molecular Genetics and Microbiology; University of Florida; Gainesville FL 32610
| |
Collapse
|
55
|
Peluso S, Douglas A, Hill A, De Angelis C, Moore BL, Grimes G, Petrovich G, Essafi A, Hill RE. Fibroblast growth factors (FGFs) prime the limb specific Shh enhancer for chromatin changes that balance histone acetylation mediated by E26 transformation-specific (ETS) factors. eLife 2017; 6:28590. [PMID: 28949289 PMCID: PMC5659820 DOI: 10.7554/elife.28590] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/25/2017] [Indexed: 01/12/2023] Open
Abstract
Sonic hedgehog (Shh) expression in the limb bud organizing centre called the zone of polarizing activity is regulated by the ZRS enhancer. Here, we examine in mouse and in a mouse limb-derived cell line the dynamic events that activate and restrict the spatial activity of the ZRS. Fibroblast growth factor (FGF) signalling in the distal limb primes the ZRS at early embryonic stages maintaining a poised, but inactive state broadly across the distal limb mesenchyme. The E26 transformation-specific transcription factor, ETV4, which is induced by FGF signalling and acts as a repressor of ZRS activity, interacts with the histone deacetylase HDAC2 and ensures that the poised ZRS remains transcriptionally inactive. Conversely, GABPα, an activator of the ZRS, recruits p300, which is associated with histone acetylation (H3K27ac) indicative of an active enhancer. Hence, the primed but inactive state of the ZRS is induced by FGF signalling and in combination with balanced histone modification events establishes the restricted, active enhancer responsible for patterning the limb bud during development. As an animal embryo develops, specific genes need to be switched on and off at the right time and place to ensure that the embryo’s tissues and organs form properly. Proteins called transcription factors control the activity of individual genes by binding to regions of DNA known as enhancers. Changes in the way DNA is packaged inside cells can affect the ability of transcription factors to access the enhancers, and therefore also influence when particular genes are switched on or off. Sonic hedgehog (or Shh for short) is a gene that helps to control various aspects of development including the formation of the limbs and brain. The limb forms from a structure in the embryo referred to as the limb bud. An enhancer called ZRS regulates the precise position within the limb bud where the Shh gene is active in a region designated as the “zone of polarizing activity”. Yet, it was not known how the enhancer is controlled to ensure this pattern is achieved. Peluso et al. investigated the events that lead to ZRS becoming active in mice embryos. The experiments show that the ZRS enhancer exists in three different states in cells across the limb bud: poised, active and inactive. The enhancer is poised in a broad region of the limb bud in cells that are potentially able to switch on the Shh gene. Proteins called fibroblast growth factors drive the enhancer to enter this poised state by altering the way the DNA containing the enhancer is packaged in the cell. Specific transcription factors are able to bind to the poised enhancer and it is the balance between these different transcription factors that activates the enhancer in the zone of polarizing activity. Furthermore in the region of the limb bud where the fibroblast growth factors are not present the ZRS is inactive. These findings show that fibroblast growth factors, in combination with other changes to the ZRS enhancer, restrict the area in which the enhancer is active to a particular region of the limb bud. Differences in enhancer elements are known to underlie a range of inherited characteristics and may influence whether an individual develops many common diseases. In the future, investigating how cells control the activity of enhancers may provide clues to identifying new targets for drugs to treat some of these diseases.
Collapse
Affiliation(s)
- Silvia Peluso
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Adam Douglas
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Alison Hill
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Carlo De Angelis
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Benjamin L Moore
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Graeme Grimes
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Giulia Petrovich
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Abdelkader Essafi
- School of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - Robert E Hill
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
56
|
Zhu J, Mackem S. John Saunders' ZPA, Sonic hedgehog and digit identity - How does it really all work? Dev Biol 2017; 429:391-400. [PMID: 28161524 PMCID: PMC5540801 DOI: 10.1016/j.ydbio.2017.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/28/2017] [Accepted: 02/01/2017] [Indexed: 01/02/2023]
Abstract
Among John Saunders' many seminal contributions to developmental biology, his discovery of the limb 'zone of polarizing activity' (ZPA) is arguably one of the most memorable and ground-breaking. This discovery introduced the limb as a premier model for understanding developmental patterning and promoted the concept of patterning by a morphogen gradient. In the 50 years since the discovery of the ZPA, Sonic hedgehog (Shh) has been identified as the ZPA factor and the basic components of the signaling pathway and many aspects of its regulation have been elucidated. Although much has also been learned about how it regulates growth, the mechanism by which Shh patterns the limb, how it acts to instruct digit 'identity', nevertheless remains an enigma. This review focuses on what has been learned about Shh function in the limb and the outstanding puzzles that remain to be solved.
Collapse
Affiliation(s)
- Jianjian Zhu
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, MD 21702, United States
| | - Susan Mackem
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, MD 21702, United States.
| |
Collapse
|
57
|
Abstract
An enhancer named MFCS1 regulates Sonic hedgehog (Shh) expression in the posterior mesenchyme of limb buds. Several mutations in MFCS1 induce ectopic Shh expression in the anterior limb bud, and these result in preaxial polydactyly (PPD). However, the molecular basis of ectopic Shh expression remains elusive, although some mutations are known to disrupt the negative regulation of Shh expression in the anterior limb bud. Here, we analyzed the molecular mechanism of ectopic Shh expression in PPD including in a mouse mutation-hemimelic extra toes (Hx)-and in other MFCS1 mutations in different species. First, we generated transgenic mouse lines with a LacZ reporter cassette flanked with tandem repeats of 40 bp MFCS1 fragments harboring a mutation. The transgenic mouse line with the Hx-type fragment showed reporter expression exclusively in the anterior, but not in the posterior margins of limb buds. In contrast, no specific LacZ expression was observed in lines carrying the MFCS1 fragment with other mutations. Yeast one-hybrid assays revealed that the msh-like homeodomain protein, MSX1, bound specifically to the Hx sequence of MFCS1. Thus, PPD caused by mutations in MFCS1 has two major types of molecular etiology: loss of a cis-motif for negative regulation of Shh, and acquisition of a new cis-motif binding to a preexisting transcription factor, as represented by the Hx mutation.
Collapse
|
58
|
Delgado I, Torres M. Coordination of limb development by crosstalk among axial patterning pathways. Dev Biol 2017; 429:382-386. [DOI: 10.1016/j.ydbio.2017.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/28/2017] [Accepted: 03/05/2017] [Indexed: 10/20/2022]
|
59
|
Appel E, Weissmann S, Salzberg Y, Orlovsky K, Negreanu V, Tsoory M, Raanan C, Feldmesser E, Bernstein Y, Wolstein O, Levanon D, Groner Y. An ensemble of regulatory elements controls Runx3 spatiotemporal expression in subsets of dorsal root ganglia proprioceptive neurons. Genes Dev 2017; 30:2607-2622. [PMID: 28007784 PMCID: PMC5204353 DOI: 10.1101/gad.291484.116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/16/2016] [Indexed: 12/11/2022]
Abstract
Appel et al. defined the genomic transcription unit encompassing regulatory elements (REs) that mediate the tissue-specific expression of Runx3. Then, using transgenic mice expressing BAC reporters spanning the Runx3 locus, they discovered three REs that cross-talk with promoter-2 (P2) to drive TrkC neuron-specific Runx3 transcription. The Runx3 transcription factor is essential for development and diversification of the dorsal root ganglia (DRGs) TrkC sensory neurons. In Runx3-deficient mice, developing TrkC neurons fail to extend central and peripheral afferents, leading to cell death and disruption of the stretch reflex circuit, resulting in severe limb ataxia. Despite its central role, the mechanisms underlying the spatiotemporal expression specificities of Runx3 in TrkC neurons were largely unknown. Here we first defined the genomic transcription unit encompassing regulatory elements (REs) that mediate the tissue-specific expression of Runx3. Using transgenic mice expressing BAC reporters spanning the Runx3 locus, we discovered three REs—dubbed R1, R2, and R3—that cross-talk with promoter-2 (P2) to drive TrkC neuron-specific Runx3 transcription. Deletion of single or multiple elements either in the BAC transgenics or by CRISPR/Cas9-mediated endogenous ablation established the REs’ ability to promote and/or repress Runx3 expression in developing sensory neurons. Our analysis reveals that an intricate combinatorial interplay among the three REs governs Runx3 expression in distinct subtypes of TrkC neurons while concomitantly extinguishing its expression in non-TrkC neurons. These findings provide insights into the mechanism regulating cell type-specific expression and subtype diversification of TrkC neurons in developing DRGs.
Collapse
Affiliation(s)
- Elena Appel
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Sarit Weissmann
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yehuda Salzberg
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel.,Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Kira Orlovsky
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Varda Negreanu
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Michael Tsoory
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Calanit Raanan
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ester Feldmesser
- Life Science Core Facilities, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yael Bernstein
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Orit Wolstein
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ditsa Levanon
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yoram Groner
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
60
|
Matsubara H, Saito D, Abe G, Yokoyama H, Suzuki T, Tamura K. Upstream regulation for initiation of restricted Shh expression in the chick limb bud. Dev Dyn 2017; 246:417-430. [PMID: 28205287 DOI: 10.1002/dvdy.24493] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/06/2017] [Accepted: 02/10/2017] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The organizing center, which serves as a morphogen source, has crucial functions in morphogenesis in animal development. The center is necessarily located in a certain restricted area in the morphogenetic field, and there are several ways in which an organizing center can be restricted. The organizing center for limb morphogenesis, the ZPA (zone of polarizing activity), specifically expresses the Shh gene and is restricted to the posterior region of the developing limb bud. RESULTS The pre-pattern along the limb anteroposterior axis, provided by anterior Gli3 expression and posterior Hand2 expression, seems insufficient for the initiation of Shh expression restricted to a narrow, small spot in the posterior limb field. Comparison of the spatiotemporal patterns of gene expression between Shh and some candidate genes (Fgf8, Hoxd10, Hoxd11, Tbx2, and Alx4) upstream of Shh expression suggested that a combination of these genes' expression provides the restricted initiation of Shh expression. CONCLUSIONS Taken together with results of functional assays, we propose a model in which positive and negative transcriptional regulatory networks accumulate their functions in the intersection area of their expression regions to provide a restricted spot for the ZPA, the source of morphogen, Shh. Developmental Dynamics 246:417-430, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Haruka Matsubara
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama Aoba-ku, Sendai, 980-8578, Japan
| | - Daisuke Saito
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama Aoba-ku, Sendai, 980-8578, Japan.,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aobayama Aoba-ku, Sendai, 980-8578, Japan
| | - Gembu Abe
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama Aoba-ku, Sendai, 980-8578, Japan
| | - Hitoshi Yokoyama
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, 036-8561, Japan
| | - Takayuki Suzuki
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-Cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Koji Tamura
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
61
|
Lange A, Müller GB. Polydactyly in Development, Inheritance, and Evolution. QUARTERLY REVIEW OF BIOLOGY 2017; 92:1-38. [DOI: 10.1086/690841] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
62
|
Tickle C, Towers M. Sonic Hedgehog Signaling in Limb Development. Front Cell Dev Biol 2017; 5:14. [PMID: 28293554 PMCID: PMC5328949 DOI: 10.3389/fcell.2017.00014] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/08/2017] [Indexed: 02/04/2023] Open
Abstract
The gene encoding the secreted protein Sonic hedgehog (Shh) is expressed in the polarizing region (or zone of polarizing activity), a small group of mesenchyme cells at the posterior margin of the vertebrate limb bud. Detailed analyses have revealed that Shh has the properties of the long sought after polarizing region morphogen that specifies positional values across the antero-posterior axis (e.g., thumb to little finger axis) of the limb. Shh has also been shown to control the width of the limb bud by stimulating mesenchyme cell proliferation and by regulating the antero-posterior length of the apical ectodermal ridge, the signaling region required for limb bud outgrowth and the laying down of structures along the proximo-distal axis (e.g., shoulder to digits axis) of the limb. It has been shown that Shh signaling can specify antero-posterior positional values in limb buds in both a concentration- (paracrine) and time-dependent (autocrine) fashion. Currently there are several models for how Shh specifies positional values over time in the limb buds of chick and mouse embryos and how this is integrated with growth. Extensive work has elucidated downstream transcriptional targets of Shh signaling. Nevertheless, it remains unclear how antero-posterior positional values are encoded and then interpreted to give the particular structure appropriate to that position, for example, the type of digit. A distant cis-regulatory enhancer controls limb-bud-specific expression of Shh and the discovery of increasing numbers of interacting transcription factors indicate complex spatiotemporal regulation. Altered Shh signaling is implicated in clinical conditions with congenital limb defects and in the evolution of the morphological diversity of vertebrate limbs.
Collapse
Affiliation(s)
- Cheryll Tickle
- Department of Biology and Biochemistry, University of BathBath, UK
| | - Matthew Towers
- Department of Biomedical Science, The Bateson Centre, University of SheffieldWestern Bank, Sheffield, UK
| |
Collapse
|
63
|
Abstract
The limb is a commonly used model system for developmental biology. Given the need for precise control of complex signalling pathways to achieve proper patterning, the limb is also becoming a model system for gene regulation studies. Recent developments in genomic technologies have enabled the genome-wide identification of regulatory elements that control limb development, yielding insights into the determination of limb morphology and forelimb versus hindlimb identity. The modulation of regulatory interactions - for example, through the modification of regulatory sequences or chromatin architecture - can lead to morphological evolution, acquired regeneration capacity or limb malformations in diverse species, including humans.
Collapse
Affiliation(s)
- Florence Petit
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, California 94158, USA.,University of Lille, CHU Lille, EA 7364-RADEME, F-59000 Lille, France
| | - Karen E Sears
- School of Integrative Biology, Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, California 94158, USA.,Institute for Human Genetics, University of California San Francisco, California 94158, USA
| |
Collapse
|
64
|
Saxena A, Towers M, Cooper KL. The origins, scaling and loss of tetrapod digits. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2015.0482. [PMID: 27994123 PMCID: PMC5182414 DOI: 10.1098/rstb.2015.0482] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2016] [Indexed: 12/19/2022] Open
Abstract
Many of the great morphologists of the nineteenth century marvelled at similarities between the limbs of diverse species, and Charles Darwin noted these homologies as significant supporting evidence for descent with modification from a common ancestor. Sir Richard Owen also took great care to highlight each of the elements of the forelimb and hindlimb in a multitude of species with focused attention on the homology between the hoof of the horse and the middle digit of man. The ensuing decades brought about a convergence of palaeontology, experimental embryology and molecular biology to lend further support to the homologies of tetrapod limbs and their developmental origins. However, for all that we now understand about the conserved mechanisms of limb development and the development of gross morphological disturbances, little of what is presented in the experimental or medical literature reflects the remarkable diversity resulting from the 450 million year experiment of natural selection. An understanding of conserved and divergent limb morphologies in this new age of genomics and genome engineering promises to reveal more of the developmental potential residing in all limbs and to unravel the mechanisms of evolutionary variation in limb size and shape. In this review, we present the current state of our rapidly advancing understanding of the evolutionary origin of hands and feet and highlight what is known about the mechanisms that shape diverse limbs.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- Aditya Saxena
- Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Matthew Towers
- Bateson Centre, Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Kimberly L. Cooper
- Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA,e-mail:
| |
Collapse
|
65
|
Evolution of Shh endoderm enhancers during morphological transition from ventral lungs to dorsal gas bladder. Nat Commun 2017; 8:14300. [PMID: 28155855 PMCID: PMC5296767 DOI: 10.1038/ncomms14300] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/16/2016] [Indexed: 11/13/2022] Open
Abstract
Shh signalling plays a crucial role for endoderm development. A Shh endoderm enhancer, MACS1, is well conserved across terrestrial animals with lungs. Here, we first show that eliminating mouse MACS1 causes severe defects in laryngeal development, indicating that MACS1-directed Shh signalling is indispensable for respiratory organogenesis. Extensive phylogenetic analyses revealed that MACS1 emerged prior to the divergence of cartilaginous and bony fishes, and even euteleost fishes have a MACS1 orthologue. Meanwhile, ray-finned fishes evolved a novel conserved non-coding sequence in the neighbouring region. Transgenic assays showed that MACS1 drives reporter expression ventrally in laryngeal epithelium. This activity has been lost in the euteleost lineage, and instead, the conserved non-coding sequence of euteleosts acquired an enhancer activity to elicit dorsal epithelial expression in the posterior pharynx and oesophagus. These results implicate that evolution of these two enhancers is relevant to the morphological transition from ventral lungs to dorsal gas bladder. Endoderm enhancer MACS1 of Sonic Hedgehog is conserved in animals with lungs. Here, the authors show that mouse without MACS1 has defective laryngeal development, and use phylogenetic analyses to show association of evolutionary lung-gas bladder transition with change of the enhancer.
Collapse
|
66
|
Genetic Research of Hand Congenital Deformities and Advancement in Plastic and Reconstructive Treatment. Plast Reconstr Surg 2017. [DOI: 10.1007/978-981-10-5101-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
67
|
Kvon EZ, Kamneva OK, Melo US, Barozzi I, Osterwalder M, Mannion BJ, Tissières V, Pickle CS, Plajzer-Frick I, Lee EA, Kato M, Garvin TH, Akiyama JA, Afzal V, Lopez-Rios J, Rubin EM, Dickel DE, Pennacchio LA, Visel A. Progressive Loss of Function in a Limb Enhancer during Snake Evolution. Cell 2016; 167:633-642.e11. [PMID: 27768887 DOI: 10.1016/j.cell.2016.09.028] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/07/2016] [Accepted: 09/15/2016] [Indexed: 01/08/2023]
Abstract
The evolution of body shape is thought to be tightly coupled to changes in regulatory sequences, but specific molecular events associated with major morphological transitions in vertebrates have remained elusive. We identified snake-specific sequence changes within an otherwise highly conserved long-range limb enhancer of Sonic hedgehog (Shh). Transgenic mouse reporter assays revealed that the in vivo activity pattern of the enhancer is conserved across a wide range of vertebrates, including fish, but not in snakes. Genomic substitution of the mouse enhancer with its human or fish ortholog results in normal limb development. In contrast, replacement with snake orthologs caused severe limb reduction. Synthetic restoration of a single transcription factor binding site lost in the snake lineage reinstated full in vivo function to the snake enhancer. Our results demonstrate changes in a regulatory sequence associated with a major body plan transition and highlight the role of enhancers in morphological evolution. PAPERCLIP.
Collapse
Affiliation(s)
- Evgeny Z Kvon
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Olga K Kamneva
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Uirá S Melo
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Iros Barozzi
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Marco Osterwalder
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Brandon J Mannion
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Catherine S Pickle
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Elizabeth A Lee
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Momoe Kato
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Tyler H Garvin
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jennifer A Akiyama
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Veena Afzal
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Javier Lopez-Rios
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Edward M Rubin
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Diane E Dickel
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Len A Pennacchio
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA.
| | - Axel Visel
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; School of Natural Sciences, University of California, Merced, CA 95343, USA.
| |
Collapse
|
68
|
Wang B, Diao Y, Liu Q, An H, Ma R, Jiang G, Lai N, Li Z, Zhu X, Zhao L, Guo Q, Zhang Z, Sun R, Li X. An increased duplication of ZRS region that caused more than one supernumerary digits preaxial polydactyly in a large Chinese family. Sci Rep 2016; 6:38500. [PMID: 27922091 PMCID: PMC5138840 DOI: 10.1038/srep38500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/10/2016] [Indexed: 01/30/2023] Open
Abstract
Preaxial polydactyly (PPD) is inherited in an autosomal dominant fashion and characterized by the presence of one or more supernumerary digits on the thumb side. It had been identified that point mutation or genomic duplications of the long-range limb-specific cis-regulator - zone of polarizing activity regulatory sequence (ZRS) cause PPD or other limb deformities such as syndactyly type IV (SD4) and Triphalangeal thumb-polysyndactyly syndrome (TPTPS). Most previously reported cases involved with no more than one extra finger; however, the role of the point mutation or genomic duplications of ZRS in the case of more than one redundant finger polydactyly remains unclear. In this article, we reported a family case of more than one redundant finger polydactyly on the thumb side for bilateral hands with a pedigree chart of the family. Results of quantitative PCR (qPCR) and sequence analysis suggested that the relative copy number (RCN) of ZRS but not point mutation (including insertion and deletion) was involved in all affected individuals.
Collapse
Affiliation(s)
- Bin Wang
- Department of peripheral vascular disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 42 Wenhua xi Road, Jinan 250011, Shandong, China
| | - Yutao Diao
- Key Laboratory for Rare & Uncommon diseases of Shandong province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, 18877 Jingshi Road, Jinan 250062, Shandong, China
| | - Qiji Liu
- Department of medical genetics, Shandong University, School of Medicine, Jinan 250012, Shandong, China
| | - Hongqiang An
- Department of Orthopedic Surgery, People’s Hospital of Xintai, Xintai 271200, Shandong, China
| | - Ruiping Ma
- Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan 250014, Shandong, China
| | - Guosheng Jiang
- Key Laboratory for Rare & Uncommon diseases of Shandong province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, 18877 Jingshi Road, Jinan 250062, Shandong, China
| | - Nannan Lai
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ziwei Li
- Key Laboratory for Rare & Uncommon diseases of Shandong province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, 18877 Jingshi Road, Jinan 250062, Shandong, China
| | - Xiaoxiao Zhu
- Key Laboratory for Rare & Uncommon diseases of Shandong province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, 18877 Jingshi Road, Jinan 250062, Shandong, China
| | - Lin Zhao
- Key Laboratory for Rare & Uncommon diseases of Shandong province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, 18877 Jingshi Road, Jinan 250062, Shandong, China
| | - Qiang Guo
- Key Laboratory for Rare & Uncommon diseases of Shandong province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, 18877 Jingshi Road, Jinan 250062, Shandong, China
| | - Zhen Zhang
- Key Laboratory for Rare & Uncommon diseases of Shandong province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, 18877 Jingshi Road, Jinan 250062, Shandong, China
| | - Rong Sun
- Shandong Academy of Chinese Medicine, Yanzi Shanxi Road, Jinan 250014, Shandong, China
| | - Xia Li
- Key Laboratory for Rare & Uncommon diseases of Shandong province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, 18877 Jingshi Road, Jinan 250062, Shandong, China
| |
Collapse
|
69
|
Abstract
Genetic variation associated with disease often appears in non-coding parts of the genome. Understanding the mechanisms by which this phenomenon leads to disease is necessary to translate results from genetic association studies to the clinic. Assigning function to this type of variation is notoriously difficult because the human genome harbours a complex regulatory landscape with a dizzying array of transcriptional regulatory sequences, such as enhancers that have unpredictable, promiscuous and context-dependent behaviour. In this Review, we discuss how technological advances have provided increasingly detailed information on genome folding; for example, genome folding forms loops that bring enhancers and target genes into close proximity. We also now know that enhancers function within topologically associated domains, which are structural and functional units of chromosomes. Studying disease-associated mutations and chromosomal rearrangements in the context of the 3D genome will enable the identification of dysregulated target genes and aid the progression from descriptive genetic association results to discovering molecular mechanisms underlying disease.
Collapse
|
70
|
Leal F, Cohn M. Loss and Re-emergence of Legs in Snakes by Modular Evolution of Sonic hedgehog and HOXD Enhancers. Curr Biol 2016; 26:2966-2973. [DOI: 10.1016/j.cub.2016.09.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/29/2016] [Accepted: 09/12/2016] [Indexed: 01/19/2023]
|
71
|
Buffry AD, Mendes CC, McGregor AP. The Functionality and Evolution of Eukaryotic Transcriptional Enhancers. ADVANCES IN GENETICS 2016; 96:143-206. [PMID: 27968730 DOI: 10.1016/bs.adgen.2016.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enhancers regulate precise spatial and temporal patterns of gene expression in eukaryotes and, moreover, evolutionary changes in these modular cis-regulatory elements may represent the predominant genetic basis for phenotypic evolution. Here, we review approaches to identify and functionally analyze enhancers and their transcription factor binding sites, including assay for transposable-accessible chromatin-sequencing (ATAC-Seq) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, respectively. We also explore enhancer functionality, including how transcription factor binding sites combine to regulate transcription, as well as research on shadow and super enhancers, and how enhancers can act over great distances and even in trans. Finally, we discuss recent theoretical and empirical data on how transcription factor binding sites and enhancers evolve. This includes how the function of enhancers is maintained despite the turnover of transcription factor binding sites as well as reviewing studies where mutations in enhancers have been shown to underlie morphological change.
Collapse
Affiliation(s)
- A D Buffry
- Oxford Brookes University, Oxford, United Kingdom
| | - C C Mendes
- Oxford Brookes University, Oxford, United Kingdom
| | - A P McGregor
- Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
72
|
Ramsbottom SA, Pownall ME, Roelink H, Conway SJ. Regulation of Hedgehog Signalling Inside and Outside the Cell. J Dev Biol 2016; 4:23. [PMID: 27547735 PMCID: PMC4990124 DOI: 10.3390/jdb4030023] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The hedgehog (Hh) signalling pathway is conserved throughout metazoans and plays an important regulatory role in both embryonic development and adult homeostasis. Many levels of regulation exist that control the release, reception, and interpretation of the hedgehog signal. The fatty nature of the Shh ligand means that it tends to associate tightly with the cell membrane, and yet it is known to act as a morphogen that diffuses to elicit pattern formation. Heparan sulfate proteoglycans (HSPGs) play a major role in the regulation of Hh distribution outside the cell. Inside the cell, the primary cilium provides an important hub for processing the Hh signal in vertebrates. This review will summarise the current understanding of how the Hh pathway is regulated from ligand production, release, and diffusion, through to signal reception and intracellular transduction.
Collapse
Affiliation(s)
- Simon A. Ramsbottom
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, NE1 3BZ Newcastle upon Tyne, UK
- Correspondence: ; Tel.: +44-(0)191-241-8612
| | | | | | | |
Collapse
|
73
|
Spielmann M, Mundlos S. Looking beyond the genes: the role of non-coding variants in human disease. Hum Mol Genet 2016; 25:R157-R165. [PMID: 27354350 DOI: 10.1093/hmg/ddw205] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/23/2016] [Indexed: 12/20/2022] Open
Abstract
Over the past decades the search for disease causing variants has been focusing exclusively on the coding genome. This highly selective approach has been extremely successful resulting in the identification of thousands of disease genes, but ignores the functional and therefore disease relevance of the rest of the genome. Dropping sequencing costs and new high-throughput technologies such as ChIP-seq and chromosome conformation capture have opened new possibilities for the systematic investigation of the non-coding genome. These data have revealed the importance of non-coding DNA in fundamental processes such as gene regulation and 3D chromatin folding. Research into the principles of chromatin folding has revealed a domain structure of the genome, called topologically associated domains that provide a scaffold for enhancer promoter contacts. Non-coding mutations that affect regulatory elements can affect gene regulation by a loss of function, resulting in reduced gene expression, or a gain of function resulting in gene mis- or overexpression. Structural variations such as deletions, inversions or duplications have the potential to disturb normal chromatin folding. This may lead to the repositioning or disruption of topological associating domains and the relocation of enhancer elements with consecutive gene misexpression. Several recent studies highlight this as important disease mechanisms in developmental disorders and cancer. Therefore, the regulatory landscape of the genome has to be taken into consideration when investigating the pathology of human disease. In this review, we will discuss the recent discoveries in the field of non-coding variation, gene regulation, 3D genome architecture, and their implications for human genetics.
Collapse
Affiliation(s)
- Malte Spielmann
- Max Planck Institute for Molecular Genetics, RG Development & Disease, 14195 Berlin, Germany Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, RG Development & Disease, 14195 Berlin, Germany Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| |
Collapse
|
74
|
Kinsella E, Dora N, Mellis D, Lettice L, Deveney P, Hill R, Ditzel M. Use of a Conditional Ubr5 Mutant Allele to Investigate the Role of an N-End Rule Ubiquitin-Protein Ligase in Hedgehog Signalling and Embryonic Limb Development. PLoS One 2016; 11:e0157079. [PMID: 27299863 PMCID: PMC4907512 DOI: 10.1371/journal.pone.0157079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 05/24/2016] [Indexed: 01/16/2023] Open
Abstract
Hedgehog (Hh) signalling is a potent regulator of cell fate and function. While much is known about the events within a Hh-stimulated cell, far less is known about the regulation of Hh-ligand production. Drosophila Hyperplastic Discs (Hyd), a ubiquitin-protein ligase, represents one of the few non-transcription factors that independently regulates both hh mRNA expression and pathway activity. Using a murine embryonic stem cell system, we revealed that shRNAi of the mammalian homologue of hyd, Ubr5, effectively prevented retinoic-acid-induced Sonic hedgehog (Shh) expression. We next investigated the UBR5:Hh signalling relationship in vivo by generating and validating a mouse bearing a conditional Ubr5 loss-of-function allele. Conditionally deleting Ubr5 in the early embryonic limb-bud mesenchyme resulted in a transient decrease in Indian hedgehog ligand expression and decreased Hh pathway activity, around E13.5. Although Ubr5-deficient limbs and digits were, on average, shorter than control limbs, the effects were not statistically significant. Hence, while loss of UBR5 perturbed Hedgehog signalling in the developing limb, there were no obvious morphological defects. In summary, we report the first conditional Ubr5 mutant mouse and provide evidence for a role for UBR5 in influencing Hh signalling, but are uncertain to whether the effects on Hedgehog signaling were direct (cell autonomous) or indirect (non-cell-autonomous). Elaboration of the cellular/molecular mechanism(s) involved may help our understanding on diseases and developmental disorders associated with aberrant Hh signalling.
Collapse
Affiliation(s)
- Elaine Kinsella
- Edinburgh CRUK Cancer Research Centre, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Natalie Dora
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - David Mellis
- Edinburgh CRUK Cancer Research Centre, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Laura Lettice
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Paul Deveney
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Robert Hill
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Mark Ditzel
- Edinburgh CRUK Cancer Research Centre, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital, Edinburgh, UK
| |
Collapse
|
75
|
Tomann P, Paus R, Millar SE, Scheidereit C, Schmidt-Ullrich R. Lhx2 is a direct NF-κB target gene that promotes primary hair follicle placode down-growth. Development 2016; 143:1512-22. [PMID: 26952977 DOI: 10.1242/dev.130898] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 02/19/2016] [Indexed: 12/13/2022]
Abstract
In the epidermis of mice lacking transcription factor nuclear factor-kappa B (NF-κB) activity, primary hair follicle (HF) pre-placode formation is initiated without progression to proper placodes. NF-κB modulates WNT and SHH signaling at early stages of HF development, but this does not fully account for the phenotypes observed upon NF-κB inhibition. To identify additional NF-κB target genes, we developed a novel method to isolate and transcriptionally profile primary HF placodes with active NF-κB signaling. In parallel, we compared gene expression at the same developmental stage in NF-κB-deficient embryos and controls. This uncovered novel NF-κB target genes with potential roles in priming HF placodes for down-growth. Importantly, we identify Lhx2 (encoding a LIM/homeobox transcription factor) as a direct NF-κB target gene, loss of which replicates a subset of phenotypes seen in NF-κB-deficient embryos. Lhx2 and Tgfb2 knockout embryos exhibit very similar abnormalities in HF development, including failure of the E-cadherin suppression required for follicle down-growth. We show that TGFβ2 signaling is impaired in NF-κB-deficient and Lhx2 knockout embryos and that exogenous TGFβ2 rescues the HF phenotypes in Lhx2 knockout skin explants, indicating that it operates downstream of LHX2. These findings identify a novel NF-κB/LHX2/TGFβ2 signaling axis that is crucial for primary HF morphogenesis, which may also function more broadly in development and disease.
Collapse
Affiliation(s)
- Philip Tomann
- Department of Signal Transduction in Tumor Cells, Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin 13092, Germany
| | - Ralf Paus
- Department of Dermatology, University of Münster, Münster 48149, Germany Dermatological Science Research Group, Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester M13 9PL, UK
| | - Sarah E Millar
- Departments of Dermatology and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Claus Scheidereit
- Department of Signal Transduction in Tumor Cells, Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin 13092, Germany
| | - Ruth Schmidt-Ullrich
- Department of Signal Transduction in Tumor Cells, Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin 13092, Germany
| |
Collapse
|
76
|
Abstract
Polydactyly, also known as hyperdactyly, is a common congenital limb defect, which can present with various morphologic phenotypes. Apart from cosmetic and functional impairments, it can be the first indication of an underlying syndrome in the newborn. Usually, it follows an autosomal dominant pattern of inheritance with defects occurring in the anteroposterior patterning of limb development. Although many mutations have been discovered, teratogens have also been implicated in leading to this anomaly, thus making it of multifactorial origin. There are three polydactyly subtypes (radial, ulnar, and central), and treatment options depend on the underlying feature.
Collapse
|
77
|
Getting a handle on embryo limb development: Molecular interactions driving limb outgrowth and patterning. Semin Cell Dev Biol 2016; 49:92-101. [DOI: 10.1016/j.semcdb.2015.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 11/21/2022]
|
78
|
The many lives of SHH in limb development and evolution. Semin Cell Dev Biol 2016; 49:116-24. [DOI: 10.1016/j.semcdb.2015.12.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 01/17/2023]
|
79
|
Morales AV, Espeso-Gil S, Ocaña I, Nieto-Lopez F, Calleja E, Bovolenta P, Lewandoski M, Diez Del Corral R. FGF signaling enhances a sonic hedgehog negative feedback loop at the initiation of spinal cord ventral patterning. Dev Neurobiol 2015; 76:956-71. [PMID: 26600420 DOI: 10.1002/dneu.22368] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/18/2015] [Indexed: 12/23/2022]
Abstract
A prevalent developmental mechanism for the assignment of cell identities is the production of spatiotemporal concentration gradients of extracellular signaling molecules that are interpreted by the responding cells. One of such signaling systems is the Shh gradient that controls neuronal subtype identity in the ventral spinal cord. Using loss and gain of function approaches in chick and mouse embryos, we show here that the fibroblast growth factor (FGF) signaling pathway is required to restrict the domains of ventral gene expression as neuroepithelial cells become exposed to Shh during caudal extension of the embryo. FGF signaling activates the expression of the Shh receptor and negative pathway regulator Patched 2 (Ptch2) and therefore can enhance a negative feedback loop that restrains the activity of the pathway. Thus, we identify one of the mechanisms by which FGF signaling acts as a modulator of the onset of Shh signaling activity in the context of coordination of ventral patterning and caudal axis extension. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 956-971, 2016.
Collapse
Affiliation(s)
- Aixa V Morales
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, 28002, Spain
| | - Sergio Espeso-Gil
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, 28002, Spain
| | - Inmaculada Ocaña
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, 28002, Spain.,CIBER de Enfermedades Raras, Spain
| | - Francisco Nieto-Lopez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, 28002, Spain.,CIBER de Enfermedades Raras, Spain.,Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas-UAM, Cantoblanco, 28049, Spain
| | - Elena Calleja
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, 28002, Spain
| | - Paola Bovolenta
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, 28002, Spain.,CIBER de Enfermedades Raras, Spain.,Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas-UAM, Cantoblanco, 28049, Spain
| | - Mark Lewandoski
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702, USA
| | - Ruth Diez Del Corral
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, 28002, Spain
| |
Collapse
|
80
|
Zuniga A. Next generation limb development and evolution: old questions, new perspectives. Development 2015; 142:3810-20. [DOI: 10.1242/dev.125757] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The molecular analysis of limb bud development in vertebrates continues to fuel our understanding of the gene regulatory networks that orchestrate the patterning, proliferation and differentiation of embryonic progenitor cells. In recent years, systems biology approaches have moved our understanding of the molecular control of limb organogenesis to the next level by incorporating next generation ‘omics’ approaches, analyses of chromatin architecture, enhancer-promoter interactions and gene network simulations based on quantitative datasets into experimental analyses. This Review focuses on the insights these studies have given into the gene regulatory networks that govern limb development and into the fin-to-limb transition and digit reductions that occurred during the evolutionary diversification of tetrapod limbs.
Collapse
Affiliation(s)
- Aimée Zuniga
- Developmental Genetics, Department of Biomedicine, University of Basel, Mattenstrasse 28, Basel CH-4058, Switzerland
| |
Collapse
|
81
|
Abstract
Polydactyly is one of the most common inherited limb abnormalities, characterised by supernumerary fingers or toes. It results from disturbances in the normal programme of the anterior-posterior axis of the developing limb, with diverse aetiology and variable inter- and intra-familial clinical features. Polydactyly can occur as an isolated disorder (non-syndromic polydactyly) or as a part of an anomaly syndrome (syndromic polydactyly). On the basis of the anatomic location of the duplicated digits, non-syndromic polydactyly is divided into three kinds, including preaxial polydactyly, axial polydactyly and postaxial polydactyly. Non-syndromic polydactyly frequently exhibits an autosomal dominant inheritance with variable penetrance. To date, in human, at least ten loci and four disease-causing genes, including the GLI3 gene, the ZNF141 gene, the MIPOL1 gene and the PITX1 gene, have been identified. In this paper, we review clinical features of non-syndromic polydactyly and summarise the recent progress in the molecular genetics, including loci and genes that are responsible for the disorder, the signalling pathways that these genetic factors are involved in, as well as animal models of the disorder. These progresses will improve our understanding of the complex disorder and have implications on genetic counselling such as prenatal diagnosis.
Collapse
|
82
|
Bouwman BAM, de Laat W. Getting the genome in shape: the formation of loops, domains and compartments. Genome Biol 2015; 16:154. [PMID: 26257189 PMCID: PMC4536798 DOI: 10.1186/s13059-015-0730-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The hierarchical levels of genome architecture exert transcriptional control by tuning the accessibility and proximity of genes and regulatory elements. Here, we review current insights into the trans-acting factors that enable the genome to flexibly adopt different functionally relevant conformations.
Collapse
Affiliation(s)
- Britta A M Bouwman
- Hubrecht Institute - KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Wouter de Laat
- Hubrecht Institute - KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.
| |
Collapse
|
83
|
Tickle C. How the embryo makes a limb: determination, polarity and identity. J Anat 2015; 227:418-30. [PMID: 26249743 DOI: 10.1111/joa.12361] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2015] [Indexed: 12/11/2022] Open
Abstract
The vertebrate limb with its complex anatomy develops from a small bud of undifferentiated mesoderm cells encased in ectoderm. The bud has its own intrinsic polarity and can develop autonomously into a limb without reference to the rest of the embryo. In this review, recent advances are integrated with classical embryology, carried out mainly in chick embryos, to present an overview of how the embryo makes a limb bud. We will focus on how mesoderm cells in precise locations in the embryo become determined to form a limb and express the key transcription factors Tbx4 (leg/hindlimb) or Tbx5 (wing/forelimb). These Tbx transcription factors have equivalent functions in the control of bud formation by initiating a signalling cascade involving Wnts and fibroblast growth factors (FGFs) and by regulating recruitment of mesenchymal cells from the coelomic epithelium into the bud. The mesoderm that will form limb buds and the polarity of the buds is determined with respect to both antero-posterior and dorso-ventral axes of the body. The position in which a bud develops along the antero-posterior axis of the body will also determine its identity - wing/forelimb or leg/hindlimb. Hox gene activity, under the influence of retinoic acid signalling, is directly linked with the initiation of Tbx5 gene expression in the region along the antero-posterior axis of the body that will form wings/forelimbs and determines antero-posterior polarity of the buds. In contrast, Tbx4 expression in the regions that will form legs/hindlimbs is regulated by the homeoprotein Pitx1 and there is no evidence that Hox genes determine antero-posterior polarity of the buds. Bone morphogenetic protein (BMP) signalling determines the region along the dorso-ventral axis of the body in which both wings/forelimbs and legs/hindlimbs develop and dorso-ventral polarity of the buds. The polarity of the buds leads to the establishment of signalling regions - the dorsal and ventral ectoderm, producing Wnts and BMPs, respectively, the apical ectodermal ridge producing fibroblast growth factors and the polarizing region, Sonic hedgehog (Shh). These signals are the same in both wings/forelimbs and legs/hindlimbs and control growth and pattern formation by providing the mesoderm cells of the limb bud as it develops with positional information. The precise anatomy of the limb depends on the mesoderm cells in the developing bud interpreting positional information according to their identity - determined by Pitx1 in hindlimbs - and genotype. The competence to form a limb extends along the entire antero-posterior axis of the trunk - with Hox gene activity inhibiting the formation of forelimbs in the interlimb region - and also along the dorso-ventral axis.
Collapse
Affiliation(s)
- Cheryll Tickle
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| |
Collapse
|
84
|
Kuriyama S, Yoshida M, Yano S, Aiba N, Kohno T, Minamiya Y, Goto A, Tanaka M. LPP inhibits collective cell migration during lung cancer dissemination. Oncogene 2015; 35:952-64. [DOI: 10.1038/onc.2015.155] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 03/13/2015] [Accepted: 03/20/2015] [Indexed: 12/13/2022]
|
85
|
The disruption of a novel limb cis-regulatory element of SHH is associated with autosomal dominant preaxial polydactyly-hypertrichosis. Eur J Hum Genet 2015; 24:37-43. [PMID: 25782671 DOI: 10.1038/ejhg.2015.53] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 02/12/2015] [Accepted: 02/19/2015] [Indexed: 12/16/2022] Open
Abstract
The expression gradient of the morphogen Sonic Hedgehog (SHH) is crucial in establishing the number and the identity of the digits during anteroposterior patterning of the limb. Its anterior ectopic expression is responsible for preaxial polydactyly (PPD). Most of these malformations are due to the gain-of-function of the Zone of Polarizing Activity Regulatory Sequence, the only limb-specific enhancer of SHH known to date. We report a family affected with a novel condition associating PPD and hypertrichosis of the upper back, following an autosomal dominant mode of inheritance. This phenotype is consistent with deregulation of SHH expression during limb and follicle development. In affected members, we identified a 2 kb deletion located ~240 kb upstream from the SHH promoter. The deleted sequence is capable of repressing the transcriptional activity of the SHH promoter in vitro, consistent with a silencer activity. We hypothesize that the deletion of this silencer could be responsible for SHH deregulation during development, leading to a PPD-hypertrichosis phenotype.
Collapse
|
86
|
Nicht-kodierende Mutationen. MED GENET-BERLIN 2015. [DOI: 10.1007/s11825-014-0033-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Zusammenfassung
Trotz der enormen Fortschritte genomweiter Analyseverfahren bleiben über 40 % der Patienten in der Humangenetik ohne molekulare Diagnose. Dies könnte unter anderem an der Tatsache liegen, dass Varianten im nicht-kodierenden Teil des Genoms bisher außer Acht gelassen wurden. In den letzten Jahren wurden entscheidende Fortschritte in der Analyse und Annotierung von cis-regulatorischen Elementen gemacht. Diese Daten können nun gezielt genutzt werden, um regulatorische Mutationen zu identifizieren und zu bewerten. Zudem konnte gezeigt werden, dass das menschliche Genom in Domänen eingeteilt ist, die über Chromatinstrukturen eine dreidimensionale regulatorisch aktive Architektur einnehmen. Mutationen oder strukturelle Aberrationen können diese Struktur verändern und damit zum Funktionsverlust oder zur Fehlexpression von benachbarten Genen führen. All diese Erkenntnisse können zur Interpretation von nicht-kodierenden Varianten eingesetzt werden.
Collapse
|
87
|
Osterwalder M, Speziale D, Shoukry M, Mohan R, Ivanek R, Kohler M, Beisel C, Wen X, Scales SJ, Christoffels VM, Visel A, Lopez-Rios J, Zeller R. HAND2 targets define a network of transcriptional regulators that compartmentalize the early limb bud mesenchyme. Dev Cell 2014; 31:345-357. [PMID: 25453830 DOI: 10.1016/j.devcel.2014.09.018] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 08/29/2014] [Accepted: 09/29/2014] [Indexed: 11/19/2022]
Abstract
The genetic networks that govern vertebrate development are well studied, but how the interactions of trans-acting factors with cis-regulatory modules (CRMs) are integrated into spatiotemporal regulation of gene expression is not clear. The transcriptional regulator HAND2 is required during limb, heart, and branchial arch development. Here, we identify the genomic regions enriched in HAND2 chromatin complexes from mouse embryos and limb buds. Then we analyze the HAND2 target CRMs in the genomic landscapes encoding transcriptional regulators required in early limb buds. HAND2 controls the expression of genes functioning in the proximal limb bud and orchestrates the establishment of anterior and posterior polarity of the nascent limb bud mesenchyme by impacting Gli3 and Tbx3 expression. TBX3 is required downstream of HAND2 to refine the posterior Gli3 expression boundary. Our analysis uncovers the transcriptional circuits that function in establishing distinct mesenchymal compartments downstream of HAND2 and upstream of SHH signaling.
Collapse
Affiliation(s)
- Marco Osterwalder
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Dario Speziale
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Malak Shoukry
- Genomics Division, MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rajiv Mohan
- Department of Anatomy, Embryology, and Physiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, 1100 DD Amsterdam, the Netherlands
| | - Robert Ivanek
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Manuel Kohler
- Department for Biosystems Science and Engineering, Federal Institute of Technology Zurich, 4058 Basel, Switzerland
| | - Christian Beisel
- Department for Biosystems Science and Engineering, Federal Institute of Technology Zurich, 4058 Basel, Switzerland
| | - Xiaohui Wen
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Suzie J Scales
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Vincent M Christoffels
- Department of Anatomy, Embryology, and Physiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, 1100 DD Amsterdam, the Netherlands
| | - Axel Visel
- Genomics Division, MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; School of Natural Sciences, University of California, Merced, Merced, CA 95343, USA
| | - Javier Lopez-Rios
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland.
| | - Rolf Zeller
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland.
| |
Collapse
|
88
|
Etv1 and Ewsr1 cooperatively regulate limb mesenchymal Fgf10 expression in response to apical ectodermal ridge-derived fibroblast growth factor signal. Dev Biol 2014; 394:181-90. [DOI: 10.1016/j.ydbio.2014.07.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 07/02/2014] [Accepted: 07/30/2014] [Indexed: 11/21/2022]
|
89
|
Muto A, Ikeda S, Lopez-Burks ME, Kikuchi Y, Calof AL, Lander AD, Schilling TF. Nipbl and mediator cooperatively regulate gene expression to control limb development. PLoS Genet 2014; 10:e1004671. [PMID: 25255084 PMCID: PMC4177752 DOI: 10.1371/journal.pgen.1004671] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 08/14/2014] [Indexed: 11/19/2022] Open
Abstract
Haploinsufficiency for Nipbl, a cohesin loading protein, causes Cornelia de Lange Syndrome (CdLS), the most common “cohesinopathy”. It has been proposed that the effects of Nipbl-haploinsufficiency result from disruption of long-range communication between DNA elements. Here we use zebrafish and mouse models of CdLS to examine how transcriptional changes caused by Nipbl deficiency give rise to limb defects, a common condition in individuals with CdLS. In the zebrafish pectoral fin (forelimb), knockdown of Nipbl expression led to size reductions and patterning defects that were preceded by dysregulated expression of key early limb development genes, including fgfs, shha, hand2 and multiple hox genes. In limb buds of Nipbl-haploinsufficient mice, transcriptome analysis revealed many similar gene expression changes, as well as altered expression of additional classes of genes that play roles in limb development. In both species, the pattern of dysregulation of hox-gene expression depended on genomic location within the Hox clusters. In view of studies suggesting that Nipbl colocalizes with the mediator complex, which facilitates enhancer-promoter communication, we also examined zebrafish deficient for the Med12 Mediator subunit, and found they resembled Nipbl-deficient fish in both morphology and gene expression. Moreover, combined partial reduction of both Nipbl and Med12 had a strongly synergistic effect, consistent with both molecules acting in a common pathway. In addition, three-dimensional fluorescent in situ hybridization revealed that Nipbl and Med12 are required to bring regions containing long-range enhancers into close proximity with the zebrafish hoxda cluster. These data demonstrate a crucial role for Nipbl in limb development, and support the view that its actions on multiple gene pathways result from its influence, together with Mediator, on regulation of long-range chromosomal interactions. Limb malformations are a striking feature of Cornelia de Lange Syndrome (CdLS), a multi-system birth defects disorder most commonly caused by haploinsufficiency for NIPBL. In addition to its role as a cohesin-loading factor, Nipbl also regulates gene expression, but how partial Nipbl deficiency causes limb defects is unknown. Using zebrafish and mouse models, we show that expression of multiple key regulators of early limb development, including shha, hand2 and hox genes, are sensitive to Nipbl deficiency. Furthermore, we find morphological and gene expression abnormalities similar to those of Nipbl-deficient zebrafish in the limb buds of zebrafish deficient for the Med12 subunit of Mediator—a protein complex that mediates physical interactions between enhancers and promoters—and genetic interaction studies support the view that Mediator and Nipbl act together. Strikingly, depletion of either Nipbl or Med12 leads to characteristic changes in hox gene expression that reflect the locations of genes within their chromosomal clusters, as well as to disruption of large-scale chromosome organization around the hoxda cluster, consistent with impairment of long-range enhancer-promoter interaction. Together, these findings provide insights into both the etiology of limb defects in CdLS, and the mechanisms by which Nipbl and Mediator influence gene expression.
Collapse
Affiliation(s)
- Akihiko Muto
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine California
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Shingo Ikeda
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Martha E. Lopez-Burks
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine California
| | - Yutaka Kikuchi
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Anne L. Calof
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, California, United States of America
- * E-mail: (ALC); (ADL)
| | - Arthur D. Lander
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine California
- * E-mail: (ALC); (ADL)
| | - Thomas F. Schilling
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine California
| |
Collapse
|
90
|
Hypoxia-inducible factor 2 alpha is essential for hepatic outgrowth and functions via the regulation of leg1 transcription in the zebrafish embryo. PLoS One 2014; 9:e101980. [PMID: 25000307 PMCID: PMC4084947 DOI: 10.1371/journal.pone.0101980] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 06/13/2014] [Indexed: 12/11/2022] Open
Abstract
The liver plays a vital role in metabolism, detoxification, digestion, and the maintenance of homeostasis. During development, the vertebrate embryonic liver undergoes a series of morphogenic processes known as hepatogenesis. Hepatogenesis can be separated into three interrelated processes: endoderm specification, hepatoblast differentiation, and hepatic outgrowth. Throughout this process, signaling molecules and transcription factors initiate and regulate the coordination of cell proliferation, apoptosis, differentiation, intercellular adhesion, and cell migration. Hifs are already recognized to be essential in embryonic development, but their role in hepatogenesis remains unknown. Using the zebrafish embryo as a model organism, we report that the lack of Hif2-alpha but not Hif1-alpha blocks hepatic outgrowth. While Hif2-alpha is not involved in hepatoblast specification, this transcription factor regulates hepatocyte cell proliferation during hepatic outgrowth. Furthermore, we demonstrated that the lack of Hif2-alpha can reduce the expression of liver-enriched gene 1 (leg1), which encodes a secretory protein essential for hepatic outgrowth. Additionally, exogenous mRNA expression of leg1 can rescue the small liver phenotype of hif2-alpha morphants. We also showed that Hif2-alpha directly binds to the promoter region of leg1 to control leg1 expression. Interestingly, we discovered overrepresented, high-density Hif-binding sites in the potential upstream regulatory sequences of leg1 in teleosts but not in terrestrial mammals. We concluded that hif2-alpha is a key factor required for hepatic outgrowth and regulates leg1 expression in zebrafish embryos. We also proposed that the hif2-alpha-leg1 axis in liver development may have resulted from the adaptation of teleosts to their environment.
Collapse
|
91
|
Norbnop P, Srichomthong C, Suphapeetiporn K, Shotelersuk V. ZRS 406A>G mutation in patients with tibial hypoplasia, polydactyly and triphalangeal first fingers. J Hum Genet 2014; 59:467-70. [PMID: 24965254 DOI: 10.1038/jhg.2014.50] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/03/2014] [Accepted: 06/03/2014] [Indexed: 11/09/2022]
Abstract
Werner mesomelic syndrome (WMS), an autosomal dominant disorder characterized by hypoplastic tibiae, triphalangeal thumbs and polydactyly, is caused by a specific point mutation at the position 404 in zone of polarizing activity regulatory sequence (ZRS). Here we identified two additional families with WMS. All three patients in three generations of Family 1 were found to harbor the same heterozygous 406A>G mutation in ZRS. The fourth patient from Family 2 was a sporadic case with the known 404 point mutation. The novel 406A>G mutation expands mutational spectrum in ZRS causing WMS, provides evidence for a functionally important nucleotide position 406 of ZRS in humans and has implications for genetic counseling.
Collapse
Affiliation(s)
- Phatchara Norbnop
- 1] Doctor of Philosophy Program in Medical Sciences, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand [2] Center of Excellence for Medical Genetics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chalurmpon Srichomthong
- 1] Center of Excellence for Medical Genetics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand [2] Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Kanya Suphapeetiporn
- 1] Center of Excellence for Medical Genetics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand [2] Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Vorasuk Shotelersuk
- 1] Center of Excellence for Medical Genetics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand [2] Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
92
|
Johnson EJ, Neely DM, Dunn IC, Davey MG. Direct functional consequences of ZRS enhancer mutation combine with secondary long range SHH signalling effects to cause preaxial polydactyly. Dev Biol 2014; 392:209-20. [PMID: 24907417 PMCID: PMC4111902 DOI: 10.1016/j.ydbio.2014.05.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 05/22/2014] [Accepted: 05/28/2014] [Indexed: 12/20/2022]
Abstract
Sonic hedgehog (SHH) plays a central role in patterning numerous embryonic tissues including, classically, the developing limb bud where it controls digit number and identity. This study utilises the polydactylous Silkie (Slk) chicken breed, which carries a mutation in the long range limb-specific regulatory element of SHH, the ZRS. Using allele specific SHH expression analysis combined with quantitative protein analysis, we measure allele specific changes in SHH mRNA and concentration of SHH protein over time. This confirms that the Slk ZRS enhancer mutation causes increased SHH expression in the posterior leg mesenchyme. Secondary consequences of this increased SHH signalling include increased FGF pathway signalling and growth as predicted by the SHH/GREM1/FGF feedback loop and the Growth/Morphogen models. Manipulation of Hedgehog, FGF signalling and growth demonstrate that anterior-ectopic expression of SHH and induction of preaxial polydactyly is induced secondary to increased SHH signalling and Hedgehog-dependent growth directed from the posterior limb. We predict that increased long range SHH signalling acts in combination with changes in activation of SHH transcription from the Slk ZRS allele. Through analysis of the temporal dynamics of anterior SHH induction we predict a gene regulatory network which may contribute to activation of anterior SHH expression from the Slk ZRS. Overexpression of posterior SHH in the limb bud can cause preaxial polydactyly. Increased activation of SHH/GREM/FGF feedback and growth induces Slk preaxial polydactyly. Autoregulated expression of SHH can occur within 1.5–2 h in the limb bud.
Collapse
Affiliation(s)
- Edward J Johnson
- Division of Developmental Biology, The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - David M Neely
- Division of Developmental Biology, The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Ian C Dunn
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Megan G Davey
- Division of Developmental Biology, The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK.
| |
Collapse
|
93
|
Lettice LA, Williamson I, Devenney PS, Kilanowski F, Dorin J, Hill RE. Development of five digits is controlled by a bipartite long-range cis-regulator. Development 2014; 141:1715-25. [PMID: 24715461 PMCID: PMC3978833 DOI: 10.1242/dev.095430] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Conservation within intergenic DNA often highlights regulatory elements that control gene expression from a long range. How conservation within a single element relates to regulatory information and how internal composition relates to function is unknown. Here, we examine the structural features of the highly conserved ZRS (also called MFCS1) cis-regulator responsible for the spatiotemporal control of Shh in the limb bud. By systematically dissecting the ZRS, both in transgenic assays and within in the endogenous locus, we show that the ZRS is, in effect, composed of two distinct domains of activity: one domain directs spatiotemporal activity but functions predominantly from a short range, whereas a second domain is required to promote long-range activity. We show further that these two domains encode activities that are highly integrated and that the second domain is crucial in promoting the chromosomal conformational changes correlated with gene activity. During limb bud development, these activities encoded by the ZRS are interpreted differently by the fore limbs and the hind limbs; in the absence of the second domain there is no Shh activity in the fore limb, and in the hind limb low levels of Shh lead to a variant digit pattern ranging from two to four digits. Hence, in the embryo, the second domain stabilises the developmental programme providing a buffer for SHH morphogen activity and this ensures that five digits form in both sets of limbs.
Collapse
Affiliation(s)
- Laura A Lettice
- MRC-Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Rd, Edinburgh EH4 2XU, UK
| | | | | | | | | | | |
Collapse
|
94
|
Anderson E, Hill RE. Long range regulation of the sonic hedgehog gene. Curr Opin Genet Dev 2014; 27:54-9. [PMID: 24859115 DOI: 10.1016/j.gde.2014.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/18/2014] [Accepted: 03/25/2014] [Indexed: 12/22/2022]
Abstract
The regulatory architecture that controls developmental genes is often a collection of enhancers that, in combination, generate a complex spatial and temporal pattern of expression. These enhancers populate domains operating at long distances and, in the case of the sonic hedgehog (Shh) locus, this regulatory domain covers ∼900-1000kb. Within this context each embryonic tissue that expresses Shh has acquired its own regulatory apparatus which may require the activity from several distinct enhancers. Expression of Shh in the developing limb bud is driven by a single enhancer that interprets a myriad of genetic information to initiate expression in the posterior margin of the limb bud, inhibits expression along the anterior margin, defines the level of expression, and sets the tissue boundary of expression.
Collapse
Affiliation(s)
- Eve Anderson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Robert E Hill
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK.
| |
Collapse
|
95
|
Genome-wide linkage analysis and association study identifies loci for polydactyly in chickens. G3-GENES GENOMES GENETICS 2014; 4:1167-72. [PMID: 24752238 PMCID: PMC4065260 DOI: 10.1534/g3.114.011338] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Polydactyly occurs in some chicken breeds, but the molecular mechanism remains incompletely understood. Combined genome-wide linkage analysis and association study (GWAS) for chicken polydactyly helps identify loci or candidate genes for the trait and potentially provides further mechanistic understanding of this phenotype in chickens and perhaps other species. The linkage analysis and GWAS for polydactyly was conducted using an F2 population derived from Beijing-You chickens and commercial broilers. The results identified two QTLs through linkage analysis and seven single-nucleotide polymorphisms (SNPs) through GWAS, associated with the polydactyly trait. One QTL located at 35 cM on the GGA2 was significant at the 1% genome-wise level and another QTL at the 1% chromosome-wide significance level was detected at 39 cM on GGA19. A total of seven SNPs, four of 5% genome-wide significance (P < 2.98 × 10(-6)) and three of suggestive significance (5.96 × 10(-5)) were identified, including two SNPs (GGaluGA132178 and Gga_rs14135036) in the QTL on GGA2. Of the identified SNPs, the eight nearest genes were sonic hedgehog (SHH), limb region 1 homolog (mouse) (LMBR1), dipeptidyl-peptidase 6, transcript variant 3 (DPP6), thyroid-stimulating hormone, beta (TSHB), sal-like 4 (Drosophila) (SALL4), par-6 partitioning defective 6 homolog beta (Caenorhabditis elegans) (PARD6B), coenzyme Q5 (COQ5), and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, etapolypeptide (YWHAH). The GWAS supports earlier reports of the importance of SHH and LMBR1 as regulating genes for polydactyly in chickens and other species, and identified others, most of which have not previously been associated with limb development. The genes and associated SNPs revealed here provide detailed information for further exploring the molecular and developmental mechanisms underlying polydactyly.
Collapse
|
96
|
Lohan S, Spielmann M, Doelken SC, Flöttmann R, Muhammad F, Baig SM, Wajid M, Hülsemann W, Habenicht R, Kjaer KW, Patil SJ, Girisha KM, Abarca-Barriga HH, Mundlos S, Klopocki E. Microduplications encompassing the Sonic hedgehog limb enhancer ZRS are associated with Haas-type polysyndactyly and Laurin-Sandrow syndrome. Clin Genet 2014; 86:318-25. [PMID: 24456159 DOI: 10.1111/cge.12352] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/16/2014] [Accepted: 01/20/2014] [Indexed: 12/17/2022]
Abstract
Laurin-Sandrow syndrome (LSS) is a rare autosomal dominant disorder characterized by polysyndactyly of hands and/or feet, mirror image duplication of the feet, nasal defects, and loss of identity between fibula and tibia. The genetic basis of LSS is currently unknown. LSS shows phenotypic overlap with Haas-type polysyndactyly (HTS) regarding the digital phenotype. Here we report on five unrelated families with overlapping microduplications encompassing the Sonic hedgehog (SHH) limb enhancer ZPA regulatory sequence (ZRS) on chromosome 7q36. Clinically, the patients show polysyndactyly phenotypes and various types of lower limb malformations ranging from syndactyly to mirror image polydactyly with duplications of the fibulae. We show that larger duplications of the ZRS region (>80 kb) are associated with HTS, whereas smaller duplications (<80 kb) result in the LSS phenotype. On the basis of our data, the latter can be clearly distinguished from HTS by the presence of mirror image polysyndactyly of the feet with duplication of the fibula. Our results expand the clinical phenotype of the ZRS-associated syndromes and suggest that smaller duplications (<80 kb) are associated with a more severe phenotype. In addition, we show that these small microduplications within the ZRS region are the underlying genetic cause of Laurin-Sandrow syndrome.
Collapse
Affiliation(s)
- S Lohan
- Institute for Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany; Max Planck Institute for Molecular Genetics, Research Group Mundlos, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Bhatia S, Kleinjan DA. Disruption of long-range gene regulation in human genetic disease: a kaleidoscope of general principles, diverse mechanisms and unique phenotypic consequences. Hum Genet 2014; 133:815-45. [DOI: 10.1007/s00439-014-1424-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/18/2014] [Indexed: 01/05/2023]
|
98
|
Girisha KM, Bidchol AM, Kamath PS, Shah KH, Mortier GR, Mundlos S, Shah H. A novel mutation (g.106737G>T) in zone of polarizing activity regulatory sequence (ZRS) causes variable limb phenotypes in Werner mesomelia. Am J Med Genet A 2014; 164A:898-906. [PMID: 24478176 DOI: 10.1002/ajmg.a.36367] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/22/2013] [Indexed: 12/12/2022]
Abstract
Werner mesomelia is characterized by a sequence variation in the specific region (position 404) of the enhancer ZRS of SHH. The phenotype comprises variable mesomelia, abnormalities of the thumb and great toe and supernumerary digits. We describe extensive variation in limb phenotype in a large family and report on a novel sequence variation NG_009240.1: g.106737G>T (traditional nomenclature: ZRS404G>T) in the ZRS within the LMBR1 gene. The newly recognized clinical features in this family include small thenar eminence, sandal gap, broad first metatarsals, mesoaxial polydactyly, and postaxial polydactyly. We provide information on 12 affected family members. We review the literature on how a sequence variation in ZRS may cause such diverse phenotypes.
Collapse
Affiliation(s)
- Katta M Girisha
- Division of Medical Genetics, Department of Pediatrics, Kasturba Medical College, Manipal University, Manipal, India
| | | | | | | | | | | | | |
Collapse
|
99
|
Abstract
In the limb bud, patterning along the anterior-posterior (A-P) axis is controlled by Sonic Hedgehog (Shh), a signaling molecule secreted by the “Zone of Polarizing Activity”, an organizer tissue located in the posterior margin of the limb bud. We have found that the transcription factors GATA4 and GATA6, which are key regulators of cell identity, are expressed in an anterior to posterior gradient in the early limb bud, raising the possibility that GATA transcription factors may play an additional role in patterning this tissue. While both GATA4 and GATA6 are expressed in an A-P gradient in the forelimb buds, the hindlimb buds principally express GATA6 in an A-P gradient. Thus, to specifically examine the role of GATA6 in limb patterning we generated Prx1-Cre; GATA6fl/fl mice, which conditionally delete GATA6 from their developing limb buds. We found that these animals display ectopic expression of both Shh and its transcriptional targets specifically in the anterior mesenchyme of the hindlimb buds. Loss of GATA6 in the developing limbs results in the formation of preaxial polydactyly in the hindlimbs. Conversely, forced expression of GATA6 throughout the limb bud represses expression of Shh and results in hypomorphic limbs. We have found that GATA6 can bind to chromatin (isolated from limb buds) encoding either Shh or Gli1 regulatory elements that drive expression of these genes in this tissue, and demonstrated that GATA6 works synergistically with FOG co-factors to repress expression of luciferase reporters driven by these sequences. Most significantly, we have found that conditional loss of Shh in limb buds lacking GATA6 prevents development of hindlimb polydactyly in these compound mutant embryos, indicating that GATA6 expression in the anterior region of the limb bud blocks hindlimb polydactyly by repressing ectopic expression of Shh. Sonic Hedgehog (Shh) is a crucial regulator of the growth and anterior-posterior patterning of the developing limb bud, and is produced in the “Zone of Polarizing Activity” in the posterior of the limb bud. Here, we demonstrate that GATA4 and GATA6 (members of the GATA family of transcription factors) are expressed in the anterior mesenchyme of mouse limb buds and that limb bud-specific deletion of GATA6 results in ectopic expression of Shh and its target genes (such as Gli1) in the anterior limb bud mesenchyme, resulting in preaxial polydactyly. Conversely, over-expression of GATA6 in limb buds causes down-regulation of Shh and its target genes, resulting in a decreased number of digits. We also show that GATA6 binds to the sequences that regulate expression of either Shh or Gli1, and that simultaneous deletion of both GATA6 and Shh genes in developing limb buds rescues the polydactylous hindlimb phenotype of GATA6 mutants. Our findings indicate that GATA6 is necessary to repress ectopic expression of both Shh and hedgehog transcriptional targets in the anterior region of the mouse hindlimb bud, and thus demonstrate that GATA transcription factors, in addition to being regulators of cell identity, are important negative regulators of ectopic Shh expression in the limb bud.
Collapse
|
100
|
Tamura M, Amano T, Shiroishi T. The Hand2 Gene Dosage Effect in Developmental Defects and Human Congenital Disorders. Curr Top Dev Biol 2014; 110:129-52. [DOI: 10.1016/b978-0-12-405943-6.00003-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|