51
|
Abstract
The X inactive-specific transcript (Xist) gene is the master regulator of X chromosome inactivation in mammals. Xist produces a long noncoding (lnc)RNA that accumulates over the entire length of the chromosome from which it is transcribed, recruiting factors to modify underlying chromatin and silence X-linked genes in cis Recent years have seen significant progress in identifying important functional elements in Xist RNA, their associated RNA-binding proteins (RBPs), and the downstream pathways for chromatin modification and gene silencing. In this review, we summarize progress in understanding both how these pathways function in Xist-mediated silencing and the complex interplay between them.
Collapse
Affiliation(s)
- Neil Brockdorff
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Joseph S Bowness
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Guifeng Wei
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
52
|
Abstract
Female mammals express the long noncoding X inactivation-specific transcript ( Xist) RNA to initiate X chromosome inactivation (XCI) that eventually results in the formation of the Barr body. Xist encompasses half a dozen repeated sequence stretches containing motifs for RNA-binding proteins that recruit effector complexes with functions for silencing genes and establishing a repressive chromatin configuration. Functional characterization of these effector proteins unveils the cooperation of a number of pathways to repress genes on the inactive X chromosome. Mechanistic insights can be extended to other noncoding RNAs with similar structure and open avenues for the design of new therapies to switch off gene expression. Here we review recent advances in the understanding of Xist and on this basis try to synthesize a model for the initiation of XCI.
Collapse
Affiliation(s)
- Asun Monfort
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, Hönggerberg, HPL E12, Otto-Stern-Weg 7, Zurich, Switzerland
| | - Anton Wutz
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, Hönggerberg, HPL E12, Otto-Stern-Weg 7, Zurich, Switzerland
| |
Collapse
|
53
|
The effects of the DNA Demethylating reagent, 5-azacytidine on SMCHD1 genomic localization. BMC Genet 2020; 21:3. [PMID: 31941450 PMCID: PMC6964063 DOI: 10.1186/s12863-020-0809-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/06/2020] [Indexed: 12/03/2022] Open
Abstract
Background DNA methylation is an epigenetic modification that mainly repress expression of genes essential during embryogenesis and development. There are key ATPase-dependent enzymes that read or write DNA methylation to remodel chromatin and regulate gene expression. Structural maintenance of chromosome hinge domain containing 1 (SMCHD1) is an architectural protein that regulates expression of numerous genes, some of which are imprinted, that are sensitive to DNA methylation. In addition, SMCHD1 germline mutations lead to developmental diseases; facioscapulohumoral muscular dystrophy (FSHD), bosma arhinia and micropthalmia (BAMS). Current evidence suggests that SMCHD1 functions through maintenance or de novo DNA methylation required for chromatin compaction. However, it is unclear if DNA methylation is also essential for genomic recruitment of SMCHD1 and its role as an architectural protein. We previously isolated SMCHD1 using a methylated DNA region from mouse pituitary growth hormone (Gh1) promoter, suggesting that methylation is required for SMCHD1 DNA binding. The goal of this study was to further understand DNA methylation directed role of SMCHD1 in regulating gene expression. Therefore, we profiled SMCHD1 genome wide occupancy in human neuroblastoma SH-SY5Y cells and evaluated if DNA methylation is required for SMCHD1 genomic binding by treating cells with the DNA demethylating reagent, 5-azacytidine (5-azaC). Results Our data suggest that the majority of SMCHD1 binding occurs in intron and intergenic regions. Gene ontology analysis of genes associated with SMCHD1 genomic occupancy that is sensitive to 5-azaC treatment suggests SMCHD1 involvement in central nervous system development. The potassium voltage-gated channel subfamily Q member1 (KCNQ1) gene that associates with central nervous system is a known SMCHD1 target. We showed SMCHD1 binding to an intronic region of KCNQ1 that is lost following 5-azaC treatment suggesting DNA methylation facilitated binding of SMCHD1. Indeed, deletion of SMCHD1 by CRISPR- Cas9 increases KCNQ1 gene expression confirming its role in regulating KCNQ1 gene expression. Conclusion These findings provide novel insights on DNA methylation directed function of SMCHD1 in regulating expression of genes associated with central nervous system development that impact future drug development strategies.
Collapse
|
54
|
Jansz N, Nesterova T, Keniry A, Iminitoff M, Hickey PF, Pintacuda G, Masui O, Kobelke S, Geoghegan N, Breslin KA, Willson TA, Rogers K, Kay GF, Fox AH, Koseki H, Brockdorff N, Murphy JM, Blewitt ME. Smchd1 Targeting to the Inactive X Is Dependent on the Xist-HnrnpK-PRC1 Pathway. Cell Rep 2019; 25:1912-1923.e9. [PMID: 30428357 DOI: 10.1016/j.celrep.2018.10.044] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/06/2018] [Accepted: 10/11/2018] [Indexed: 01/08/2023] Open
Abstract
We and others have recently reported that the SMC protein Smchd1 is a regulator of chromosome conformation. Smchd1 is critical for the structure of the inactive X chromosome and at autosomal targets such as the Hox genes. However, it is unknown how Smchd1 is recruited to these sites. Here, we report that Smchd1 localizes to the inactive X via the Xist-HnrnpK-PRC1 (polycomb repressive complex 1) pathway. Contrary to previous reports, Smchd1 does not bind Xist or other RNA molecules with any specificity. Rather, the localization of Smchd1 to the inactive X is H2AK119ub dependent. Following perturbation of this interaction, Smchd1 is destabilized, which has consequences for gene silencing genome-wide. Our work adds Smchd1 to the PRC1 silencing pathway for X chromosome inactivation.
Collapse
Affiliation(s)
- Natasha Jansz
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Tatyana Nesterova
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Andrew Keniry
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Megan Iminitoff
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052, Australia
| | - Peter F Hickey
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Greta Pintacuda
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Osamu Masui
- Centre for Integrative Medical Sciences, RIKEN Yokohama Institute, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Simon Kobelke
- School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Niall Geoghegan
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kelsey A Breslin
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052, Australia
| | - Tracy A Willson
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052, Australia
| | - Kelly Rogers
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Graham F Kay
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Archa H Fox
- School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Haruhiko Koseki
- Centre for Integrative Medical Sciences, RIKEN Yokohama Institute, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Neil Brockdorff
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Marnie E Blewitt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia; Department of Genetics, University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
55
|
Liberman N, Wang SY, Greer EL. Transgenerational epigenetic inheritance: from phenomena to molecular mechanisms. Curr Opin Neurobiol 2019; 59:189-206. [PMID: 31634674 DOI: 10.1016/j.conb.2019.09.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023]
Abstract
Inherited information not encoded in the DNA sequence can regulate a variety of complex phenotypes. However, how this epigenetic information escapes the typical epigenetic erasure that occurs upon fertilization and how it regulates behavior is still unclear. Here we review recent examples of brain related transgenerational epigenetic inheritance and delineate potential molecular mechanisms that could regulate how non-genetic information could be transmitted.
Collapse
Affiliation(s)
- Noa Liberman
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston MA 02115, USA
| | - Simon Yuan Wang
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston MA 02115, USA
| | - Eric Lieberman Greer
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston MA 02115, USA.
| |
Collapse
|
56
|
Fang H, Disteche CM, Berletch JB. X Inactivation and Escape: Epigenetic and Structural Features. Front Cell Dev Biol 2019; 7:219. [PMID: 31632970 PMCID: PMC6779695 DOI: 10.3389/fcell.2019.00219] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/18/2019] [Indexed: 12/27/2022] Open
Abstract
X inactivation represents a complex multi-layer epigenetic mechanism that profoundly modifies chromatin composition and structure of one X chromosome in females. The heterochromatic inactive X chromosome adopts a unique 3D bipartite structure and a location close to the nuclear periphery or the nucleolus. X-linked lncRNA loci and their transcripts play important roles in the recruitment of proteins that catalyze chromatin and DNA modifications for silencing, as well as in the control of chromatin condensation and location of the inactive X chromosome. A subset of genes escapes X inactivation, raising questions about mechanisms that preserve their expression despite being embedded within heterochromatin. Escape gene expression differs between males and females, which can lead to physiological sex differences. We review recent studies that emphasize challenges in understanding the role of lncRNAs in the control of epigenetic modifications, structural features and nuclear positioning of the inactive X chromosome. Second, we highlight new findings about the distribution of genes that escape X inactivation based on single cell studies, and discuss the roles of escape genes in eliciting sex differences in health and disease.
Collapse
Affiliation(s)
- He Fang
- Department of Pathology, University of Washington, Seattle, WA, United States
| | - Christine M. Disteche
- Department of Pathology, University of Washington, Seattle, WA, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Joel B. Berletch
- Department of Pathology, University of Washington, Seattle, WA, United States
| |
Collapse
|
57
|
Wang CY, Brand H, Shaw ND, Talkowski ME, Lee JT. Role of the Chromosome Architectural Factor SMCHD1 in X-Chromosome Inactivation, Gene Regulation, and Disease in Humans. Genetics 2019; 213:685-703. [PMID: 31420322 PMCID: PMC6781896 DOI: 10.1534/genetics.119.302600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/13/2019] [Indexed: 12/11/2022] Open
Abstract
Structural maintenance of chromosomes flexible hinge domain-containing 1 (SMCHD1) is an architectural factor critical for X-chromosome inactivation (XCI) and the repression of select autosomal gene clusters. In mice, homozygous nonsense mutations in Smchd1 cause female-specific embryonic lethality due to an XCI defect. However, although human mutations in SMCHD1 are associated with congenital arhinia and facioscapulohumeral muscular dystrophy type 2 (FSHD2), the diseases do not show a sex-specific bias, despite the essential nature of XCI in humans. To investigate whether there is a dosage imbalance for the sex chromosomes, we here analyze transcriptomic data from arhinia and FSHD2 patient blood and muscle cells. We find that X-linked dosage compensation is maintained in these patients. In mice, SMCHD1 controls not only protocadherin (Pcdh) gene clusters, but also Hox genes critical for craniofacial development. Ablating Smchd1 results in aberrant expression of these genes, coinciding with altered chromatin states and three-dimensional (3D) topological organization. In a subset of FSHD2 and arhinia patients, we also found dysregulation of clustered PCDH, but not HOX genes. Overall, our study demonstrates preservation of XCI in arhinia and FSHD2, and implicates SMCHD1 in the regulation of the 3D organization of select autosomal gene clusters.
Collapse
Affiliation(s)
- Chen-Yu Wang
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Harrison Brand
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Natalie D Shaw
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Michael E Talkowski
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
58
|
Abstract
In mammals, dosage compensation of sex chromosomal genes between females (XX) and males (XY) is achieved through X-chromosome inactivation (XCI). The X-linked X-inactive-specific transcript (Xist) long noncoding RNA is indispensable for XCI and initiates the process early during development by spreading in cis across the X chromosome from which it is transcribed. During XCI, Xist RNA triggers gene silencing, recruits a plethora of chromatin modifying factors, and drives a major structural reorganization of the X chromosome. Here, we review our knowledge of the multitude of epigenetic events orchestrated by Xist RNA to allow female mammals to survive through embryonic development by establishing and maintaining proper dosage compensation. In particular, we focus on recent studies characterizing the interaction partners of Xist RNA, and we discuss how they have affected the field by addressing long-standing controversies or by giving rise to new research perspectives that are currently being explored. This review is dedicated to the memory of Denise Barlow, pioneer of genomic imprinting and functional long noncoding RNAs (lncRNAs), whose work has revolutionized the epigenetics field and continues to inspire generations of scientists.
Collapse
|
59
|
Midic U, Vincent KA, Wang K, Lokken A, Severance AL, Ralston A, Knott JG, Latham KE. Novel key roles for structural maintenance of chromosome flexible domain containing 1 (Smchd1) during preimplantation mouse development. Mol Reprod Dev 2019; 85:635-648. [PMID: 29900695 DOI: 10.1002/mrd.23001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/08/2018] [Indexed: 12/16/2022]
Abstract
Structural maintenance of chromosome flexible domain containing 1 (Smchd1) is a chromatin regulatory gene for which mutations are associated with facioscapulohumeral muscular dystrophy and arhinia. The contribution of oocyte- and zygote-expressed SMCHD1 to early development was examined in mice ( Mus musculus) using a small interfering RNA knockdown approach. Smchd1 knockdown compromised long-term embryo viability, with reduced embryo nuclear volumes at the morula stage, reduced blastocyst cell number, formation and hatching, and reduced viability to term. RNA sequencing analysis of Smchd1 knockdown morulae revealed aberrant increases in expression of a small number of trophectoderm (TE)-related genes and reduced expression of cell proliferation genes, including S-phase kinase-associated protein 2 ( Skp2). Smchd1 expression was elevated in embryos deficient for Caudal-type homeobox transcription factor 2 ( Cdx2, a key regulator of TE specification), indicating that Smchd1 is normally repressed by CDX2. These results indicate that Smchd1 plays an important role in the preimplantation embryo, regulating early gene expression and contributing to long-term embryo viability. These results extend the known functions of SMCHD1 to the preimplantation period and highlight important function for maternally expressed Smchd1 messenger RNA and protein.
Collapse
Affiliation(s)
- Uros Midic
- Department of Animal Science, Michigan State University, East Lansing, Michigan
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| | - Kailey A Vincent
- Department of Animal Science, Michigan State University, East Lansing, Michigan
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| | - Kai Wang
- Department of Animal Science, Michigan State University, East Lansing, Michigan
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| | - Alyson Lokken
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Ashley L Severance
- Department of Animal Science, Michigan State University, East Lansing, Michigan
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| | - Amy Ralston
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Jason G Knott
- Department of Animal Science, Michigan State University, East Lansing, Michigan
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| | - Keith E Latham
- Department of Animal Science, Michigan State University, East Lansing, Michigan
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| |
Collapse
|
60
|
Abstract
Facioscapulohumeral muscular dystrophy (FSHD), a progressive myopathy that afflicts individuals of all ages, provides a powerful model of the complex interplay between genetic and epigenetic mechanisms of chromatin regulation. FSHD is caused by dysregulation of a macrosatellite repeat, either by contraction of the repeat or by mutations in silencing proteins. Both cases lead to chromatin relaxation and, in the context of a permissive allele, aberrant expression of the DUX4 gene in skeletal muscle. DUX4 is a pioneer transcription factor that activates a program of gene expression during early human development, after which its expression is silenced in most somatic cells. When misexpressed in FSHD skeletal muscle, the DUX4 program leads to accumulated muscle pathology. Epigenetic regulators of the disease locus represent particularly attractive therapeutic targets for FSHD, as many are not global modifiers of the genome, and altering their expression or activity should allow correction of the underlying defect.
Collapse
MESH Headings
- CRISPR-Cas Systems
- Chromatin/chemistry
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosomes, Human, Pair 4
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- DNA Methylation
- Epigenesis, Genetic
- Gene Editing
- Genetic Loci
- Genome, Human
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Facioscapulohumeral/classification
- Muscular Dystrophy, Facioscapulohumeral/genetics
- Muscular Dystrophy, Facioscapulohumeral/metabolism
- Muscular Dystrophy, Facioscapulohumeral/pathology
- Mutation
- Severity of Illness Index
- DNA Methyltransferase 3B
Collapse
Affiliation(s)
- Charis L Himeda
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Nevada 89557, USA;
| | - Peter L Jones
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Nevada 89557, USA;
| |
Collapse
|
61
|
The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol 2019; 20:590-607. [PMID: 31399642 DOI: 10.1038/s41580-019-0159-6] [Citation(s) in RCA: 1309] [Impact Index Per Article: 218.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2019] [Indexed: 12/22/2022]
Abstract
DNA methylation is of paramount importance for mammalian embryonic development. DNA methylation has numerous functions: it is implicated in the repression of transposons and genes, but is also associated with actively transcribed gene bodies and, in some cases, with gene activation per se. In recent years, sensitive technologies have been developed that allow the interrogation of DNA methylation patterns from a small number of cells. The use of these technologies has greatly improved our knowledge of DNA methylation dynamics and heterogeneity in embryos and in specific tissues. Combined with genetic analyses, it is increasingly apparent that regulation of DNA methylation erasure and (re-)establishment varies considerably between different developmental stages. In this Review, we discuss the mechanisms and functions of DNA methylation and demethylation in both mice and humans at CpG-rich promoters, gene bodies and transposable elements. We highlight the dynamic erasure and re-establishment of DNA methylation in embryonic, germline and somatic cell development. Finally, we provide insights into DNA methylation gained from studying genetic diseases.
Collapse
|
62
|
Ruebel ML, Vincent KA, Schall PZ, Wang K, Latham KE. SMCHD1 terminates the first embryonic genome activation event in mouse two-cell embryos and contributes to a transcriptionally repressive state. Am J Physiol Cell Physiol 2019; 317:C655-C664. [PMID: 31365290 DOI: 10.1152/ajpcell.00116.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Embryonic genome activation (EGA) in mammals begins with transient expression of a large group of genes (EGA1). Importantly, entry into and exit from the 2C/EGA state is essential for viability. Dux family member genes play an integral role in EGA1 by activating other EGA marker genes such as Zscan4 family members. We previously reported that structural maintenance of chromosomes flexible hinge domain-containing protein 1 (Smchd1) is expressed at the mRNA and protein levels in mouse oocytes and early embryos and that elimination of Smchd1 expression inhibits inner cell mass formation, blastocyst formation and hatching, and term development. We extend these observations here by showing that siRNA knockdown of Smchd1 in zygotes results in overexpression of Dux and Zscan4 in two-cell embryos, with continued overexpression of Dux at least through the eight-cell stage as well as prolonged expression of Zscan4. These results are consistent with a role for SMCHD1 in promoting exit from the EGA1 state and establishing SMCHD1 as a maternal effect gene and the first chromatin regulatory factor identified with this role. Additionally, bioinformatics analysis reveals that SMCHD1 also contributes to the creation of a transcriptionally repressive state to allow correct gene regulation.
Collapse
Affiliation(s)
- Meghan L Ruebel
- Department of Animal Science, Michigan State University, East Lansing, Michigan.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| | - Kailey A Vincent
- Department of Animal Science, Michigan State University, East Lansing, Michigan.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| | - Peter Z Schall
- Department of Animal Science, Michigan State University, East Lansing, Michigan.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| | - Kai Wang
- Department of Animal Science, Michigan State University, East Lansing, Michigan.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| | - Keith E Latham
- Department of Animal Science, Michigan State University, East Lansing, Michigan.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan.,Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
63
|
Nesterova TB, Wei G, Coker H, Pintacuda G, Bowness JS, Zhang T, Almeida M, Bloechl B, Moindrot B, Carter EJ, Alvarez Rodrigo I, Pan Q, Bi Y, Song CX, Brockdorff N. Systematic allelic analysis defines the interplay of key pathways in X chromosome inactivation. Nat Commun 2019; 10:3129. [PMID: 31311937 PMCID: PMC6635394 DOI: 10.1038/s41467-019-11171-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 06/19/2019] [Indexed: 01/05/2023] Open
Abstract
Xist RNA, the master regulator of X chromosome inactivation, acts in cis to induce chromosome-wide silencing. Whilst recent studies have defined candidate silencing factors, their relative contribution to repressing different genes, and their relationship with one another is poorly understood. Here we describe a systematic analysis of Xist-mediated allelic silencing in mouse embryonic stem cell-based models. Using a machine learning approach we identify distance to the Xist locus and prior gene expression levels as key determinants of silencing efficiency. We go on to show that Spen, recruited through the Xist A-repeat, plays a central role, being critical for silencing of all except a subset of weakly expressed genes. Polycomb, recruited through the Xist B/C-repeat, also plays a key role, favouring silencing of genes with pre-existing H3K27me3 chromatin. LBR and the Rbm15/m6A-methyltransferase complex make only minor contributions to gene silencing. Together our results provide a comprehensive model for Xist-mediated chromosome silencing.
Collapse
Affiliation(s)
- Tatyana B Nesterova
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Guifeng Wei
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Heather Coker
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Greta Pintacuda
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Joseph S Bowness
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Tianyi Zhang
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Mafalda Almeida
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Bianca Bloechl
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Benoit Moindrot
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- I2BC Paris-Sud University, Gif-Sur-Yvette, France
| | - Emma J Carter
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Ines Alvarez Rodrigo
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Qi Pan
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Ying Bi
- Ludwig Institute for Cancer Research, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Chun-Xiao Song
- Ludwig Institute for Cancer Research, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Neil Brockdorff
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
64
|
Wang CY, Colognori D, Sunwoo H, Wang D, Lee JT. PRC1 collaborates with SMCHD1 to fold the X-chromosome and spread Xist RNA between chromosome compartments. Nat Commun 2019; 10:2950. [PMID: 31270318 PMCID: PMC6610634 DOI: 10.1038/s41467-019-10755-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/27/2019] [Indexed: 12/21/2022] Open
Abstract
X-chromosome inactivation triggers fusion of A/B compartments to inactive X (Xi)-specific structures known as S1 and S2 compartments. SMCHD1 then merges S1/S2s to form the Xi super-structure. Here, we ask how S1/S2 compartments form and reveal that Xist RNA drives their formation via recruitment of Polycomb repressive complex 1 (PRC1). Ablating Smchd1 in post-XCI cells unveils S1/S2 structures. Loss of SMCHD1 leads to trapping Xist in the S1 compartment, impairing RNA spreading into S2. On the other hand, depleting Xist, PRC1, or HNRNPK precludes re-emergence of S1/S2 structures, and loss of S1/S2 compartments paradoxically strengthens the partition between Xi megadomains. Finally, Xi-reactivation in post-XCI cells can be enhanced by depleting both SMCHD1 and DNA methylation. We conclude that Xist, PRC1, and SMCHD1 collaborate in an obligatory, sequential manner to partition, fuse, and direct self-association of Xi compartments required for proper spreading of Xist RNA. The inactive X (Xi)-specific S1/S2 chromosome compartments are merged by SMCHD1, but how the S1/S2 structure is constructed is unclear. The authors find that PRC1 drives the formation of S1/S2s and that the stepwise folding process of the Xi facilitates Xist RNA spreading between Xi compartments.
Collapse
Affiliation(s)
- Chen-Yu Wang
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - David Colognori
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Hongjae Sunwoo
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Danni Wang
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA. .,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
65
|
Dion C, Roche S, Laberthonnière C, Broucqsault N, Mariot V, Xue S, Gurzau AD, Nowak A, Gordon CT, Gaillard MC, El-Yazidi C, Thomas M, Schlupp-Robaglia A, Missirian C, Malan V, Ratbi L, Sefiani A, Wollnik B, Binetruy B, Salort Campana E, Attarian S, Bernard R, Nguyen K, Amiel J, Dumonceaux J, Murphy JM, Déjardin J, Blewitt ME, Reversade B, Robin JD, Magdinier F. SMCHD1 is involved in de novo methylation of the DUX4-encoding D4Z4 macrosatellite. Nucleic Acids Res 2019; 47:2822-2839. [PMID: 30698748 PMCID: PMC6451109 DOI: 10.1093/nar/gkz005] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/26/2018] [Accepted: 01/03/2019] [Indexed: 12/11/2022] Open
Abstract
The DNA methylation epigenetic signature is a key determinant during development. Rules governing its establishment and maintenance remain elusive especially at repetitive sequences, which account for the majority of methylated CGs. DNA methylation is altered in a number of diseases including those linked to mutations in factors that modify chromatin. Among them, SMCHD1 (Structural Maintenance of Chromosomes Hinge Domain Containing 1) has been of major interest following identification of germline mutations in Facio-Scapulo-Humeral Dystrophy (FSHD) and in an unrelated developmental disorder, Bosma Arhinia Microphthalmia Syndrome (BAMS). By investigating why germline SMCHD1 mutations lead to these two different diseases, we uncovered a role for this factor in de novo methylation at the pluripotent stage. SMCHD1 is required for the dynamic methylation of the D4Z4 macrosatellite upon reprogramming but seems dispensable for methylation maintenance. We find that FSHD and BAMS patient's cells carrying SMCHD1 mutations are both permissive for DUX4 expression, a transcription factor whose regulation has been proposed as the main trigger for FSHD. These findings open new questions as to what is the true aetiology for FSHD, the epigenetic events associated with the disease thus calling the current model into question and opening new perspectives for understanding repetitive DNA sequences regulation.
Collapse
Affiliation(s)
- Camille Dion
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France
| | - Stéphane Roche
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France
| | | | - Natacha Broucqsault
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France
| | - Virginie Mariot
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, 30 Guilford Street, London WC1N 1EH, UK
| | - Shifeng Xue
- Institute of Molecular and Cell Biology, A*STAR, Singapore. Institute of Medical Biology, A*STAR, Singapore
| | - Alexandra D Gurzau
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; The Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Agnieszka Nowak
- Institut de Génétique Humaine UMR9002 CNRS-Université de Montpellier. France
| | - Christopher T Gordon
- Laboratory of Embryology and Genetics of Human Malformation, INSERM UMR 1163, Institut Imagine, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| | | | - Claire El-Yazidi
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France
| | - Morgane Thomas
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France
| | - Andrée Schlupp-Robaglia
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France
- Département de Génétique Médicale et Biologie Cellulaire, AP-HM, Hôpital de la Timone enfants, Marseille, France
- Centre de ressources biologiques, AP-HM, Hôpital de la Timone enfants, Marseille, France
| | - Chantal Missirian
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France
- Département de Génétique Médicale et Biologie Cellulaire, AP-HM, Hôpital de la Timone enfants, Marseille, France
| | - Valérie Malan
- Laboratory of Embryology and Genetics of Human Malformation, INSERM UMR 1163, Institut Imagine, Paris, France
- Département de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Liham Ratbi
- Centre de Génomique Humaine et Genopath, Faculté de Médecine et de Pharmacie, Université Mohammed V, 10100 Rabat, Morocco
| | - Abdelaziz Sefiani
- Centre de Génomique Humaine et Genopath, Faculté de Médecine et de Pharmacie, Université Mohammed V, 10100 Rabat, Morocco
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Campus Göttingen, 37073 Göttingen, Germany
| | - Bernard Binetruy
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France
| | - Emmanuelle Salort Campana
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France
- Centre de références pour les maladies neuromusculaires et la SLA, AP-HM, Hôpital de la Timone, Marseille, France
| | - Shahram Attarian
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France
- Centre de références pour les maladies neuromusculaires et la SLA, AP-HM, Hôpital de la Timone, Marseille, France
| | - Rafaelle Bernard
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France
- Département de Génétique Médicale et Biologie Cellulaire, AP-HM, Hôpital de la Timone enfants, Marseille, France
| | - Karine Nguyen
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France
- Département de Génétique Médicale et Biologie Cellulaire, AP-HM, Hôpital de la Timone enfants, Marseille, France
| | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Human Malformation, INSERM UMR 1163, Institut Imagine, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
- Département de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Julie Dumonceaux
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, 30 Guilford Street, London WC1N 1EH, UK
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; The Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Jérôme Déjardin
- Institut de Génétique Humaine UMR9002 CNRS-Université de Montpellier. France
| | - Marnie E Blewitt
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; The Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Bruno Reversade
- Institute of Molecular and Cell Biology, A*STAR, Singapore. Institute of Medical Biology, A*STAR, Singapore
- Department of Paediatrics, National University of Singapore, Singapore, Singapore
- Medical Genetics Department, Koç University School of Medicine (KUSOM), Istanbul, Turkey
- Reproductive Biology Laboratory, Academic Medical Center (AMC), Amsterdam-Zuidoost, The Netherlands
| | - Jérôme D Robin
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France
| | | |
Collapse
|
66
|
The Roles of Human DNA Methyltransferases and Their Isoforms in Shaping the Epigenome. Genes (Basel) 2019; 10:genes10020172. [PMID: 30813436 PMCID: PMC6409524 DOI: 10.3390/genes10020172] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/16/2019] [Accepted: 02/19/2019] [Indexed: 12/20/2022] Open
Abstract
A DNA sequence is the hard copy of the human genome and it is a driving force in determining the physiological processes in an organism. Concurrently, the chemical modification of the genome and its related histone proteins is dynamically involved in regulating physiological processes and diseases, which overall constitutes the epigenome network. Among the various forms of epigenetic modifications, DNA methylation at the C-5 position of cytosine in the cytosine–guanine (CpG) dinucleotide is one of the most well studied epigenetic modifications. DNA methyltransferases (DNMTs) are a family of enzymes involved in generating and maintaining CpG methylation across the genome. In mammalian systems, DNA methylation is performed by DNMT1 and DNMT3s (DNMT3A and 3B). DNMT1 is predominantly involved in the maintenance of DNA methylation during cell division, while DNMT3s are involved in establishing de novo cytosine methylation and maintenance in both embryonic and somatic cells. In general, all DNMTs require accessory proteins, such as ubiquitin-like containing plant homeodomain (PHD) and really interesting new gene (RING) finger domain 1 (UHRF1) or DNMT3-like (DNMT3L), for their biological function. This review mainly focuses on the role of DNMT3B and its isoforms in de novo methylation and maintenance of DNA methylation, especially with respect to their role as an accessory protein.
Collapse
|
67
|
Banerjee S, Zhu H, Tang M, Feng WC, Wu X, Xie H. Identifying Transcriptional Regulatory Modules Among Different Chromatin States in Mouse Neural Stem Cells. Front Genet 2019; 9:731. [PMID: 30697231 PMCID: PMC6341026 DOI: 10.3389/fgene.2018.00731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/22/2018] [Indexed: 12/19/2022] Open
Abstract
Gene expression regulation is a complex process involving the interplay between transcription factors and chromatin states. Significant progress has been made toward understanding the impact of chromatin states on gene expression. Nevertheless, the mechanism of transcription factors binding combinatorially in different chromatin states to enable selective regulation of gene expression remains an interesting research area. We introduce a nonparametric Bayesian clustering method for inhomogeneous Poisson processes to detect heterogeneous binding patterns of multiple proteins including transcription factors to form regulatory modules in different chromatin states. We applied this approach on ChIP-seq data for mouse neural stem cells containing 21 proteins and observed different groups or modules of proteins clustered within different chromatin states. These chromatin-state-specific regulatory modules were found to have significant influence on gene expression. We also observed different motif preferences for certain TFs between different chromatin states. Our results reveal a degree of interdependency between chromatin states and combinatorial binding of proteins in the complex transcriptional regulatory process. The software package is available on Github at - https://github.com/BSharmi/DPM-LGCP.
Collapse
Affiliation(s)
- Sharmi Banerjee
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, United States.,Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States
| | - Hongxiao Zhu
- Department of Statistics, Virginia Tech, Blacksburg, VA, United States
| | - Man Tang
- Department of Statistics, Virginia Tech, Blacksburg, VA, United States
| | - Wu-Chun Feng
- Department of Computer Science, Virginia Tech, Blacksburg, VA, United States
| | - Xiaowei Wu
- Department of Statistics, Virginia Tech, Blacksburg, VA, United States
| | - Hehuang Xie
- Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, United States.,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States.,School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
68
|
The non-canonical SMC protein SmcHD1 antagonises TAD formation and compartmentalisation on the inactive X chromosome. Nat Commun 2019; 10:30. [PMID: 30604745 PMCID: PMC6318279 DOI: 10.1038/s41467-018-07907-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/14/2018] [Indexed: 12/16/2022] Open
Abstract
The inactive X chromosome (Xi) in female mammals adopts an atypical higher-order chromatin structure, manifested as a global loss of local topologically associated domains (TADs), A/B compartments and formation of two mega-domains. Here we demonstrate that the non-canonical SMC family protein, SmcHD1, which is important for gene silencing on Xi, contributes to this unique chromosome architecture. Specifically, allelic mapping of the transcriptome and epigenome in SmcHD1 mutant cells reveals the appearance of sub-megabase domains defined by gene activation, CpG hypermethylation and depletion of Polycomb-mediated H3K27me3. These domains, which correlate with sites of SmcHD1 enrichment on Xi in wild-type cells, additionally adopt features of active X chromosome higher-order chromosome architecture, including A/B compartments and partial restoration of TAD boundaries. Xi chromosome architecture changes also occurred following SmcHD1 knockout in a somatic cell model, but in this case, independent of Xi gene derepression. We conclude that SmcHD1 is a key factor in defining the unique chromosome architecture of Xi. The inactive X chromosome (Xi) has an atypical structure, with global loss of TADs, A/B compartments and formation of mega-domains. Here the authors show that the non-canonical SMC family protein, SmcHD1, important for developmental gene silencing on Xi, antagonises TAD formation and compartmentalization on the Xi in a transcription independent way.
Collapse
|
69
|
Galupa R, Heard E. X-Chromosome Inactivation: A Crossroads Between Chromosome Architecture and Gene Regulation. Annu Rev Genet 2018; 52:535-566. [PMID: 30256677 DOI: 10.1146/annurev-genet-120116-024611] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In somatic nuclei of female therian mammals, the two X chromosomes display very different chromatin states: One X is typically euchromatic and transcriptionally active, and the other is mostly silent and forms a cytologically detectable heterochromatic structure termed the Barr body. These differences, which arise during female development as a result of X-chromosome inactivation (XCI), have been the focus of research for many decades. Initial approaches to define the structure of the inactive X chromosome (Xi) and its relationship to gene expression mainly involved microscopy-based approaches. More recently, with the advent of genomic techniques such as chromosome conformation capture, molecular details of the structure and expression of the Xi have been revealed. Here, we review our current knowledge of the 3D organization of the mammalian X-chromosome chromatin and discuss its relationship with gene activity in light of the initiation, spreading, and maintenance of XCI, as well as escape from gene silencing.
Collapse
Affiliation(s)
- Rafael Galupa
- Genetics and Developmental Biology Unit and Mammalian Developmental Epigenetics Group, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, 75248 Paris, France; .,Current affiliation: Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Edith Heard
- Genetics and Developmental Biology Unit and Mammalian Developmental Epigenetics Group, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, 75248 Paris, France; .,Collège de France, 75231 Paris, France
| |
Collapse
|
70
|
Sakakibara Y, Nagao K, Blewitt M, Sasaki H, Obuse C, Sado T. Role of SmcHD1 in establishment of epigenetic states required for the maintenance of the X-inactivated state in mice. Development 2018; 145:dev.166462. [PMID: 30126901 DOI: 10.1242/dev.166462] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 08/10/2018] [Indexed: 01/01/2023]
Abstract
X inactivation in mammals is regulated by epigenetic modifications. Functional deficiency of SmcHD1 has been shown to cause de-repression of X-inactivated genes in post-implantation female mouse embryos, suggesting a role of SmcHD1 in the maintenance of X inactivation. Here, we show that de-repression of X-inactivated genes accompanied a local reduction in the enrichment of H3K27me3 in mouse embryonic fibroblasts deficient for SmcHD1. Furthermore, many of these genes overlapped with those having a significantly lower enrichment of H3K27me3 at the blastocyst stage in wild type. Intriguingly, however, depletion of SmcHD1 did not compromise the X-inactivated state in immortalized female mouse embryonic fibroblasts, in which X inactivation had been established and maintained. Taking all these findings together, we suggest that SmcHD1 facilitates the incorporation of H3K27me3 and perhaps other epigenetic modifications at gene loci that are silenced even with the lower enrichment of H3K27me3 at the early stage of X inactivation. The epigenetic state at these loci would, however, remain as it is at the blastocyst stage in the absence of SmcHD1 after implantation, which would eventually compromise the maintenance of the X-inactivated state at later stages.
Collapse
Affiliation(s)
- Yuki Sakakibara
- Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Koji Nagao
- Department of Biological Science, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Marnie Blewitt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052 VIC, Australia; The Department of Medical Biology, University of Melbourne, Parkville 3052, VIC, Australia
| | - Hiroyuki Sasaki
- Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Chikashi Obuse
- Department of Biological Science, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Takashi Sado
- Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan .,Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, 3327-204, Nakamachi, Nara, 630-8505, Japan
| |
Collapse
|
71
|
Luijk R, Wu H, Ward-Caviness CK, Hannon E, Carnero-Montoro E, Min JL, Mandaviya P, Müller-Nurasyid M, Mei H, van der Maarel SM, Relton C, Mill J, Waldenberger M, Bell JT, Jansen R, Zhernakova A, Franke L, 't Hoen PAC, Boomsma DI, van Duijn CM, van Greevenbroek MMJ, Veldink JH, Wijmenga C, van Meurs J, Daxinger L, Slagboom PE, van Zwet EW, Heijmans BT. Autosomal genetic variation is associated with DNA methylation in regions variably escaping X-chromosome inactivation. Nat Commun 2018; 9:3738. [PMID: 30218040 PMCID: PMC6138682 DOI: 10.1038/s41467-018-05714-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/23/2018] [Indexed: 12/28/2022] Open
Abstract
X-chromosome inactivation (XCI), i.e., the inactivation of one of the female X chromosomes, restores equal expression of X-chromosomal genes between females and males. However, ~10% of genes show variable degrees of escape from XCI between females, although little is known about the causes of variable XCI. Using a discovery data-set of 1867 females and 1398 males and a replication sample of 3351 females, we show that genetic variation at three autosomal loci is associated with female-specific changes in X-chromosome methylation. Through cis-eQTL expression analysis, we map these loci to the genes SMCHD1/METTL4, TRIM6/HBG2, and ZSCAN9. Low-expression alleles of the loci are predominantly associated with mild hypomethylation of CpG islands near genes known to variably escape XCI, implicating the autosomal genes in variable XCI. Together, these results suggest a genetic basis for variable escape from XCI and highlight the potential of a population genomics approach to identify genes involved in XCI.
Collapse
Affiliation(s)
- René Luijk
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Haoyu Wu
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Cavin K Ward-Caviness
- Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, 85764, Oberschleißheim, Germany
| | - Eilis Hannon
- University of Exeter Medical School, Exeter, EX4 4QD, UK
| | - Elena Carnero-Montoro
- Department of Twin Research & Genetic Epidemiology, King's College London, London, SE1 7EH, UK
- Pfizer - University of Granada - Andalusian Government Center for Genomics and Oncological Research (GENYO), Granada, 18016, Spain
| | - Josine L Min
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 1TH, UK
- Bristol Medical School, University of Bristol, Bristol, BS8 1UD, UK
| | - Pooja Mandaviya
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, 3015 CE, The Netherlands
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, 3015 CE, The Netherlands
| | - Martina Müller-Nurasyid
- DZHK (German Centre for Cardiovascular Research), partner site: Munich Heart Alliance, Munich, 80802, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, D-85764, Germany
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University, Munich, 80336, Germany
| | - Hailiang Mei
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Silvere M van der Maarel
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Caroline Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 1TH, UK
| | - Jonathan Mill
- University of Exeter Medical School, Exeter, EX4 4QD, UK
| | - Melanie Waldenberger
- Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, 85764, Oberschleißheim, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, D-85764, Germany
| | - Jordana T Bell
- Department of Twin Research & Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - Rick Jansen
- Department of Psychiatry, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, 1081 HV, The Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, 9713 AV, The Netherlands
| | - Lude Franke
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, 9713 AV, The Netherlands
| | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Neuroscience Campus Amsterdam, Amsterdam, 1081 TB, The Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Genetic Epidemiology Unit, ErasmusMC, Rotterdam, 3015 GE, The Netherlands
| | - Marleen M J van Greevenbroek
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, 6211 LK, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center, Maastricht, 6229 ER, The Netherlands
| | - Jan H Veldink
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, 3584 CG, The Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, 9713 AV, The Netherlands
| | - Joyce van Meurs
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, 3015 CE, The Netherlands
| | - Lucia Daxinger
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - P Eline Slagboom
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Erik W van Zwet
- Medical Statistics, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Bastiaan T Heijmans
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands.
| |
Collapse
|
72
|
Smchd1 regulates long-range chromatin interactions on the inactive X chromosome and at Hox clusters. Nat Struct Mol Biol 2018; 25:766-777. [PMID: 30127357 DOI: 10.1038/s41594-018-0111-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/29/2018] [Indexed: 12/16/2022]
Abstract
The regulation of higher-order chromatin structure is complex and dynamic, and a full understanding of the suite of mechanisms governing this architecture is lacking. Here, we reveal the noncanonical SMC protein Smchd1 to be a novel regulator of long-range chromatin interactions in mice, and we add Smchd1 to the canon of epigenetic proteins required for Hox-gene regulation. The effect of losing Smchd1-dependent chromatin interactions has varying outcomes that depend on chromatin context. At autosomal targets transcriptionally sensitive to Smchd1 deletion, we found increased short-range interactions and ectopic enhancer activation. In contrast, the inactive X chromosome was transcriptionally refractive to Smchd1 ablation, despite chromosome-wide increases in short-range interactions. In the inactive X, we observed spreading of trimethylated histone H3 K27 (H3K27me3) domains into regions not normally decorated by this mark. Together, these data suggest that Smchd1 is able to insulate chromatin, thereby limiting access to other chromatin-modifying proteins.
Collapse
|
73
|
Haynes P, Bomsztyk K, Miller DG. Sporadic DUX4 expression in FSHD myocytes is associated with incomplete repression by the PRC2 complex and gain of H3K9 acetylation on the contracted D4Z4 allele. Epigenetics Chromatin 2018; 11:47. [PMID: 30122154 PMCID: PMC6100714 DOI: 10.1186/s13072-018-0215-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 08/10/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Facioscapulohumeral muscular dystrophy 1 (FSHD1) has an autosomal dominant pattern of inheritance and primarily affects skeletal muscle. The genetic cause of FSHD1 is contraction of the D4Z4 macrosatellite array on chromosome 4 alleles associated with a permissive haplotype causing infrequent sporadic expression of the DUX4 gene. Epigenetically, the contracted D4Z4 array has decreased cytosine methylation and an open chromatin structure. Despite these genetic and epigenetic changes, the majority of FSHD myoblasts are able to repress DUX4 transcription. In this study we hypothesized that histone modifications distinguish DUX4 expressing and non-expressing cells from the same individuals. RESULTS FSHD myocytes containing the permissive 4qA haplotype with a long terminal D4Z4 unit were sorted into DUX4 expressing and non-expressing groups. We found similar CpG hypomethylation between the groups of FSHD-affected cells suggesting that CpG hypomethylation is not sufficient to trigger DUX4 expression. A survey of histone modifications present at the D4Z4 region during cell lineage commitment revealed that this region is bivalent in FSHD iPS cells with both H3K4me3 activating and H3K27me3 repressive marks present, making D4Z4 poised for DUX4 activation in pluripotent cells. After lineage commitment, the D4Z4 region becomes univalent with H3K27me3 in FSHD and non-FSHD control myoblasts and a concomitant increase in H3K4me3 in a small fraction of cells. Chromatin immunoprecipitation (ChIP) for histone modifications, chromatin modifier proteins and chromatin structural proteins on sorted FSHD myocytes revealed that activating H3K9Ac modifications were ~ fourfold higher in DUX4 expressing FSHD myocytes, while the repressive H3K27me3 modification was ~ fourfold higher at the permissive allele in DUX4 non-expressing FSHD myocytes from the same cultures. Similarly, we identified EZH2, a member of the polycomb repressive complex involved in H3K27 methylation, to be present more frequently on the permissive allele in DUX4 non-expressing FSHD myocytes. CONCLUSIONS These results implicate PRC2 as the complex primarily responsible for DUX4 repression in the setting of FSHD and H3K9 acetylation along with reciprocal loss of H3K27me3 as key epigenetic events that result in DUX4 expression. Future studies focused on events that trigger H3K9Ac or augment PRC2 complex activity in a small fraction of nuclei may expose additional drug targets worthy of study.
Collapse
Affiliation(s)
- Premi Haynes
- Departments of Pediatrics and Genome Sciences, University of Washington, Seattle, WA, USA
| | - Karol Bomsztyk
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Daniel G Miller
- Departments of Pediatrics and Genome Sciences, University of Washington, Seattle, WA, USA. .,University of Washington, Campus Box 358056, 850 Republican Street, Room N416, Seattle, WA, 98109, USA.
| |
Collapse
|
74
|
Hiramuki Y, Tapscott SJ. Identification of SMCHD1 domains for nuclear localization, homo-dimerization, and protein cleavage. Skelet Muscle 2018; 8:24. [PMID: 30071896 PMCID: PMC6090946 DOI: 10.1186/s13395-018-0172-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/24/2018] [Indexed: 12/04/2022] Open
Abstract
Background SMCHD1 is a disease modifier and a causative gene for facioscapulohumeral muscular dystrophy (FSHD) type 1 and type 2, respectively. A large variety of different mutations in SMCHD1 have been identified as causing FSHD2. In many cases, it is unclear how these mutations disrupt the normal function of SMCHD1. Methods We made and analyzed lenti-viral vectors that express Flag-tagged full-length or different mutant SMCHD1 proteins to better understand the functional domains of SMCHD1 in muscle cells. Results We identified regions necessary for nuclear localization, dimerization, and cleavage sites. Moreover, we confirmed that some mutants increased DUX4 expression in FSHD1 myoblasts. Conclusions These findings provide an additional basis for understanding the molecular consequences of SMCHD1 mutations. Electronic supplementary material The online version of this article (10.1186/s13395-018-0172-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yosuke Hiramuki
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Stephen J Tapscott
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
| |
Collapse
|
75
|
SMCHD1 Merges Chromosome Compartments and Assists Formation of Super-Structures on the Inactive X. Cell 2018; 174:406-421.e25. [PMID: 29887375 DOI: 10.1016/j.cell.2018.05.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 03/19/2018] [Accepted: 05/02/2018] [Indexed: 12/22/2022]
Abstract
Mammalian chromosomes are partitioned into A/B compartments and topologically associated domains (TADs). The inactive X (Xi) chromosome, however, adopts a distinct conformation without evident compartments or TADs. Here, through exploration of an architectural protein, structural-maintenance-of-chromosomes hinge domain containing 1 (SMCHD1), we probe how the Xi is reconfigured during X chromosome inactivation. A/B compartments are first fused into "S1" and "S2" compartments, coinciding with Xist spreading into gene-rich domains. SMCHD1 then binds S1/S2 compartments and merges them to create a compartment-less architecture. Contrary to current views, TADs remain on the Xi but in an attenuated state. Ablating SMCHD1 results in a persistent S1/S2 organization and strengthening of TADs. Furthermore, loss of SMCHD1 causes regional defects in Xist spreading and erosion of heterochromatic silencing. We present a stepwise model for Xi folding, where SMCHD1 attenuates a hidden layer of Xi architecture to facilitate Xist spreading.
Collapse
|
76
|
Studying X chromosome inactivation in the single-cell genomic era. Biochem Soc Trans 2018; 46:577-586. [PMID: 29678955 DOI: 10.1042/bst20170346] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 01/03/2023]
Abstract
Single-cell genomics is set to revolutionise our understanding of how epigenetic silencing works; by studying specific epigenetic marks or chromatin conformations in single cells, it is possible to ask whether they cause transcriptional silencing or are instead a consequence of the silent state. Here, we review what single-cell genomics has revealed about X chromosome inactivation, perhaps the best characterised mammalian epigenetic process, highlighting the novel findings and important differences between mouse and human X inactivation uncovered through these studies. We consider what fundamental questions these techniques are set to answer in coming years and propose that X chromosome inactivation is an ideal model to study gene silencing by single-cell genomics as technical limitations are minimised through the co-analysis of hundreds of genes.
Collapse
|
77
|
DeSimone AM, Pakula A, Lek A, Emerson CP. Facioscapulohumeral Muscular Dystrophy. Compr Physiol 2017; 7:1229-1279. [PMID: 28915324 DOI: 10.1002/cphy.c160039] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Facioscapulohumeral Muscular Dystrophy is a common form of muscular dystrophy that presents clinically with progressive weakness of the facial, scapular, and humeral muscles, with later involvement of the trunk and lower extremities. While typically inherited as autosomal dominant, facioscapulohumeral muscular dystrophy (FSHD) has a complex genetic and epigenetic etiology that has only recently been well described. The most prevalent form of the disease, FSHD1, is associated with the contraction of the D4Z4 microsatellite repeat array located on a permissive 4qA chromosome. D4Z4 contraction allows epigenetic derepression of the array, and possibly the surrounding 4q35 region, allowing misexpression of the toxic DUX4 transcription factor encoded within the terminal D4Z4 repeat in skeletal muscles. The less common form of the disease, FSHD2, results from haploinsufficiency of the SMCHD1 gene in individuals carrying a permissive 4qA allele, also leading to the derepression of DUX4, further supporting a central role for DUX4. How DUX4 misexpression contributes to FSHD muscle pathology is a major focus of current investigation. Misexpression of other genes at the 4q35 locus, including FRG1 and FAT1, and unlinked genes, such as SMCHD1, has also been implicated as disease modifiers, leading to several competing disease models. In this review, we describe recent advances in understanding the pathophysiology of FSHD, including the application of MRI as a research and diagnostic tool, the genetic and epigenetic disruptions associated with the disease, and the molecular basis of FSHD. We discuss how these advances are leading to the emergence of new approaches to enable development of FSHD therapeutics. © 2017 American Physiological Society. Compr Physiol 7:1229-1279, 2017.
Collapse
Affiliation(s)
- Alec M DeSimone
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Anna Pakula
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics and Genetics at Harvard Medical School, Boston, Massachusetts, USA
| | - Angela Lek
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics and Genetics at Harvard Medical School, Boston, Massachusetts, USA.,Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Charles P Emerson
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
78
|
Zernov NV, Marakhonov AV, Vyakhireva JV, Guskova AA, Dadali EL, Skoblov MY. Clinical and genetic characteristics and diagnostic features of Landouzy–Dejerine facioscapulohumeral muscular dystrophy. RUSS J GENET+ 2017. [DOI: 10.1134/s102279541706014x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
79
|
Mason AG, Slieker RC, Balog J, Lemmers RJLF, Wong CJ, Yao Z, Lim JW, Filippova GN, Ne E, Tawil R, Heijmans BT, Tapscott SJ, van der Maarel SM. SMCHD1 regulates a limited set of gene clusters on autosomal chromosomes. Skelet Muscle 2017; 7:12. [PMID: 28587678 PMCID: PMC5461771 DOI: 10.1186/s13395-017-0129-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/24/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Facioscapulohumeral muscular dystrophy (FSHD) is in most cases caused by a contraction of the D4Z4 macrosatellite repeat on chromosome 4 (FSHD1) or by mutations in the SMCHD1 or DNMT3B gene (FSHD2). Both situations result in the incomplete epigenetic repression of the D4Z4-encoded retrogene DUX4 in somatic cells, leading to the aberrant expression of DUX4 in the skeletal muscle. In mice, Smchd1 regulates chromatin repression at different loci, having a role in CpG methylation establishment and/or maintenance. METHODS To investigate the global effects of harboring heterozygous SMCHD1 mutations on DNA methylation in humans, we combined 450k methylation analysis on mononuclear monocytes from female heterozygous SMCHD1 mutation carriers and unaffected controls with reduced representation bisulfite sequencing (RRBS) on FSHD2 and control myoblast cell lines. Candidate loci were then evaluated for SMCHD1 binding using ChIP-qPCR and expression was evaluated using RT-qPCR. RESULTS We identified a limited number of clustered autosomal loci with CpG hypomethylation in SMCHD1 mutation carriers: the protocadherin (PCDH) cluster on chromosome 5, the transfer RNA (tRNA) and 5S rRNA clusters on chromosome 1, the HOXB and HOXD clusters on chromosomes 17 and 2, respectively, and the D4Z4 repeats on chromosomes 4 and 10. Furthermore, minor increases in RNA expression were seen in FSHD2 myoblasts for some of the PCDHβ cluster isoforms, tRNA isoforms, and a HOXB isoform in comparison to controls, in addition to the previously reported effects on DUX4 expression. SMCHD1 was bound at DNAseI hypersensitivity sites known to regulate the PCDHβ cluster and at the chromosome 1 tRNA cluster, with decreased binding in SMCHD1 mutation carriers at the PCDHβ cluster sites. CONCLUSIONS Our study is the first to investigate the global methylation effects in humans resulting from heterozygous mutations in SMCHD1. Our results suggest that SMCHD1 acts as a repressor on a limited set of autosomal gene clusters, as an observed reduction in methylation associates with a loss of SMCHD1 binding and increased expression for some of the loci.
Collapse
Affiliation(s)
- Amanda G Mason
- Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Roderick C Slieker
- Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Judit Balog
- Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Chao-Jen Wong
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Zizhen Yao
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jong-Won Lim
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Galina N Filippova
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Enrico Ne
- Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rabi Tawil
- Neuromuscular Disease Unit, Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Bas T Heijmans
- Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Consortium for Healthy Aging, Leiden, The Netherlands
| | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | |
Collapse
|
80
|
Novel players in X inactivation: insights into Xist-mediated gene silencing and chromosome conformation. Nat Struct Mol Biol 2017; 24:197-204. [DOI: 10.1038/nsmb.3370] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/05/2017] [Indexed: 02/07/2023]
|
81
|
Jansz N, Chen K, Murphy JM, Blewitt ME. The Epigenetic Regulator SMCHD1 in Development and Disease. Trends Genet 2017; 33:233-243. [PMID: 28222895 DOI: 10.1016/j.tig.2017.01.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/24/2017] [Indexed: 12/30/2022]
Abstract
It has very recently become clear that the epigenetic modifier SMCHD1 has a role in two distinct disorders: facioscapulohumoral muscular dystrophy (FSHD) and Bosma arhinia and micropthalmia (BAMS). In the former there are heterozygous loss-of-function mutations, while both gain- and loss-of-function mutations have been proposed to underlie the latter. These findings have led to much interest in SMCHD1 and how it works at the molecular level. We summarise here current understanding of the mechanism of action of SMCHD1, its role in these diseases, and what has been learnt from study of mouse models null for Smchd1 in the decade since the discovery of SMCHD1.
Collapse
Affiliation(s)
- Natasha Jansz
- The Walter and Eliza Hall Institute of Medical Research, Melbourne VIC, Australia; The Department of Medical Biology, The University of Melbourne, Melbourne VIC, Australia
| | - Kelan Chen
- The Walter and Eliza Hall Institute of Medical Research, Melbourne VIC, Australia; The Department of Medical Biology, The University of Melbourne, Melbourne VIC, Australia
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Melbourne VIC, Australia; The Department of Medical Biology, The University of Melbourne, Melbourne VIC, Australia
| | - Marnie E Blewitt
- The Walter and Eliza Hall Institute of Medical Research, Melbourne VIC, Australia; The Department of Medical Biology, The University of Melbourne, Melbourne VIC, Australia.
| |
Collapse
|
82
|
Cantone I, Dharmalingam G, Chan YW, Kohler AC, Lenhard B, Merkenschlager M, Fisher AG. Allele-specific analysis of cell fusion-mediated pluripotent reprograming reveals distinct and predictive susceptibilities of human X-linked genes to reactivation. Genome Biol 2017; 18:2. [PMID: 28118853 PMCID: PMC5264468 DOI: 10.1186/s13059-016-1136-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/14/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Inactivation of one X chromosome is established early in female mammalian development and can be reversed in vivo and in vitro when pluripotency factors are re-expressed. The extent of reactivation along the inactive X chromosome (Xi) and the determinants of locus susceptibility are, however, poorly understood. Here we use cell fusion-mediated pluripotent reprograming to study human Xi reactivation and allele-specific single nucleotide polymorphisms (SNPs) to identify reactivated loci. RESULTS We show that a subset of human Xi genes is rapidly reactivated upon re-expression of the pluripotency network. These genes lie within the most evolutionary recent segments of the human X chromosome that are depleted of LINE1 and enriched for SINE elements, predicted to impair XIST spreading. Interestingly, this cadre of genes displays stochastic Xi expression in human fibroblasts ahead of reprograming. This stochastic variability is evident between clones, by RNA-sequencing, and at the single-cell level, by RNA-FISH, and is not attributable to differences in repressive histone H3K9me3 or H3K27me3 levels. Treatment with the DNA demethylating agent 5-deoxy-azacytidine does not increase Xi expression ahead of reprograming, but instead reveals a second cadre of genes that only become susceptible to reactivation upon induction of pluripotency. CONCLUSIONS Collectively, these data not only underscore the multiple pathways that contribute to maintaining silencing along the human Xi chromosome but also suggest that transcriptional stochasticity among human cells could be useful for predicting and engineering epigenetic strategies to achieve locus-specific or domain-specific human Xi gene reactivation.
Collapse
Affiliation(s)
- Irene Cantone
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Hammersmith Campus, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| | - Gopuraja Dharmalingam
- Bioinformatics and Computing facility, MRC London Institute of Medical Sciences, Imperial College, London, UK
| | - Yi-Wah Chan
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Hammersmith Campus, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Anne-Celine Kohler
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Hammersmith Campus, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Boris Lenhard
- Computational Regulatory Genomics Group, MRC London Institute of Medical Sciences, Imperial College, London, UK
| | - Matthias Merkenschlager
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Hammersmith Campus, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Amanda G Fisher
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Hammersmith Campus, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
83
|
Wang M, Lin F, Xing K, Liu L. Random X-chromosome inactivation dynamics in vivo by single-cell RNA sequencing. BMC Genomics 2017; 18:90. [PMID: 28095777 PMCID: PMC5240438 DOI: 10.1186/s12864-016-3466-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 12/23/2016] [Indexed: 12/05/2022] Open
Abstract
Background Random X-chromosome inactivation (rXCI) is important for the maintenance of normal somatic cell functions in female eutherian mammals. The dynamics of X-chromosome inactivation initiation has been widely studied by assessing embryonic stem cell differentiation in vitro. To investigate the phenomenon in vivo, we applied RNA sequencing to single cells from female embryos obtained from a natural intercrossing of two genetically distant mouse strains. Instead of artificially assigning the parental origin of the inactive X chromosome, the inactive X chromosomes in this study were randomly selected from the natural developmental periods and thus included both paternal and maternal origins. Results The rXCI stages of single cells from the same developmental stage showed heterogeneity. The high resolution of the rXCI dynamics was exhibited. The inactivation orders of X chromosomal genes were determined by their functions, expression levels, and locations; generally, the inactivation order did not exhibit a parental origin preference. New escape genes were identified. Ohno’s hypothesis of dosage compensation was refuted by our post-implantation stage data. Conclusions We found the inactivation orders of X chromosomal genes were determined by their own properties. Generally, the inactivation order did not exhibit a parental origin preference. It provided insights into the gene silencing dynamics during rXCI in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3466-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Menghan Wang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Fangqin Lin
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ke Xing
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Li Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
84
|
De novo mutations in SMCHD1 cause Bosma arhinia microphthalmia syndrome and abrogate nasal development. Nat Genet 2017; 49:249-255. [PMID: 28067911 DOI: 10.1038/ng.3765] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 12/13/2016] [Indexed: 12/15/2022]
Abstract
Bosma arhinia microphthalmia syndrome (BAMS) is an extremely rare and striking condition characterized by complete absence of the nose with or without ocular defects. We report here that missense mutations in the epigenetic regulator SMCHD1 mapping to the extended ATPase domain of the encoded protein cause BAMS in all 14 cases studied. All mutations were de novo where parental DNA was available. Biochemical tests and in vivo assays in Xenopus laevis embryos suggest that these mutations may behave as gain-of-function alleles. This finding is in contrast to the loss-of-function mutations in SMCHD1 that have been associated with facioscapulohumeral muscular dystrophy (FSHD) type 2. Our results establish SMCHD1 as a key player in nasal development and provide biochemical insight into its enzymatic function that may be exploited for development of therapeutics for FSHD.
Collapse
|
85
|
Abstract
X-chromosome inactivation, which was discovered by Mary Lyon in 1961 results in random silencing of one X chromosome in female mammals. This review is dedicated to Mary Lyon, who passed away last year. She predicted many of the features of X inactivation, for e.g., the existence of an X inactivation center, the role of L1 elements in spreading of silencing and the existence of genes that escape X inactivation. Starting from her published work here we summarize advances in the field.
Collapse
|
86
|
Termanis A, Torrea N, Culley J, Kerr A, Ramsahoye B, Stancheva I. The SNF2 family ATPase LSH promotes cell-autonomous de novo DNA methylation in somatic cells. Nucleic Acids Res 2016; 44:7592-604. [PMID: 27179028 PMCID: PMC5027476 DOI: 10.1093/nar/gkw424] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 05/02/2016] [Accepted: 05/04/2016] [Indexed: 12/29/2022] Open
Abstract
Methylation of DNA at carbon 5 of cytosine is essential for mammalian development and implicated in transcriptional repression of genes and transposons. New patterns of DNA methylation characteristic of lineage-committed cells are established at the exit from pluripotency by de novo DNA methyltransferases enzymes, DNMT3A and DNMT3B, which are regulated by developmental signaling and require access to chromatin-organized DNA. Whether or not the capacity for de novo DNA methylation of developmentally regulated loci is preserved in differentiated somatic cells and can occur in the absence of exogenous signals is currently unknown. Here, we demonstrate that fibroblasts derived from chromatin remodeling ATPase LSH (HELLS)-null mouse embryos, which lack DNA methylation from centromeric repeats, transposons and a number of gene promoters, are capable of reestablishing DNA methylation and silencing of misregulated genes upon re-expression of LSH. We also show that the ability of LSH to bind ATP and the cellular concentration of DNMT3B are critical for cell-autonomous de novo DNA methylation in somatic cells. These data suggest the existence of cellular memory that persists in differentiated cells through many cell generations and changes in transcriptional state.
Collapse
Affiliation(s)
- Ausma Termanis
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Natalia Torrea
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Jayne Culley
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Alastair Kerr
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Bernard Ramsahoye
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Irina Stancheva
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| |
Collapse
|
87
|
Gaillard MC, Puppo F, Roche S, Dion C, Campana ES, Mariot V, Chaix C, Vovan C, Mazaleyrat K, Tasmadjian A, Bernard R, Dumonceaux J, Attarian S, Lévy N, Nguyen K, Magdinier F, Bartoli M. Segregation between SMCHD1 mutation, D4Z4 hypomethylation and Facio-Scapulo-Humeral Dystrophy: a case report. BMC MEDICAL GENETICS 2016; 17:66. [PMID: 27634379 PMCID: PMC5025538 DOI: 10.1186/s12881-016-0328-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 09/09/2016] [Indexed: 12/22/2022]
Abstract
Background The main form of Facio-Scapulo-Humeral muscular Dystrophy is linked to copy number reduction of the 4q D4Z4 macrosatellite (FSHD1). In 5 % of cases, FSHD phenotype appears in the absence of D4Z4 reduction (FSHD2). In 70-80 % of these patients, variants of the SMCHD1 gene segregate with 4qA haplotypes and D4Z4 hypomethylation. Case presentation We report a family presenting with neuromuscular symptoms reminiscent of FSHD but without D4Z4 copy reduction. We characterized the 4q35 region using molecular combing, searched for mutation in the SMCHD1 gene and determined D4Z4 methylation level by sodium bisulfite sequencing. We further investigated the impact of the SMCHD1 mutation at the protein level and on the NMD-dependent degradation of transcript. In muscle, we observe moderate but significant reduction in D4Z4 methylation, not correlated with DUX4-fl expression. Exome sequencing revealed a heterozygous insertion of 7 bp in exon 37 of the SMCHD1 gene producing a loss of frame with premature stop codon 4 amino acids after the insertion (c.4614-4615insTATAATA). Both wild-type and mutated transcripts are detected. Conclusion The truncated protein is absent and the full-length protein level is similar in patients and controls indicating that in this family, FSHD is not associated with SMCHD1 haploinsufficiency. Electronic supplementary material The online version of this article (doi:10.1186/s12881-016-0328-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Camille Dion
- Aix Marseille Univ, INSERM, GMGF, Marseille, France
| | - Emmanuelle Salort Campana
- Aix Marseille Univ, INSERM, GMGF, Marseille, France.,APHM, Centre de Référence des Maladies Neuromusculaires et de la SLA, Hôpital de la Timone, Marseille, 13385, France
| | - Virginie Mariot
- Center of Research in Myology/ Institut de Myologie UMR974 - UPMC Université Paris 6/ Inserm /FRE3617- CNRS, Groupement Hospitalier de la Pitié Salpétrière, Paris, Cedex 13, France
| | - Charlene Chaix
- APHM, Laboratoire de Génétique Médicale, Hôpital de la Timone, Marseille, 13385, France
| | - Catherine Vovan
- APHM, Laboratoire de Génétique Médicale, Hôpital de la Timone, Marseille, 13385, France
| | | | | | - Rafaelle Bernard
- Aix Marseille Univ, INSERM, GMGF, Marseille, France.,APHM, Laboratoire de Génétique Médicale, Hôpital de la Timone, Marseille, 13385, France
| | - Julie Dumonceaux
- Center of Research in Myology/ Institut de Myologie UMR974 - UPMC Université Paris 6/ Inserm /FRE3617- CNRS, Groupement Hospitalier de la Pitié Salpétrière, Paris, Cedex 13, France
| | - Shahram Attarian
- Aix Marseille Univ, INSERM, GMGF, Marseille, France.,APHM, Centre de Référence des Maladies Neuromusculaires et de la SLA, Hôpital de la Timone, Marseille, 13385, France
| | - Nicolas Lévy
- Aix Marseille Univ, INSERM, GMGF, Marseille, France.,APHM, Laboratoire de Génétique Médicale, Hôpital de la Timone, Marseille, 13385, France
| | - Karine Nguyen
- Aix Marseille Univ, INSERM, GMGF, Marseille, France.,APHM, Laboratoire de Génétique Médicale, Hôpital de la Timone, Marseille, 13385, France
| | | | - Marc Bartoli
- Aix Marseille Univ, INSERM, GMGF, Marseille, France.,APHM, Laboratoire de Génétique Médicale, Hôpital de la Timone, Marseille, 13385, France
| |
Collapse
|
88
|
Sharma V, Pandey SN, Khawaja H, Brown KJ, Hathout Y, Chen YW. PARP1 Differentially Interacts with Promoter region of DUX4 Gene in FSHD Myoblasts. JOURNAL OF GENETIC SYNDROMES & GENE THERAPY 2016; 7:303. [PMID: 27722032 PMCID: PMC5051271 DOI: 10.4172/2157-7412.1000303] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The goal of the study is to identity proteins, which interact with the promoter region of double homeobox protein 4 (DUX4) gene known to be causative for the autosomal dominant disorder Facioscapulohumeral Muscular Dystrophy (FSHD). METHODS We performed a DNA pull down assay coupled with mass spectrometry analysis to identify proteins that interact with a DUX4 promoter probe in Rhabdomyosarcomca (RD) cells. We selected the top ranked protein poly (ADP-ribose) polymerase 1 (PARP1) from our mass spectrometry data for further ChIP-qPCR validation using patients' myoblasts. We then treated FSHD myoblasts with PARP1 inhibitors to investigate the role of PARP1 in the FSHD myoblasts. RESULTS In our mass spectrometry analysis, PARP1 was found to be the top ranked protein interacting preferentially with the DUX4 promoter probe in RD cells. We further validated this interaction by immunoblotting in RD cells (2-fold enrichment compared to proteins pulled down by a control probe, p<0.05) and ChIP-qPCR in patients' myoblasts (65-fold enrichment, p<0.01). Interestingly, the interaction was only observed in FSHD myoblasts but not in the control myoblasts. Upon further treatment of FSHD myoblasts with PARP1 inhibitors, we showed that treatment with a PARP1 inhibitor, 3-aminobenzamide (0.5 mM), for 24 h had a suppression of DUX4 (2.6 fold, p<0.05) and ZSCAN4, a gene previously shown to be upregulated by DUX4, (1.6 fold, p<0.01) in FSHD myoblasts. Treatment with fisetin (0.5 mM), a polyphenol compound with PARP1 inhibitory property, for 24 h also suppressed the expression of DUX4 (44.8 fold, p<0.01) and ZSCAN4 (2.2 fold, p<0.05) in the FSHD myoblasts. We further showed that DNA methyltransferase 1 (DNMT1), a gene regulated by PARP1 was also enriched at the DUX4 promoter in RD cells through immunoblotting (2-fold, p<0.01) and immortalized FSHD myoblasts (42-fold, p<0.01) but not control myoblasts through ChIP qPCR. CONCLUSION Our results showed that PARP1 and DNMT1 interacted with DUX4 promoter and may be involved in modulating DUX4 expression in FSHD.
Collapse
Affiliation(s)
- Vishakha Sharma
- Department of Molecular Medicine, George Washington University, Washington DC, USA
| | - Sachchida Nand Pandey
- Center for Genetic Medicine Research, Children's National Health System, Washington DC, USA
| | - Hunain Khawaja
- Center for Genetic Medicine Research, Children's National Health System, Washington DC, USA
| | - Kristy J Brown
- Center for Genetic Medicine Research, Children's National Health System, Washington DC, USA
| | - Yetrib Hathout
- Center for Genetic Medicine Research, Children's National Health System, Washington DC, USA
- Department of Integrative Systems Biology, George Washington University, Washington DC, USA
| | - Yi-Wen Chen
- Center for Genetic Medicine Research, Children's National Health System, Washington DC, USA
- Department of Integrative Systems Biology, George Washington University, Washington DC, USA
| |
Collapse
|
89
|
Keniry A, Gearing LJ, Jansz N, Liu J, Holik AZ, Hickey PF, Kinkel SA, Moore DL, Breslin K, Chen K, Liu R, Phillips C, Pakusch M, Biben C, Sheridan JM, Kile BT, Carmichael C, Ritchie ME, Hilton DJ, Blewitt ME. Setdb1-mediated H3K9 methylation is enriched on the inactive X and plays a role in its epigenetic silencing. Epigenetics Chromatin 2016; 9:16. [PMID: 27195021 PMCID: PMC4870784 DOI: 10.1186/s13072-016-0064-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/31/2016] [Indexed: 11/16/2022] Open
Abstract
Background
The presence of histone 3 lysine 9 (H3K9) methylation on the mouse inactive X chromosome has been controversial over the last 15 years, and the functional role of H3K9 methylation in X chromosome inactivation in any species has remained largely unexplored. Results Here we report the first genomic analysis of H3K9 di- and tri-methylation on the inactive X: we find they are enriched at the intergenic, gene poor regions of the inactive X, interspersed between H3K27 tri-methylation domains found in the gene dense regions. Although H3K9 methylation is predominantly non-genic, we find that depletion of H3K9 methylation via depletion of H3K9 methyltransferase Set domain bifurcated 1 (Setdb1) during the establishment of X inactivation, results in failure of silencing for around 150 genes on the inactive X. By contrast, we find a very minor role for Setdb1-mediated H3K9 methylation once X inactivation is fully established. In addition to failed gene silencing, we observed a specific failure to silence X-linked long-terminal repeat class repetitive elements. Conclusions Here we have shown that H3K9 methylation clearly marks the murine inactive X chromosome. The role of this mark is most apparent during the establishment phase of gene silencing, with a more muted effect on maintenance of the silent state. Based on our data, we hypothesise that Setdb1-mediated H3K9 methylation plays a role in epigenetic silencing of the inactive X via silencing of the repeats, which itself facilitates gene silencing through alterations to the conformation of the whole inactive X chromosome. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0064-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew Keniry
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052 Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Linden J Gearing
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052 Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Natasha Jansz
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052 Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Joy Liu
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052 Australia
| | - Aliaksei Z Holik
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052 Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Peter F Hickey
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052 Australia.,Department of Mathematics and Statistics, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Sarah A Kinkel
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052 Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Darcy L Moore
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052 Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Kelsey Breslin
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052 Australia
| | - Kelan Chen
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052 Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Ruijie Liu
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052 Australia
| | - Catherine Phillips
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052 Australia
| | - Miha Pakusch
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052 Australia
| | - Christine Biben
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052 Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Julie M Sheridan
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052 Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Benjamin T Kile
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052 Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Catherine Carmichael
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052 Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Matthew E Ritchie
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052 Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010 Australia.,Department of Mathematics and Statistics, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Douglas J Hilton
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052 Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Marnie E Blewitt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052 Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010 Australia.,Department of Genetics, University of Melbourne, Melbourne, VIC 3010 Australia
| |
Collapse
|
90
|
Pinter SF. A Tale of Two Cities: How Xist and its partners localize to and silence the bicompartmental X. Semin Cell Dev Biol 2016; 56:19-34. [PMID: 27072488 DOI: 10.1016/j.semcdb.2016.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 10/22/2022]
Abstract
Sex chromosomal dosage compensation in mammals takes the form of X chromosome inactivation (XCI), driven by the non-coding RNA Xist. In contrast to dosage compensation systems of flies and worms, mammalian XCI has to restrict its function to the Xist-producing X chromosome, while leaving autosomes and active X untouched. The mechanisms behind the long-range yet cis-specific localization and silencing activities of Xist have long been enigmatic, but genomics, proteomics, super-resolution microscopy, and innovative genetic approaches have produced significant new insights in recent years. In this review, I summarize and integrate these findings with a particular focus on the redundant yet mutually reinforcing pathways that enable long-term transcriptional repression throughout the soma. This includes an exploration of concurrent epigenetic changes acting in parallel within two distinct compartments of the inactive X. I also examine how Polycomb repressive complexes 1 and 2 and macroH2A may bridge XCI establishment and maintenance. XCI is a remarkable phenomenon that operates across multiple scales, combining changes in nuclear architecture, chromosome topology, chromatin compaction, and nucleosome/nucleotide-level epigenetic cues. Learning how these pathways act in concert likely holds the answer to the riddle posed by Cattanach's and other autosomal translocations: What makes the X especially receptive to XCI?
Collapse
Affiliation(s)
- Stefan F Pinter
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT 06030-6403, USA.
| |
Collapse
|
91
|
Pandya-Jones A, Plath K. The "lnc" between 3D chromatin structure and X chromosome inactivation. Semin Cell Dev Biol 2016; 56:35-47. [PMID: 27062886 DOI: 10.1016/j.semcdb.2016.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 12/01/2022]
Abstract
The long non-coding RNA Xist directs a remarkable instance of developmentally regulated, epigenetic change known as X Chromosome Inactivation (XCI). By spreading in cis across the X chromosome from which it is expressed, Xist RNA facilitates the creation of a heritably silent, heterochromatic nuclear territory that displays a three-dimensional structure distinct from that of the active X chromosome. How Xist RNA attaches to and propagates across a chromosome and its influence over the three-dimensional (3D) structure of the inactive X are aspects of XCI that have remained largely unclear. Here, we discuss studies that have made significant contributions towards answering these open questions.
Collapse
Affiliation(s)
- Amy Pandya-Jones
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kathrin Plath
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
92
|
Clinical, muscle pathological, and genetic features of Japanese facioscapulohumeral muscular dystrophy 2 (FSHD2) patients with SMCHD1 mutations. Neuromuscul Disord 2016; 26:300-8. [DOI: 10.1016/j.nmd.2016.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 02/28/2016] [Accepted: 03/07/2016] [Indexed: 11/21/2022]
|
93
|
RNA binding proteins implicated in Xist-mediated chromosome silencing. Semin Cell Dev Biol 2016; 56:58-70. [PMID: 26816113 DOI: 10.1016/j.semcdb.2016.01.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 11/20/2022]
Abstract
Chromosome silencing by Xist RNA occurs in two steps; localisation in cis within the nuclear matrix to form a domain that corresponds to the territory of the inactive X chromosome elect, and transduction of silencing signals from Xist RNA to the underlying chromatin. Key factors that mediate these processes have been identified in a series of recent studies that harnessed comprehensive proteomic or genetic screening strategies. In this review we discuss these findings in light of prior knowledge both of Xist-mediated silencing and known functions/properties of the novel factors.
Collapse
|
94
|
The hinge domain of the epigenetic repressor Smchd1 adopts an unconventional homodimeric configuration. Biochem J 2016; 473:733-42. [PMID: 26733688 DOI: 10.1042/bj20151049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/04/2016] [Indexed: 12/18/2022]
Abstract
The structural maintenance of chromosomes (SMC) proteins are fundamental to chromosome organization. They share a characteristic domain structure, featuring a central SMC hinge domain that is critical for forming SMC dimers and interacting with nucleic acids. The structural maintenance of chromosomes flexible hinge domain containing 1 (Smchd1) is a non-canonical member of the SMC family. Although it has been well established that Smchd1 serves crucial roles in epigenetic silencing events implicated in development and disease, much less is known about the structure and function of the Smchd1 protein. Recently, we demonstrated that the C-terminal hinge domain of Smchd1 forms a nucleic acid-binding homodimer; however, it is unclear how the protomers are assembled within the hinge homodimer and how the full-length Smchd1 protein is organized with respect to the hinge region. In the present study, by employing SAXS we demonstrate that the hinge domain of Smchd1 probably adopts an unconventional homodimeric arrangement augmented by an intermolecular coiled coil formed between the two monomers. Such a dimeric structure differs markedly from that of archetypical SMC proteins, raising the possibility that Smchd1 binds chromatin in an unconventional manner.
Collapse
|
95
|
Liu R, Chen K, Jansz N, Blewitt ME, Ritchie ME. Transcriptional profiling of the epigenetic regulator Smchd1. GENOMICS DATA 2015; 7:144-7. [PMID: 26981392 PMCID: PMC4778621 DOI: 10.1016/j.gdata.2015.12.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 12/30/2015] [Indexed: 11/19/2022]
Abstract
Smchd1 is an epigenetic repressor with important functions in healthy cellular processes and disease. To elucidate its role in transcriptional regulation, we performed two independent genome-wide RNA-sequencing studies comparing wild-type and Smchd1 null samples in neural stem cells and lymphoma cell lines. Using an R-based analysis pipeline that accommodates observational and sample-specific weights in the linear modeling, we identify key genes dysregulated by Smchd1 deletion such as clustered protocadherins in the neural stem cells and imprinted genes in both experiments. Here we provide a detailed description of this analysis, from quality control to read mapping and differential expression analysis. These data sets are publicly available from the Gene Expression Omnibus database (accession numbers GSE64099 and GSE65747).
Collapse
Affiliation(s)
- Ruijie Liu
- Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Kelan Chen
- Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Natasha Jansz
- Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Marnie E. Blewitt
- Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
- Corresponding authors at: Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.Molecular Medicine DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoria3052Australia
| | - Matthew E. Ritchie
- Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria 3010, Australia
- Corresponding authors at: Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.Molecular Medicine DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoria3052Australia
| |
Collapse
|
96
|
Pasque V, Plath K. X chromosome reactivation in reprogramming and in development. Curr Opin Cell Biol 2015; 37:75-83. [PMID: 26540406 DOI: 10.1016/j.ceb.2015.10.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 10/12/2015] [Accepted: 10/14/2015] [Indexed: 11/29/2022]
Abstract
Dramatic epigenetic changes take place during mammalian differentiation from the naïve pluripotent state including the silencing of one of the two X chromosomes in female cells through X chromosome inactivation. Conversely, reprogramming of somatic cells to naive pluripotency is coupled to X chromosome reactivation (XCR). Recent studies in the mouse system have shed light on the mechanisms of XCR by uncovering the timing and steps of XCR during reprogramming to induced pluripotent stem cells (iPSCs), allowing the generation of testable hypotheses during embryogenesis. In contrast, analyses of the X chromosome in human iPSCs have revealed important differences between mouse and human reprogramming processes that can partially be explained by the establishment of distinct pluripotent states and impact disease modeling and the application of human pluripotent stem cells. Here, we review recent literature on XCR as a readout and determinant of reprogramming to pluripotency.
Collapse
Affiliation(s)
- Vincent Pasque
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kathrin Plath
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
97
|
Minkovsky A, Sahakyan A, Bonora G, Damoiseaux R, Dimitrova E, Rubbi L, Pellegrini M, Radu CG, Plath K. A high-throughput screen of inactive X chromosome reactivation identifies the enhancement of DNA demethylation by 5-aza-2'-dC upon inhibition of ribonucleotide reductase. Epigenetics Chromatin 2015; 8:42. [PMID: 26468331 PMCID: PMC4604769 DOI: 10.1186/s13072-015-0034-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/23/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA methylation is important for the maintenance of the silent state of genes on the inactive X chromosome (Xi). Here, we screened for siRNAs and chemicals that reactivate an Xi-linked reporter in the presence of 5-aza-2'-deoxycytidine (5-aza-2'-dC), an inhibitor of DNA methyltransferase 1, at a concentration that, on its own, is not sufficient for Xi-reactivation. RESULTS We found that inhibition of ribonucleotide reductase (RNR) induced expression of the reporter. RNR inhibition potentiated the effect of 5-aza-2'-dC by enhancing its DNA incorporation, thereby decreasing DNA methylation levels genome-wide. Since both 5-aza-2'-dC and RNR-inhibitors are used in the treatment of hematological malignancies, we treated myeloid leukemia cell lines with 5-aza-2'-dC and the RNR-inhibitor hydroxyurea, and observed synergistic inhibition of cell growth and a decrease in genome-wide DNA methylation. CONCLUSIONS Taken together, our study identifies a drug combination that enhances DNA demethylation by altering nucleotide metabolism. This demonstrates that Xi-reactivation assays can be used to optimize the epigenetic activity of drug combinations.
Collapse
Affiliation(s)
- Alissa Minkovsky
- Department of Biological Chemistry, David Geffen School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, 615 Charles E. Young Drive South, BSRB 390D, Los Angeles, 90095 USA
| | - Anna Sahakyan
- Department of Biological Chemistry, David Geffen School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, 615 Charles E. Young Drive South, BSRB 390D, Los Angeles, 90095 USA
| | - Giancarlo Bonora
- Department of Biological Chemistry, David Geffen School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, 615 Charles E. Young Drive South, BSRB 390D, Los Angeles, 90095 USA
| | - Robert Damoiseaux
- Department of Molecular and Medicinal Chemistry and California NanoSystems Institute, University of California, Los Angeles, 90095 USA
| | - Elizabeth Dimitrova
- Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, 90095 USA
| | - Liudmilla Rubbi
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, 90095 USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, 90095 USA
| | - Caius G Radu
- Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, 90095 USA
| | - Kathrin Plath
- Department of Biological Chemistry, David Geffen School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, 615 Charles E. Young Drive South, BSRB 390D, Los Angeles, 90095 USA
| |
Collapse
|
98
|
Kelsey AD, Yang C, Leung D, Minks J, Dixon-McDougall T, Baldry SEL, Bogutz AB, Lefebvre L, Brown CJ. Impact of flanking chromosomal sequences on localization and silencing by the human non-coding RNA XIST. Genome Biol 2015; 16:208. [PMID: 26429547 PMCID: PMC4591629 DOI: 10.1186/s13059-015-0774-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 09/10/2015] [Indexed: 01/07/2023] Open
Abstract
Background X-chromosome inactivation is a striking example of epigenetic silencing in which expression of the long non-coding RNA XIST initiates the heterochromatinization and silencing of one of the pair of X chromosomes in mammalian females. To understand how the RNA can establish silencing across millions of basepairs of DNA we have modelled the process by inducing expression of XIST from nine different locations in human HT1080 cells. Results Localization of XIST, depletion of Cot-1 RNA, perinuclear localization, and ubiquitination of H2A occurs at all sites examined, while recruitment of H3K9me3 was not observed. Recruitment of the heterochromatic features SMCHD1, macroH2A, H3K27me3, and H4K20me1 occurs independently of each other in an integration site-dependent manner. Silencing of flanking reporter genes occurs at all sites, but the spread of silencing to flanking endogenous human genes is variable in extent of silencing as well as extent of spread, with silencing able to skip regions. The spread of H3K27me3 and loss of H3K27ac correlates with the pre-existing levels of the modifications, and overall the extent of silencing correlates with the ability to recruit additional heterochromatic features. Conclusions The non-coding RNA XIST functions as a cis-acting silencer when expressed from nine different locations throughout the genome. A hierarchy among the features of heterochromatin reveals the importance of interaction with the local chromatin neighborhood for optimal spread of silencing, as well as the independent yet cooperative nature of the establishment of heterochromatin by the non-coding XIST RNA. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0774-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Angela D Kelsey
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| | - Christine Yang
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| | - Danny Leung
- Ludwig Institute for Cancer Research, University of California at San Diego School of Medicine, La Jolla, CA, USA. .,Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| | - Jakub Minks
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| | - Thomas Dixon-McDougall
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| | - Sarah E L Baldry
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| | - Aaron B Bogutz
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| | - Louis Lefebvre
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| | - Carolyn J Brown
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
99
|
Abstract
X chromosome inactivation (XCI) is the dosage compensation mechanism that evolved in female mammals to correct the genetic imbalance of X-linked genes between sexes. X chromosome inactivation occurs in early development when one of the two X chromosomes of females is nearly-completely silenced. Differentiating Embryonic Stem cells (ESC) are regarded as a useful tool to study XCI, since they recapitulate many events occurring during early development. In this review we aim to summarise the advances in the field and to discuss the close connection between cell differentiation and X chromosome inactivation, with a particular focus on mouse ESCs.
Collapse
Affiliation(s)
- Greta Pintacuda
- />Department of Biochemistry, University of Oxford, Oxford, OX1 3QU UK
| | - Andrea Cerase
- />EMBL Mouse Biology Unit, Monterotondo, 00015 RM Italy
| |
Collapse
|
100
|
Independent Mechanisms Target SMCHD1 to Trimethylated Histone H3 Lysine 9-Modified Chromatin and the Inactive X Chromosome. Mol Cell Biol 2015; 35:4053-68. [PMID: 26391951 PMCID: PMC4628070 DOI: 10.1128/mcb.00432-15] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/15/2015] [Indexed: 11/20/2022] Open
Abstract
The chromosomal protein SMCHD1 plays an important role in epigenetic silencing at diverse loci, including the inactive X chromosome, imprinted genes, and the facioscapulohumeral muscular dystrophy locus. Although homology with canonical SMC family proteins suggests a role in chromosome organization, the mechanisms underlying SMCHD1 function and target site selection remain poorly understood. Here we show that SMCHD1 forms an active GHKL-ATPase homodimer, contrasting with canonical SMC complexes, which exist as tripartite ring structures. Electron microscopy analysis demonstrates that SMCHD1 homodimers structurally resemble prokaryotic condensins. We further show that the principal mechanism for chromatin loading of SMCHD1 involves an LRIF1-mediated interaction with HP1γ at trimethylated histone H3 lysine 9 (H3K9me3)-modified chromatin sites on the chromosome arms. A parallel pathway accounts for chromatin loading at a minority of sites, notably the inactive X chromosome. Together, our results provide key insights into SMCHD1 function and target site selection.
Collapse
|