51
|
Yang XJ. MOZ and MORF acetyltransferases: Molecular interaction, animal development and human disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1818-26. [PMID: 25920810 DOI: 10.1016/j.bbamcr.2015.04.014] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/17/2015] [Accepted: 04/22/2015] [Indexed: 01/16/2023]
Abstract
Lysine residues are subject to many forms of covalent modification and one such modification is acetylation of the ε-amino group. Initially identified on histone proteins in the 1960s, lysine acetylation is now considered as an important form of post-translational modification that rivals phosphorylation. However, only about a dozen of human lysine acetyltransferases have been identified. Among them are MOZ (monocytic leukemia zinc finger protein; a.k.a. MYST3 and KAT6A) and its paralog MORF (a.k.a. MYST4 and KAT6B). Although there is a distantly related protein in Drosophila and sea urchin, these two enzymes are vertebrate-specific. They form tetrameric complexes with BRPF1 (bromodomain- and PHD finger-containing protein 1) and two small non-catalytic subunits. These two acetyltransferases and BRPF1 play key roles in various developmental processes; for example, they are important for development of hematopoietic and neural stem cells. The human KAT6A and KAT6B genes are recurrently mutated in leukemia, non-hematologic malignancies, and multiple developmental disorders displaying intellectual disability and various other abnormalities. In addition, the BRPF1 gene is mutated in childhood leukemia and adult medulloblastoma. Therefore, these two acetyltransferases and their partner BRPF1 are important in animal development and human disease.
Collapse
Affiliation(s)
- Xiang-Jiao Yang
- The Rosalind & Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec H3A 1A3, Canada; Department of Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada; McGill University Health Center, Montreal, Quebec H3A 1A3, Canada.
| |
Collapse
|
52
|
Sheikh BN, Downer NL, Kueh AJ, Thomas T, Voss AK. Excessive versus physiologically relevant levels of retinoic acid in embryonic stem cell differentiation. Stem Cells 2015; 32:1451-8. [PMID: 25099890 DOI: 10.1002/stem.1604] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/28/2013] [Accepted: 11/03/2013] [Indexed: 01/01/2023]
Abstract
Over the past two decades, embryonic stem cells (ESCs) have been established as a valuable system to study the complex molecular events that underlie the collinear activation of Hox genes during development. When ESCs are induced to differentiate in response to retinoic acid (RA), Hox genes are transcriptionally activated in their chromosomal order, with the most 3' Hox genes activated first, sequentially followed by more 5' Hox genes. In contrast to the low levels of RA detected during gastrulation (∼33 nM), a time when Hox genes are induced during embryonic development, high levels of RA are used to study Hox gene activation in ESCs in vitro (1-10 µM). This compelled us to compare RA-induced ESC differentiation in vitro with Hox gene activation in vivo. In this study, we show that treatment of ESCs for 2 days with RA best mimics activation of Hox genes during embryonic development. Furthermore, we show that defects in Hox gene expression known to occur in embryos lacking the histone acetyltransferase MOZ (also called MYST3 or KAT6A) were masked in Moz-deficient ESCs when excessive RA (0.5-5 µM) was used. The role of MOZ in Hox gene activation was only evident when ESCs were differentiated at low concentrations of RA, namely 20 nM, which is similar to RA levels in vivo. Our results demonstrate that using RA at physiologically relevant levels to study the activation of Hox genes, more accurately reflects the molecular events during the early phase of Hox gene activation in vivo.
Collapse
Affiliation(s)
- Bilal N Sheikh
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
53
|
MOZ and BMI1 play opposing roles during Hox gene activation in ES cells and in body segment identity specification in vivo. Proc Natl Acad Sci U S A 2015; 112:5437-42. [PMID: 25922517 DOI: 10.1073/pnas.1422872112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hox genes underlie the specification of body segment identity in the anterior-posterior axis. They are activated during gastrulation and undergo a dynamic shift from a transcriptionally repressed to an active chromatin state in a sequence that reflects their chromosomal location. Nevertheless, the precise role of chromatin modifying complexes during the initial activation phase remains unclear. In the current study, we examined the role of chromatin regulators during Hox gene activation. Using embryonic stem cell lines lacking the transcriptional activator MOZ and the polycomb-family repressor BMI1, we showed that MOZ and BMI1, respectively, promoted and repressed Hox genes during the shift from the transcriptionally repressed to the active state. Strikingly however, MOZ but not BMI1 was required to regulate Hox mRNA levels after the initial activation phase. To determine the interaction of MOZ and BMI1 in vivo, we interrogated their role in regulating Hox genes and body segment identity using Moz;Bmi1 double deficient mice. We found that the homeotic transformations and shifts in Hox gene expression boundaries observed in single Moz and Bmi1 mutant mice were rescued to a wild type identity in Moz;Bmi1 double knockout animals. Together, our findings establish that MOZ and BMI1 play opposing roles during the onset of Hox gene expression in the ES cell model and during body segment identity specification in vivo. We propose that chromatin-modifying complexes have a previously unappreciated role during the initiation phase of Hox gene expression, which is critical for the correct specification of body segment identity.
Collapse
|
54
|
Abstract
The heart is the first organ to form during embryonic development. Given the complex nature of cardiac differentiation and morphogenesis, it is not surprising that some form of congenital heart disease is present in ≈1 percent of newborns. The molecular determinants of heart development have received much attention over the past several decades. This has been driven in large part by an interest in understanding the causes of congenital heart disease coupled with the potential of using knowledge from developmental biology to generate functional cells and tissues that could be used for regenerative medicine purposes. In this review, we highlight the critical signaling pathways and transcription factor networks that regulate cardiomyocyte lineage specification in both in vivo and in vitro models. Special focus will be given to epigenetic regulators that drive the commitment of cardiomyogenic cells from nascent mesoderm and their differentiation into chamber-specific myocytes, as well as regulation of myocardial trabeculation.
Collapse
Affiliation(s)
- Sharon L Paige
- From the Division of Pediatric Cardiology and Department of Pediatrics (S.L.P., S.M.W.), Cardiovascular Institute (K.P., A.X., S.M.W.), Division of Cardiovascular Medicine, Department of Medicine, Institute for Stem Cell Biology and Institute for Stem Cell Biology and Regenerative Medicine Regenerative Medicine, Child Health Research Institute (S.M.W.), Stanford University School of Medicine, CA
| | - Karolina Plonowska
- From the Division of Pediatric Cardiology and Department of Pediatrics (S.L.P., S.M.W.), Cardiovascular Institute (K.P., A.X., S.M.W.), Division of Cardiovascular Medicine, Department of Medicine, Institute for Stem Cell Biology and Institute for Stem Cell Biology and Regenerative Medicine Regenerative Medicine, Child Health Research Institute (S.M.W.), Stanford University School of Medicine, CA
| | - Adele Xu
- From the Division of Pediatric Cardiology and Department of Pediatrics (S.L.P., S.M.W.), Cardiovascular Institute (K.P., A.X., S.M.W.), Division of Cardiovascular Medicine, Department of Medicine, Institute for Stem Cell Biology and Institute for Stem Cell Biology and Regenerative Medicine Regenerative Medicine, Child Health Research Institute (S.M.W.), Stanford University School of Medicine, CA
| | - Sean M Wu
- From the Division of Pediatric Cardiology and Department of Pediatrics (S.L.P., S.M.W.), Cardiovascular Institute (K.P., A.X., S.M.W.), Division of Cardiovascular Medicine, Department of Medicine, Institute for Stem Cell Biology and Institute for Stem Cell Biology and Regenerative Medicine Regenerative Medicine, Child Health Research Institute (S.M.W.), Stanford University School of Medicine, CA.
| |
Collapse
|
55
|
MOZ (MYST3, KAT6A) inhibits senescence via the INK4A-ARF pathway. Oncogene 2015; 34:5807-20. [DOI: 10.1038/onc.2015.33] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 12/01/2014] [Accepted: 01/23/2015] [Indexed: 12/21/2022]
|
56
|
Tham E, Lindstrand A, Santani A, Malmgren H, Nesbitt A, Dubbs HA, Zackai EH, Parker MJ, Millan F, Rosenbaum K, Wilson GN, Nordgren A. Dominant mutations in KAT6A cause intellectual disability with recognizable syndromic features. Am J Hum Genet 2015; 96:507-13. [PMID: 25728777 DOI: 10.1016/j.ajhg.2015.01.016] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/20/2015] [Indexed: 01/06/2023] Open
Abstract
Through a multi-center collaboration study, we here report six individuals from five unrelated families, with mutations in KAT6A/MOZ detected by whole-exome sequencing. All five different de novo heterozygous truncating mutations were located in the C-terminal transactivation domain of KAT6A: NM_001099412.1: c.3116_3117 delCT, p.(Ser1039∗); c.3830_3831insTT, p.(Arg1278Serfs∗17); c.3879 dupA, p.(Glu1294Argfs∗19); c.4108G>T p.(Glu1370∗) and c.4292 dupT, p.(Leu1431Phefs∗8). An additional subject with a 0.23 MB microdeletion including the entire KAT6A reading frame was identified with genome-wide array comparative genomic hybridization. Finally, by detailed clinical characterization we provide evidence that heterozygous mutations in KAT6A cause a distinct intellectual disability syndrome. The common phenotype includes hypotonia, intellectual disability, early feeding and oromotor difficulties, microcephaly and/or craniosynostosis, and cardiac defects in combination with subtle facial features such as bitemporal narrowing, broad nasal tip, thin upper lip, posteriorly rotated or low-set ears, and microretrognathia. The identification of human subjects complements previous work from mice and zebrafish where knockouts of Kat6a/kat6a lead to developmental defects.
Collapse
Affiliation(s)
- Emma Tham
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden.
| | - Anna Lindstrand
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Avni Santani
- Division of Genomic Diagnostics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Helena Malmgren
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Addie Nesbitt
- Division of Genomic Diagnostics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Holly A Dubbs
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elaine H Zackai
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michael J Parker
- Sheffield Clinical Genetics Service, Sheffield Children's Hospital, Sheffield S10 2TH, UK
| | | | - Kenneth Rosenbaum
- Division of Genetics and Metabolism, Children's National Medical Center, Washington, DC 20010, USA
| | - Golder N Wilson
- Department of Pediatrics, Texas Tech University Health Science Center, Lubbock, TX 79106, and Medical City Hospital, Dallas, TX 75230, USA; KinderGenome Pediatric Genetics, Medical City Hospital, Dallas, TX 75230, USA
| | - Ann Nordgren
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
| |
Collapse
|
57
|
Arboleda VA, Lee H, Dorrani N, Zadeh N, Willis M, Macmurdo CF, Manning MA, Kwan A, Hudgins L, Barthelemy F, Miceli MC, Quintero-Rivera F, Kantarci S, Strom SP, Deignan JL, Grody WW, Vilain E, Nelson SF. De novo nonsense mutations in KAT6A, a lysine acetyl-transferase gene, cause a syndrome including microcephaly and global developmental delay. Am J Hum Genet 2015; 96:498-506. [PMID: 25728775 DOI: 10.1016/j.ajhg.2015.01.017] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/20/2015] [Indexed: 12/19/2022] Open
Abstract
Chromatin remodeling through histone acetyltransferase (HAT) and histone deactylase (HDAC) enzymes affects fundamental cellular processes including the cell-cycle, cell differentiation, metabolism, and apoptosis. Nonsense mutations in genes that are involved in histone acetylation and deacetylation result in multiple congenital anomalies with most individuals displaying significant developmental delay, microcephaly and dysmorphism. Here, we report a syndrome caused by de novo heterozygous nonsense mutations in KAT6A (a.k.a., MOZ, MYST3) identified by clinical exome sequencing (CES) in four independent families. The same de novo nonsense mutation (c.3385C>T [p.Arg1129∗]) was observed in three individuals, and the fourth individual had a nearby de novo nonsense mutation (c.3070C>T [p.Arg1024∗]). Neither of these variants was present in 1,815 in-house exomes or in public databases. Common features among all four probands include primary microcephaly, global developmental delay including profound speech delay, and craniofacial dysmorphism, as well as more varied features such as feeding difficulties, cardiac defects, and ocular anomalies. We further demonstrate that KAT6A mutations result in dysregulation of H3K9 and H3K18 acetylation and altered P53 signaling. Through histone and non-histone acetylation, KAT6A affects multiple cellular processes and illustrates the complex role of acetylation in regulating development and disease.
Collapse
Affiliation(s)
- Valerie A Arboleda
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hane Lee
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Naghmeh Dorrani
- Department of Pediatrics, Division of Medical Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA, USA
| | - Neda Zadeh
- Division of Medical Genetics, CHOC Children's Hospital of Orange County, CA 92868, USA; Genetics Center, Orange, CA 92868, USA
| | - Mary Willis
- Department of Pediatrics, Naval Medical Center, San Diego, 92134, USA
| | - Colleen Forsyth Macmurdo
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Melanie A Manning
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrea Kwan
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Louanne Hudgins
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Florian Barthelemy
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - M Carrie Miceli
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Fabiola Quintero-Rivera
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sibel Kantarci
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Samuel P Strom
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Joshua L Deignan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wayne W Grody
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pediatrics, Division of Medical Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Eric Vilain
- Department of Pediatrics, Division of Medical Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stanley F Nelson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
58
|
Liu S, Higashihori N, Yahiro K, Moriyama K. Retinoic acid inhibits histone methyltransferase Whsc1 during palatogenesis. Biochem Biophys Res Commun 2015; 458:525-530. [DOI: 10.1016/j.bbrc.2015.01.148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 01/30/2015] [Indexed: 12/29/2022]
|
59
|
MOZ regulates B-cell progenitors and, consequently, Moz haploinsufficiency dramatically retards MYC-induced lymphoma development. Blood 2015; 125:1910-21. [PMID: 25605372 DOI: 10.1182/blood-2014-08-594655] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The histone acetyltransferase MOZ (MYST3, KAT6A) is the target of recurrent chromosomal translocations fusing the MOZ gene to CBP, p300, NCOA3, or TIF2 in particularly aggressive cases of acute myeloid leukemia. In this study, we report the role of wild-type MOZ in regulating B-cell progenitor proliferation and hematopoietic malignancy. In the Eμ-Myc model of aggressive pre-B/B-cell lymphoma, the loss of just one allele of Moz increased the median survival of mice by 3.9-fold. MOZ was required to maintain the proliferative capacity of B-cell progenitors, even in the presence of c-MYC overexpression, by directly maintaining the transcriptional activity of genes required for normal B-cell development. Hence, B-cell progenitor numbers were significantly reduced in Moz haploinsufficient animals. Interestingly, we find a significant overlap in genes regulated by MOZ, mixed lineage leukemia 1, and mixed lineage leukemia 1 cofactor menin. This includes Meis1, a TALE class homeobox transcription factor required for B-cell development, characteristically upregulated as a result of MLL1 translocations in leukemia. We demonstrate that MOZ localizes to the Meis1 locus in pre-B-cells and maintains Meis1 expression. Our results suggest that even partial inhibition of MOZ may reduce the proliferative capacity of MEIS1, and HOX-driven lymphoma and leukemia cells.
Collapse
|
60
|
You L, Zou J, Zhao H, Bertos NR, Park M, Wang E, Yang XJ. Deficiency of the chromatin regulator BRPF1 causes abnormal brain development. J Biol Chem 2015; 290:7114-29. [PMID: 25568313 DOI: 10.1074/jbc.m114.635250] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Epigenetic mechanisms are important in different neurological disorders, and one such mechanism is histone acetylation. The multivalent chromatin regulator BRPF1 (bromodomain- and plant homeodomain-linked (PHD) zinc finger-containing protein 1) recognizes different epigenetic marks and activates three histone acetyltransferases, so it is both a reader and a co-writer of the epigenetic language. The three histone acetyltransferases are MOZ, MORF, and HBO1, which are also known as lysine acetyltransferase 6A (KAT6A), KAT6B, and KAT7, respectively. The MORF gene is mutated in four neurodevelopmental disorders sharing the characteristic of intellectual disability and frequently displaying callosal agenesis. Here, we report that forebrain-specific inactivation of the mouse Brpf1 gene caused early postnatal lethality, neocortical abnormalities, and partial callosal agenesis. With respect to the control, the mutant forebrain contained fewer Tbr2-positive intermediate neuronal progenitors and displayed aberrant neurogenesis. Molecularly, Brpf1 loss led to decreased transcription of multiple genes, such as Robo3 and Otx1, important for neocortical development. Surprisingly, elevated expression of different Hox genes and various other transcription factors, such as Lhx4, Foxa1, Tbx5, and Twist1, was also observed. These results thus identify an important role of Brpf1 in regulating forebrain development and suggest that it acts as both an activator and a silencer of gene expression in vivo.
Collapse
Affiliation(s)
- Linya You
- From the Rosalind & Morris Goodman Cancer Research Center, Department of Medicine, McGill University, Quebec H3A 1A3
| | - Jinfeng Zou
- the National Research Council Canada, Montreal, Quebec H4P 2R2, and
| | - Hong Zhao
- From the Rosalind & Morris Goodman Cancer Research Center
| | | | - Morag Park
- From the Rosalind & Morris Goodman Cancer Research Center, Department of Medicine, McGill University, Quebec H3A 1A3, the Department of Biochemistry, McGill University and McGill University Health Center, Montreal, Quebec H3A 1A3, Canada
| | - Edwin Wang
- the National Research Council Canada, Montreal, Quebec H4P 2R2, and
| | - Xiang-Jiao Yang
- From the Rosalind & Morris Goodman Cancer Research Center, Department of Medicine, McGill University, Quebec H3A 1A3, the Department of Biochemistry, McGill University and McGill University Health Center, Montreal, Quebec H3A 1A3, Canada
| |
Collapse
|
61
|
Dupont C, Grati FR, Choy KW, Jaillard S, Toutain J, Maurin ML, Martínez-Conejero JA, Beneteau C, Coussement A, Molina-Gomes D, Horelli-Kuitunen N, Aboura A, Tabet AC, Besseau-Ayasse J, Bessieres-Grattagliano B, Simoni G, Ayala G, Benzacken B, Vialard F. Prenatal diagnosis of 24 cases of microduplication 22q11.2: an investigation of phenotype-genotype correlations. Prenat Diagn 2014; 35:35-43. [PMID: 25118001 DOI: 10.1002/pd.4478] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/29/2014] [Accepted: 08/06/2014] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Microduplication 22q11.2 is primarily characterized by a highly variable clinical phenotype, which ranges from apparently normal or slightly dysmorphic features (in the presence or absence of learning disorders) to severe malformations with profound mental retardation. Hence, genetic counseling is particularly challenging when microduplication 22q11.2 is identified in a prenatal diagnosis. Here, we report on 24 prenatal cases of microduplication 22q11.2. METHODS Seventeen of the cases were also reanalyzed by microarray analysis, in order to determine copy number variations (CNVs, which are thought to influence expressivity). We also searched for possible correlations between fetal phenotypes, indications for invasive prenatal diagnosis, inheritance, and pregnancy outcomes. RESULTS Of the 24 cases, 15 were inherited, six occurred de novo, and three were of unknown origin. Termination of pregnancy occurred in seven cases and was mainly decided on the basis of ultrasound findings. Moreover, additional CNVs were found in some patients and we try to make a genotype-phenotype correlation. CONCLUSION We discuss the complexity of genetic counseling for microduplication 22q11.2 and comment on possible explanations for the clinical heterogeneity of this syndrome. In particular, we assessed the co-existence of additional CNVs and their contribution to phenotypic variations in chromosome 22q11.2 microduplication syndrome.
Collapse
Affiliation(s)
- Céline Dupont
- Unité de Cytogénétique, Département de Génétique, Hôpital Robert Debré-AP-HP, CHU Paris, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Regulation of germinal center responses and B-cell memory by the chromatin modifier MOZ. Proc Natl Acad Sci U S A 2014; 111:9585-90. [PMID: 24979783 DOI: 10.1073/pnas.1402485111] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Memory B cells and long-lived bone marrow-resident plasma cells maintain humoral immunity. Little is known about the intrinsic mechanisms that are essential for forming memory B cells or endowing them with the ability to rapidly differentiate upon reexposure while maintaining the population over time. Histone modifications have been shown to regulate lymphocyte development, but their role in regulating differentiation and maintenance of B-cell subsets during an immune response is unclear. Using stage-specific deletion of monocytic leukemia zinc finger protein (MOZ), a histone acetyltransferase, we demonstrate that mutation of this chromatin modifier alters fate decisions in both primary and secondary responses. In the absence of MOZ, germinal center B cells were significantly impaired in their ability to generate dark zone centroblasts, with a concomitant decrease in both cell-cycle progression and BCL-6 expression. In contrast, there was increased differentiation to IgM and low-affinity IgG1(+) memory B cells. The lack of MOZ affected the functional outcome of humoral immune responses, with an increase in secondary germinal centers and a corresponding decrease in secondary high-affinity antibody-secreting cell formation. Therefore, these data provide strong evidence that manipulating epigenetic modifiers can regulate fate decisions during humoral responses, and thus could be targeted for therapeutic intervention.
Collapse
|
63
|
Epigenetics in cardiac development, function, and disease. Cell Tissue Res 2014; 356:585-600. [DOI: 10.1007/s00441-014-1887-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/02/2014] [Indexed: 12/13/2022]
|
64
|
Castellanos R, Xie Q, Zheng D, Cvekl A, Morrow BE. Mammalian TBX1 preferentially binds and regulates downstream targets via a tandem T-site repeat. PLoS One 2014; 9:e95151. [PMID: 24797903 PMCID: PMC4010391 DOI: 10.1371/journal.pone.0095151] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 03/24/2014] [Indexed: 11/20/2022] Open
Abstract
Haploinsufficiency or mutation of TBX1 is largely responsible for the etiology of physical malformations in individuals with velo-cardio-facial/DiGeorge syndrome (VCFS/DGS/22q11.2 deletion syndrome). TBX1 encodes a transcription factor protein that contains an evolutionarily conserved DNA binding domain termed the T-box that is shared with other family members. All T-box proteins, examined so far, bind to similar but not identical consensus DNA sequences, indicating that they have specific binding preferences. To identify the TBX1 specific consensus sequence, Systematic Evolution of Ligands by Exponential Enrichment (SELEX) was performed. In contrast to other TBX family members recognizing palindrome sequences, we found that TBX1 preferentially binds to a tandem repeat of 5′-AGGTGTGAAGGTGTGA-3′. We also identified a second consensus sequence comprised of a tandem repeat with a degenerated downstream site. We show that three known human disease-causing TBX1 missense mutations (F148Y, H194Q and G310S) do not alter nuclear localization, or disrupt binding to the tandem repeat consensus sequences, but they reduce transcriptional activity in cell culture reporter assays. To identify Tbx1-downstream genes, we performed an in silico genome wide analysis of potential cis-acting elements in DNA and found strong enrichment of genes required for developmental processes and transcriptional regulation. We found that TBX1 binds to 19 different loci in vitro, which may correspond to putative cis-acting binding sites. In situ hybridization coupled with luciferase gene reporter assays on three gene loci, Fgf8, Bmper, Otog-MyoD, show that these motifs are directly regulated by TBX1 in vitro. Collectively, the present studies establish new insights into molecular aspects of TBX1 binding to DNA. This work lays the groundwork for future in vivo studies, including chromatin immunoprecipitation followed by next generation sequencing (ChIP-Seq) to further elucidate the molecular pathogenesis of VCFS/DGS.
Collapse
Affiliation(s)
- Raquel Castellanos
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Qing Xie
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Ophthalmology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Ophthalmology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Bernice E. Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
65
|
Sheikh BN. Crafting the brain - role of histone acetyltransferases in neural development and disease. Cell Tissue Res 2014; 356:553-73. [PMID: 24788822 DOI: 10.1007/s00441-014-1835-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/30/2014] [Indexed: 01/19/2023]
Abstract
The human brain is a highly specialized organ containing nearly 170 billion cells with specific functions. Development of the brain requires adequate proliferation, proper cell migration, differentiation and maturation of progenitors. This is in turn dependent on spatial and temporal coordination of gene transcription, which requires the integration of both cell intrinsic and environmental factors. Histone acetyltransferases (HATs) are one family of proteins that modulate expression levels of genes in a space- and time-dependent manner. HATs and their molecular complexes are able to integrate multiple molecular inputs and mediate transcriptional levels by acetylating histone proteins. In mammals, 19 HATs have been described and are separated into five families (p300/CBP, MYST, GNAT, NCOA and transcription-related HATs). During embryogenesis, individual HATs are expressed or activated at specific times and locations to coordinate proper development. Not surprisingly, mutations in HATs lead to severe developmental abnormalities in the nervous system and increased neurodegeneration. This review focuses on our current understanding of HATs and their biological roles during neural development.
Collapse
Affiliation(s)
- Bilal N Sheikh
- Division of Development and Cancer, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Victoria, Australia,
| |
Collapse
|
66
|
You L, Chen L, Penney J, Miao D, Yang XJ. Expression atlas of the multivalent epigenetic regulator Brpf1 and its requirement for survival of mouse embryos. Epigenetics 2014; 9:860-72. [PMID: 24646517 DOI: 10.4161/epi.28530] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bromodomain- and PHD finger-containing protein 1 (BRPF1) is a unique epigenetic regulator that contains multiple structural domains for recognizing different chromatin modifications. In addition, it possesses sequence motifs for forming multiple complexes with three different histone acetyltransferases, MOZ, MORF, and HBO1. Within these complexes, BRPF1 serves as a scaffold for bridging subunit interaction, stimulating acetyltransferase activity, governing substrate specificity and stimulating gene expression. To investigate how these molecular interactions are extrapolated to biological functions of BRPF1, we utilized a mouse strain containing a knock-in reporter and analyzed the spatiotemporal expression from embryos to adults. The analysis revealed dynamic expression in the extraembryonic, embryonic, and fetal tissues, suggesting important roles of Brpf1 in prenatal development. In support of this, inactivation of the mouse Brpf1 gene causes lethality around embryonic day 9.5. After birth, high expression is present in the testis and specific regions of the brain. The 4-dimensional expression atlas of mouse Brpf1 should serve as a valuable guide for analyzing its interaction with Moz, Morf, and Hbo1 in vivo, as well as for investigating whether Brpf1 functions independently of these three enzymatic epigenetic regulators.
Collapse
Affiliation(s)
- Linya You
- The Rosalind & Morris Goodman Cancer Research Center; Montreal, QC Canada; Department of Medicine; McGill University; Montreal, QC Canada
| | - Lulu Chen
- The State Key Laboratory of Reproductive Medicine; The Research Center for Bone and Stem Cells; Department of Human Anatomy; Nanjing Medical University; Nanjing, China
| | - Janice Penney
- The Rosalind & Morris Goodman Cancer Research Center; Montreal, QC Canada
| | - Dengshun Miao
- The State Key Laboratory of Reproductive Medicine; The Research Center for Bone and Stem Cells; Department of Human Anatomy; Nanjing Medical University; Nanjing, China
| | - Xiang-Jiao Yang
- The Rosalind & Morris Goodman Cancer Research Center; Montreal, QC Canada; Department of Medicine; McGill University; Montreal, QC Canada; Department of Biochemistry; McGill University; Montreal, QC Canada; McGill University Health Center; Montreal, QC Canada
| |
Collapse
|
67
|
Understanding the role of Tbx1 as a candidate gene for 22q11.2 deletion syndrome. Curr Allergy Asthma Rep 2014; 13:613-21. [PMID: 23996541 DOI: 10.1007/s11882-013-0384-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
22q11.2 deletion syndrome (22q11.2DS) is caused by a commonly occurring microdeletion on chromosome 22. Clinical findings include cardiac malformations, thymic and parathyroid hypoplasia, craniofacial dysmorphisms, and dental defects. These phenotypes are due mainly to abnormal development of the pharyngeal apparatus. Targeted deletion studies in mice and analysis of naturally occurring mutations in humans have implicated Tbx1 as a candidate gene for 22q11.2DS. Tbx1 belongs to an evolutionarily conserved T-box family of transcription factors, whose expression is precisely regulated during embryogenesis, and it appears to regulate the proliferation and differentiation of various progenitor cells during organogenesis. In this review, we discuss the mechanisms of Tbx1 during development of the heart, thymus and parathyroid glands, as well as during formation of the palate, teeth, and other craniofacial features.
Collapse
|
68
|
Cirillo E, Giardino G, Gallo V, Puliafito P, Azzari C, Bacchetta R, Cardinale F, Cicalese MP, Consolini R, Martino S, Martire B, Molinatto C, Plebani A, Scarano G, Soresina A, Cancrini C, Rossi P, Digilio MC, Pignata C. Intergenerational and intrafamilial phenotypic variability in 22q11.2 deletion syndrome subjects. BMC MEDICAL GENETICS 2014; 15:1. [PMID: 24383682 PMCID: PMC3893549 DOI: 10.1186/1471-2350-15-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 12/27/2013] [Indexed: 12/23/2022]
Abstract
BACKGROUND 22q11.2 deletion syndrome (22q11.2DS) is a common microdeletion syndrome, which occurs in approximately 1:4000 births. Familial autosomal dominant recurrence of the syndrome is detected in about 8-28% of the cases. Aim of this study is to evaluate the intergenerational and intrafamilial phenotypic variability in a cohort of familial cases carrying a 22q11.2 deletion. METHODS Thirty-two 22q11.2DS subjects among 26 families were enrolled. RESULTS Second generation subjects showed a significantly higher number of features than their transmitting parents (212 vs 129, P = 0.0015). Congenital heart defect, calcium-phosphorus metabolism abnormalities, developmental and speech delay were more represented in the second generation (P < 0.05). Ocular disorders were more frequent in the parent group. No significant difference was observed for the other clinical variables. Intrafamilial phenotypic heterogeneity was identified in the pedigrees. In 23/32 families, a higher number of features were found in individuals from the second generation and a more severe phenotype was observed in almost all of them, indicating the worsening of the phenotype over generations. Both genetic and epigenetic mechanisms may be involved in the phenotypic variability. CONCLUSIONS Second generation subjects showed a more complex phenotype in comparison to those from the first generation. Both ascertainment bias related to patient selection or to the low rate of reproductive fitness of adults with a more severe phenotype, and several not well defined molecular mechanism, could explain intergenerational and intrafamilial phenotypic variability in this syndrome.
Collapse
Affiliation(s)
- Emilia Cirillo
- Department of Translational Medicine, “Federico II” University, Naples, Italy
| | - Giuliana Giardino
- Department of Translational Medicine, “Federico II” University, Naples, Italy
| | - Vera Gallo
- Department of Translational Medicine, “Federico II” University, Naples, Italy
| | - Pamela Puliafito
- Department of Pediatrics, (DPUO), University of Rome Tor Vergata, Rome, Italy
| | - Chiara Azzari
- Department of Pediatrics, Anna Meyer Children’s University Hospital, Florence, Italy
| | - Rosa Bacchetta
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Milan; Pediatric ImmunoHematology IRCCS San Raffaele Hospital, Milan, Italy
| | - Fabio Cardinale
- Department of Pediatrics, Giovanni XXIII Pediatric Hospital, Bari, Italy
| | | | - Rita Consolini
- Department of Internal and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Baldassarre Martire
- Department of Biomedicine and Evolutive Aging, University of Bari, Bari, Italy
| | | | - Alessandro Plebani
- A. Nocivelli Institute for Molecular Medicine, Pediatric Clinic, University of Brescia, Brescia, Italy
| | | | - Annarosa Soresina
- A. Nocivelli Institute for Molecular Medicine, Pediatric Clinic, University of Brescia, Brescia, Italy
| | - Caterina Cancrini
- Department of Pediatrics, (DPUO), University of Rome Tor Vergata, Rome, Italy
| | - Paolo Rossi
- Department of Pediatrics, (DPUO), University of Rome Tor Vergata, Rome, Italy
| | | | - Claudio Pignata
- Department of Translational Medicine, “Federico II” University, Naples, Italy
- Department of Translational Medical Sciences, Unit of Pediatric Immunology, “Federico II” University, via S. Pansini, 5-80131 Naples, Italy
| |
Collapse
|
69
|
Batanian JR, Braddock SR, Christensen K, Knutsen AP. Combined immunodeficiency in a 3-year-old boy with 16p11.2 and 20p12.2-11.2 chromosomal duplications. Am J Med Genet A 2013; 164A:535-41. [PMID: 24311374 DOI: 10.1002/ajmg.a.36305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 09/26/2013] [Indexed: 11/07/2022]
Abstract
We report for the first time on a 3-year-old boy with paternally inherited 212.85 kb-16p11.2 and 7.8 Mb-20p12.2-11.23 interstitial microduplications associated with having congenital cardiac defect, dysmorphic facial features, and combined T-, B-, and NK cell immunodeficiency. In addition the 7.8 Mb-20p12.2-11.23 microduplication is unique showing novel breakpoints among all partial trisomy/duplication 20p reported to date, narrowing down the critical region for trisomy 20p syndrome.
Collapse
Affiliation(s)
- Jacqueline R Batanian
- Division of Molecular Cytogenetics Laboratory, Saint Louis University Medical Center, St. Louis, Missouri; Department of Pediatrics, Saint Louis University Medical Center, St. Louis, Missouri
| | | | | | | |
Collapse
|
70
|
Largeot A, Paggetti J, Broséus J, Aucagne R, Lagrange B, Martin RZ, Berthelet J, Quéré R, Lucchi G, Ducoroy P, Bastie JN, Delva L. Symplekin, a polyadenylation factor, prevents MOZ and MLL activity on HOXA9 in hematopoietic cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3054-3063. [DOI: 10.1016/j.bbamcr.2013.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/26/2013] [Accepted: 08/13/2013] [Indexed: 01/07/2023]
|
71
|
Klein BJ, Lalonde ME, Côté J, Yang XJ, Kutateladze TG. Crosstalk between epigenetic readers regulates the MOZ/MORF HAT complexes. Epigenetics 2013; 9:186-93. [PMID: 24169304 DOI: 10.4161/epi.26792] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The MOZ/MORF complexes represent an example of a chromatin-binding assembly whose recruitment to specific genomic regions and activity can be fine-tuned by posttranslational modifications of histones. Here we detail the structures and biological functions of epigenetic readers present in the four core subunits of the MOZ/MORF complexes, highlight the imperative role of combinatorial readout by the multiple readers, and discuss new research directions to advance our understanding of histone acetylation.
Collapse
Affiliation(s)
- Brianna J Klein
- Department of Pharmacology; University of Colorado School of Medicine; Aurora, CO USA
| | - Marie-Eve Lalonde
- Laval University Cancer Research Center; Hôtel-Dieu de Québec (CHUQ); Quebec City, QC Canada
| | - Jacques Côté
- Laval University Cancer Research Center; Hôtel-Dieu de Québec (CHUQ); Quebec City, QC Canada
| | - Xiang-Jiao Yang
- Rosalind and Morris Goodman Cancer Research Center; Departments of Medicine, Biochemistry, and Anatomy & Cell Biology; McGill University; Montréal, QC Canada
| | - Tatiana G Kutateladze
- Department of Pharmacology; University of Colorado School of Medicine; Aurora, CO USA
| |
Collapse
|
72
|
Milton AC, Packard AV, Clary L, Okkema PG. The NF-Y complex negatively regulates Caenorhabditis elegans tbx-2 expression. Dev Biol 2013; 382:38-47. [PMID: 23933492 DOI: 10.1016/j.ydbio.2013.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/23/2013] [Accepted: 08/01/2013] [Indexed: 01/24/2023]
Abstract
T-box genes are frequently expressed in dynamic patterns during animal development, but the mechanisms controlling expression of these genes are not well understood. The Caenorhabditis elegans T-box gene tbx-2 is essential for development of the ABa-derived pharyngeal muscles, specification of neural cell fate in the HSN/PHB lineage, and adaptation in olfactory neurons. The tbx-2 expression pattern is complex, and expression has been described in pharyngeal precursors and body wall muscles during embryogenesis, and amphid sensory neurons and pharyngeal neurons in adults. To examine mechanisms regulating tbx-2 gene expression, we performed an RNAi screen of transcription factor genes in strains containing a Ptbx-2::gfp reporter and identified the Nuclear Factor Y (NF-Y) complex as a negative regulator of tbx-2 expression. NF-Y is a heterotrimeric CCAAT-binding complex consisting of A-C subunits, and reduction of the NF-Y subunits nfya-1, nfyb-1, or nfyc-1 by RNAi or using mutants results in ectopic Ptbx-2::gfp expression in hypodermal seam cells and gut. Mutation of two CCAAT-boxes in the tbx-2 promoter results in a similar pattern of ectopic Ptbx-2::gfp expression, suggesting NF-Y directly represses the tbx-2 promoter. tbx-2 mRNA is moderately increased in nfya-1 null mutants, indicating NF-Y represses expression of endogenous tbx-2. Finally we identify and characterize a second-site mutation that enhances lethality of a temperature sensitive tbx-2 mutant and show that this mutation is a deletion in the nfyb-1 gene. Together, these results identify NF-Y as an important regulator of tbx-2 function in vivo.
Collapse
Affiliation(s)
- Angenee C Milton
- Laboratory for Molecular Biology, Department of Biological Sciences, University of Illinois at Chicago, 900S. Ashland Avenue (MC567), Chicago, IL 60607, USA
| | | | | | | |
Collapse
|
73
|
Perez-Campo FM, Costa G, Lie-a-Ling M, Kouskoff V, Lacaud G. The MYSTerious MOZ, a histone acetyltransferase with a key role in haematopoiesis. Immunology 2013; 139:161-165. [PMID: 23347099 PMCID: PMC3647182 DOI: 10.1111/imm.12072] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/11/2013] [Accepted: 01/11/2013] [Indexed: 12/28/2022] Open
Abstract
The MOnocytic leukaemia Zing finger (MOZ; MYST3 or KAT6A(1)) gene is frequently found translocated in acute myeloid leukaemia. MOZ encodes a large multidomain protein that contains, besides others, a histone acetyl transferase catalytic domain. Several studies have now established the critical function of MOZ in haematopoiesis. In this review we summarize the recent findings that underscore the relevance of the different biological activities of MOZ in the regulation of haematopoiesis.
Collapse
Affiliation(s)
- Flor M Perez-Campo
- Cancer Research UK Stem Cell Biology Group, Paterson Institute for Cancer Research, The University of Manchester, Manchester, UK.
| | | | | | | | | |
Collapse
|
74
|
Carvill GL, Mefford HC. Microdeletion syndromes. Curr Opin Genet Dev 2013; 23:232-9. [PMID: 23664828 DOI: 10.1016/j.gde.2013.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 03/11/2013] [Accepted: 03/25/2013] [Indexed: 01/11/2023]
Abstract
The recent explosion in the implementation of genome-wide microarray technology to discover rare, pathogenic genomic rearrangements in a variety of diseases has led to the discovery of numerous microdeletion syndromes. It is now clear that these microdeletions are associated with extensive phenotypic heterogeneity and incomplete penetrance. A subset of recurrent microdeletions underpin diverse phenotypes, including intellectual disability, autism, epilepsy and neuropsychiatric disorders. Recent studies highlight a role for additional low frequency variants, or 'second hits' to account for this variability. The implementation of massively parallel sequencing and epigenetic models may provide a powerful prospective approach to the delineation of microdeletion syndrome phenotypes.
Collapse
Affiliation(s)
- Gemma L Carvill
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
75
|
Symmons O, Spitz F. From remote enhancers to gene regulation: charting the genome's regulatory landscapes. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120358. [PMID: 23650632 DOI: 10.1098/rstb.2012.0358] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Vertebrate genes are characterized by the presence of cis-regulatory elements located at great distances from the genes they control. Alterations of these elements have been implicated in human diseases and evolution, yet little is known about how these elements interact with their surrounding sequences. A recent survey of the mouse genome with a regulatory sensor showed that the regulatory activities of these elements are not organized in a gene-centric manner, but instead are broadly distributed along chromosomes, forming large regulatory landscapes with distinct tissue-specific activities. A large genome-wide collection of expression data from this regulatory sensor revealed some basic principles of this complex genome regulatory architecture, including a substantial interplay between enhancers and other types of activities to modulate gene expression. We discuss the implications of these findings for our understanding of non-coding transcription, and of the possible consequences of structural genomic variations in disease and evolution.
Collapse
Affiliation(s)
- Orsolya Symmons
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | |
Collapse
|
76
|
Levenson D. Genetic modifier to chromatin may contribute to 22q11 deletion/VCF/DiGeorge syndrome variability: MOZ gene may also exacerbate effects of retinoic acid in genetic disorder. Am J Med Genet A 2012; 158A:vii-viii. [PMID: 23174944 DOI: 10.1002/ajmg.a.35798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|