51
|
Kurinna S, Schäfer M, Ostano P, Karouzakis E, Chiorino G, Bloch W, Bachmann A, Gay S, Garrod D, Lefort K, Dotto GP, Beer HD, Werner S. A novel Nrf2-miR-29-desmocollin-2 axis regulates desmosome function in keratinocytes. Nat Commun 2014; 5:5099. [PMID: 25283360 DOI: 10.1038/ncomms6099] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/28/2014] [Indexed: 02/08/2023] Open
Abstract
The Nrf2 transcription factor controls the expression of genes involved in the antioxidant defense system. Here, we identified Nrf2 as a novel regulator of desmosomes in the epidermis through the regulation of microRNAs. On Nrf2 activation, expression of miR-29a and miR-29b increases in cultured human keratinocytes and in mouse epidermis. Chromatin immunoprecipitation identified the Mir29ab1 and Mir29b2c genes as direct Nrf2 targets in keratinocytes. While binding of Nrf2 to the Mir29ab1 gene activates expression of miR-29a and -b, the Mir29b2c gene is silenced by DNA methylation. We identified desmocollin-2 (Dsc2) as a major target of Nrf2-induced miR-29s. This is functionally important, since Nrf2 activation in keratinocytes of transgenic mice causes structural alterations of epidermal desmosomes. Furthermore, the overexpression of miR-29a/b or knockdown of Dsc2 impairs the formation of hyper-adhesive desmosomes in keratinocytes, whereas Dsc2 overexpression has the opposite effect. These results demonstrate that a novel Nrf2-miR-29-Dsc2 axis controls desmosome function and cutaneous homeostasis.
Collapse
Affiliation(s)
- Svitlana Kurinna
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Matthias Schäfer
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Paola Ostano
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, 13900 Biella, Italy
| | - Emmanuel Karouzakis
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Giovanna Chiorino
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, 13900 Biella, Italy
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, 50933 Cologne, Germany
| | - Andreas Bachmann
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Steffen Gay
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - David Garrod
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Karine Lefort
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Gian-Paolo Dotto
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Hans-Dietmar Beer
- Department of Dermatology, University Hospital Zurich, 8006 Zurich, Switzerland
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
52
|
Al-Sawaf O, Fragoulis A, Rosen C, Keimes N, Liehn EA, Hölzle F, Kan YW, Pufe T, Sönmez TT, Wruck CJ. Nrf2 augments skeletal muscle regeneration after ischaemia-reperfusion injury. J Pathol 2014; 234:538-47. [DOI: 10.1002/path.4418] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/24/2014] [Accepted: 08/06/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Othman Al-Sawaf
- Department of Anatomy and Cell Biology; University Hospital, RWTH Aachen University; Germany
| | - Athanassios Fragoulis
- Department of Anatomy and Cell Biology; University Hospital, RWTH Aachen University; Germany
| | - Christian Rosen
- Department of Anatomy and Cell Biology; University Hospital, RWTH Aachen University; Germany
| | - Nora Keimes
- Department of Anatomy and Cell Biology; University Hospital, RWTH Aachen University; Germany
| | - Elisa Anamaria Liehn
- Institute for Molecular Cardiovascular Research; University Hospital, RWTH Aachen University; Germany
| | - Frank Hölzle
- Department of Oral and Maxillofacial Surgery; University Hospital, RWTH Aachen University; Germany
| | - Yuet Wai Kan
- Department of Laboratory Medicine; University of California; San Francisco CA USA
| | - Thomas Pufe
- Department of Anatomy and Cell Biology; University Hospital, RWTH Aachen University; Germany
| | - Tolga Taha Sönmez
- Department of Oral and Maxillofacial Surgery; University Hospital, RWTH Aachen University; Germany
| | - Christoph Jan Wruck
- Department of Anatomy and Cell Biology; University Hospital, RWTH Aachen University; Germany
| |
Collapse
|
53
|
Ahmed H, O'Toole EA. Recent advances in the genetics and management of harlequin ichthyosis. Pediatr Dermatol 2014; 31:539-46. [PMID: 24920541 DOI: 10.1111/pde.12383] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Harlequin ichthyosis (HI) is the most severe and devastating form of the autosomal recessive congenital ichthyoses (ARCIs). Mutations in the ABCA12 gene result in disruption of intercellular lipid deposition in the stratum corneum and a major skin barrier defect. Patients present at birth, often premature, with cutaneous thick, yellow, hyperkeratotic plates with deep erythematous fissures, causing a typical facial appearance. Harlequin ichthyosis has often been considered to be fatal, and management tends to be palliative, but follow-up of 45 affected infants has shown that with good neonatal care and early introduction of oral retinoids, survival rates are improving. Because ABCA12 mutations have been identified, known carriers are able to undergo preventative preimplantation and prenatal genetic testing. Experimental studies have shown recovery of lipid secretion in lamellar granules using corrective gene therapy. Further research is needed to develop alternative therapies to retinoids in HI.
Collapse
Affiliation(s)
- Hera Ahmed
- Department of Dermatology, Barts Health National Health Service Trust, Whitechapel, London, UK
| | | |
Collapse
|
54
|
Oh IY, Albea DM, Goodwin ZA, Quiggle AM, Baker BP, Guggisberg AM, Geahlen JH, Kroner GM, de Guzman Strong C. Regulation of the dynamic chromatin architecture of the epidermal differentiation complex is mediated by a c-Jun/AP-1-modulated enhancer. J Invest Dermatol 2014; 134:2371-2380. [PMID: 24468747 PMCID: PMC4112170 DOI: 10.1038/jid.2014.44] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/20/2013] [Accepted: 01/06/2014] [Indexed: 02/01/2023]
Abstract
The epidermal differentiation complex (EDC) locus comprises a syntenic and linear cluster of genes whose concomitant expression is a hallmark feature of differentiation in the developing skin epidermis. Many of the EDC proteins are cross-linked together to form the cornified envelope, an essential and discrete unit of the mammalian skin barrier. The mechanism underlying coordinate transcriptional activation of the EDC is unknown. Within the human EDC, we identified an epidermal-specific regulatory enhancer, 923, which responded to the developmental and spatiotemporal cues at the onset of epidermal differentiation in the mouse embryo. Comparative chromosomal conformation capture assays in proliferating and differentiated primary mouse keratinocytes revealed multiple physiologically sensitive chromatin interactions between the 923 enhancer and EDC gene promoters, thus depicting the dynamic chromatin topology of the EDC. We elucidate a mechanistic link between c-Jun/AP-1 and 923, whereby AP-1- and 923-mediated EDC chromatin remodeling are required for functional EDC gene activation. Thus, we identify a critical enhancer/transcription factor axis governing the dynamic regulation of the EDC chromatin architecture and gene expression and provide a framework for future studies toward understanding gene regulation in cutaneous diseases.
Collapse
Affiliation(s)
- Inez Y Oh
- Division of Dermatology, Department of Internal Medicine, Center for Pharmacogenomics, Center for the Study of Itch, Washington University School of Medicine, St Louis, Missouri, USA
| | - Danielle M Albea
- Division of Dermatology, Department of Internal Medicine, Center for Pharmacogenomics, Center for the Study of Itch, Washington University School of Medicine, St Louis, Missouri, USA
| | - Zane A Goodwin
- Division of Dermatology, Department of Internal Medicine, Center for Pharmacogenomics, Center for the Study of Itch, Washington University School of Medicine, St Louis, Missouri, USA
| | - Ashley M Quiggle
- Division of Dermatology, Department of Internal Medicine, Center for Pharmacogenomics, Center for the Study of Itch, Washington University School of Medicine, St Louis, Missouri, USA
| | - Breeana P Baker
- Division of Dermatology, Department of Internal Medicine, Center for Pharmacogenomics, Center for the Study of Itch, Washington University School of Medicine, St Louis, Missouri, USA
| | - Ann M Guggisberg
- Division of Dermatology, Department of Internal Medicine, Center for Pharmacogenomics, Center for the Study of Itch, Washington University School of Medicine, St Louis, Missouri, USA
| | - Jessica H Geahlen
- Division of Dermatology, Department of Internal Medicine, Center for Pharmacogenomics, Center for the Study of Itch, Washington University School of Medicine, St Louis, Missouri, USA
| | - Grace M Kroner
- Division of Dermatology, Department of Internal Medicine, Center for Pharmacogenomics, Center for the Study of Itch, Washington University School of Medicine, St Louis, Missouri, USA
| | - Cristina de Guzman Strong
- Division of Dermatology, Department of Internal Medicine, Center for Pharmacogenomics, Center for the Study of Itch, Washington University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
55
|
Schäfer M, Willrodt AH, Kurinna S, Link AS, Farwanah H, Geusau A, Gruber F, Sorg O, Huebner AJ, Roop DR, Sandhoff K, Saurat JH, Tschachler E, Schneider MR, Langbein L, Bloch W, Beer HD, Werner S. Activation of Nrf2 in keratinocytes causes chloracne (MADISH)-like skin disease in mice. EMBO Mol Med 2014; 6:442-57. [PMID: 24503019 PMCID: PMC3992072 DOI: 10.1002/emmm.201303281] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The transcription factor Nrf2 is a key regulator of the cellular stress response, and pharmacological Nrf2 activation is a promising strategy for skin protection and cancer prevention. We show here that prolonged Nrf2 activation in keratinocytes causes sebaceous gland enlargement and seborrhea in mice due to upregulation of the growth factor epigen, which we identified as a novel Nrf2 target. This was accompanied by thickening and hyperkeratosis of hair follicle infundibula. These abnormalities caused dilatation of infundibula, hair loss, and cyst development upon aging. Upregulation of epigen, secretory leukocyte peptidase inhibitor (Slpi), and small proline-rich protein 2d (Sprr2d) in hair follicles was identified as the likely cause of infundibular acanthosis, hyperkeratosis, and cyst formation. These alterations were highly reminiscent to the phenotype of chloracne/“metabolizing acquired dioxin-induced skin hamartomas” (MADISH) patients. Indeed, SLPI, SPRR2, and epigen were strongly expressed in cysts of MADISH patients and upregulated by dioxin in human keratinocytes in an NRF2-dependent manner. These results identify novel Nrf2 activities in the pilosebaceous unit and point to a role of NRF2 in MADISH pathogenesis.
Collapse
Affiliation(s)
- Matthias Schäfer
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Vermeij WP, Backendorf C. Reactive oxygen species (ROS) protection via cysteine oxidation in the epidermal cornified cell envelope. Methods Mol Biol 2013; 1195:157-69. [PMID: 24281873 DOI: 10.1007/7651_2013_51] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
The outermost layer of our skin functions as a barrier to protect us from physical, chemical, and biological environmental insults. This protective function is mediated by the epidermal cornified cell envelope (CE) which serves both as a mechanical and permeability barrier. Recently we have discovered that the CE constitutes also a first-line antioxidant shield which relies greatly on cysteine residues in CE precursor proteins. Here we describe methods and protocols to study the cysteine-mediated antioxidant function of the CE at the level of the whole organ (the skin), individual cells (keratinocytes), or isolated proteins (SPRR family).
Collapse
|
57
|
Keratin 16 regulates innate immunity in response to epidermal barrier breach. Proc Natl Acad Sci U S A 2013; 110:19537-42. [PMID: 24218583 DOI: 10.1073/pnas.1309576110] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mutations in the type I keratin 16 (Krt16) and its partner type II keratin 6 (Krt6a, Krt6b) cause pachyonychia congenita (PC), a disorder typified by dystrophic nails, painful hyperkeratotic calluses in glabrous skin, and lesions involving other epithelial appendages. The pathophysiology of these symptoms and its relationship to settings in which Krt16 and Krt6 are induced in response to epidermal barrier stress are poorly understood. We report that hyperkeratotic calluses arising in the glabrous skin of individuals with PC and Krt16 null mice share a gene expression signature enriched in genes involved in inflammation and innate immunity, in particular damage-associated molecular patterns. Transcriptional hyper-activation of damage-associated molecular pattern genes occurs following de novo chemical or mechanical irritation to ear skin and in spontaneously arising skin lesions in Krt16 null mice. Genome-wide expression analysis of normal mouse tail skin and benign proliferative lesions reveals a tight, context-dependent coregulation of Krt16 and Krt6 with genes involved in skin barrier maintenance and innate immunity. Our results uncover a role for Krt16 in regulating epithelial inflammation that is relevant to genodermatoses, psoriasis, and cancer and suggest a avenue for the therapeutic management of PC and related disorders.
Collapse
|
58
|
Actin-related protein2/3 complex regulates tight junctions and terminal differentiation to promote epidermal barrier formation. Proc Natl Acad Sci U S A 2013; 110:E3820-9. [PMID: 24043783 DOI: 10.1073/pnas.1308419110] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The epidermis provides an essential seal from the external environment and retains fluids within the body. To form an effective barrier, cells in the epidermis must form tight junctions and terminally differentiate into cornified envelopes. Here, we demonstrate that the branched actin nucleator, the actin-related protein (Arp)2/3 complex, is unexpectedly required for both these activities. Loss of the ArpC3 subunit of the Arp2/3 complex resulted in minimal changes in the morphogenesis and architecture of this stratified squamous epithelium, but resulted in profound defects in its physiology. Mutant embryos did not develop an effective barrier to the external environment and died within hours of birth. We discovered two underlying causes for these effects. First, ArpC3 was essential for robust assembly and function of tight junctions, specialized cell-cell adhesions that restrict water loss in the epidermis. Second, there were defects in differentiation of the epidermis and the production of cornified envelopes, structures essential for barrier activity. Underlying this defect, we found that YAP was inappropriately active not only in the ArpC3 mutant tissue, but also in cultured cells. Inhibition of YAP activity rescued the differentiation and barrier defects caused by loss of ArpC3. These results demonstrate previously unappreciated roles for the Arp2/3 complex and highlight the functions of branched actin networks in a complex tissue.
Collapse
|