51
|
Toledo CM, Ding Y, Hoellerbauer P, Davis RJ, Basom R, Girard EJ, Lee E, Corrin P, Hart T, Bolouri H, Davison J, Zhang Q, Hardcastle J, Aronow BJ, Plaisier CL, Baliga NS, Moffat J, Lin Q, Li XN, Nam DH, Lee J, Pollard SM, Zhu J, Delrow JJ, Clurman BE, Olson JM, Paddison PJ. Genome-wide CRISPR-Cas9 Screens Reveal Loss of Redundancy between PKMYT1 and WEE1 in Glioblastoma Stem-like Cells. Cell Rep 2015; 13:2425-2439. [PMID: 26673326 PMCID: PMC4691575 DOI: 10.1016/j.celrep.2015.11.021] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/12/2015] [Accepted: 11/03/2015] [Indexed: 12/31/2022] Open
Abstract
To identify therapeutic targets for glioblastoma (GBM), we performed genome-wide CRISPR-Cas9 knockout (KO) screens in patient-derived GBM stem-like cells (GSCs) and human neural stem/progenitors (NSCs), non-neoplastic stem cell controls, for genes required for their in vitro growth. Surprisingly, the vast majority GSC-lethal hits were found outside of molecular networks commonly altered in GBM and GSCs (e.g., oncogenic drivers). In vitro and in vivo validation of GSC-specific targets revealed several strong hits, including the wee1-like kinase, PKMYT1/Myt1. Mechanistic studies demonstrated that PKMYT1 acts redundantly with WEE1 to inhibit cyclin B-CDK1 activity via CDK1-Y15 phosphorylation and to promote timely completion of mitosis in NSCs. However, in GSCs, this redundancy is lost, most likely as a result of oncogenic signaling, causing GBM-specific lethality.
Collapse
Affiliation(s)
- Chad M Toledo
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Yu Ding
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Pia Hoellerbauer
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Ryan J Davis
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ryan Basom
- Genomics and Bioinformatics Shared Resources, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Emily J Girard
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Eunjee Lee
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Philip Corrin
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Traver Hart
- Department of Molecular Genetics, University of Toronto and Donnelly Centre, Toronto, ON M5S3E1, Canada; Canadian Institute for Advanced Research, Toronto, ON M5G1Z8, Canada
| | - Hamid Bolouri
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jerry Davison
- Genomics and Bioinformatics Shared Resources, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Qing Zhang
- Genomics and Bioinformatics Shared Resources, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Justin Hardcastle
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Bruce J Aronow
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | - Jason Moffat
- Department of Molecular Genetics, University of Toronto and Donnelly Centre, Toronto, ON M5S3E1, Canada; Canadian Institute for Advanced Research, Toronto, ON M5G1Z8, Canada
| | - Qi Lin
- Brain Tumor Program, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiao-Nan Li
- Brain Tumor Program, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Do-Hyun Nam
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul 135-710, Korea
| | - Jeongwu Lee
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44192, USA
| | - Steven M Pollard
- Edinburgh CRUK Cancer Research Centre and MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Jun Zhu
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jeffery J Delrow
- Genomics and Bioinformatics Shared Resources, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Bruce E Clurman
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - James M Olson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Patrick J Paddison
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
52
|
Blomen VA, Májek P, Jae LT, Bigenzahn JW, Nieuwenhuis J, Staring J, Sacco R, van Diemen FR, Olk N, Stukalov A, Marceau C, Janssen H, Carette JE, Bennett KL, Colinge J, Superti-Furga G, Brummelkamp TR. Gene essentiality and synthetic lethality in haploid human cells. Science 2015; 350:1092-6. [PMID: 26472760 DOI: 10.1126/science.aac7557] [Citation(s) in RCA: 616] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 10/01/2015] [Indexed: 12/11/2022]
Abstract
Although the genes essential for life have been identified in less complex model organisms, their elucidation in human cells has been hindered by technical barriers. We used extensive mutagenesis in haploid human cells to identify approximately 2000 genes required for optimal fitness under culture conditions. To study the principles of genetic interactions in human cells, we created a synthetic lethality network focused on the secretory pathway based exclusively on mutations. This revealed a genetic cross-talk governing Golgi homeostasis, an additional subunit of the human oligosaccharyltransferase complex, and a phosphatidylinositol 4-kinase β adaptor hijacked by viruses. The synthetic lethality map parallels observations made in yeast and projects a route forward to reveal genetic networks in diverse aspects of human cell biology.
Collapse
Affiliation(s)
- Vincent A Blomen
- Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands
| | - Peter Májek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Lucas T Jae
- Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands
| | - Johannes W Bigenzahn
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Joppe Nieuwenhuis
- Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands
| | - Jacqueline Staring
- Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands
| | - Roberto Sacco
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Ferdy R van Diemen
- Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands
| | - Nadine Olk
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Alexey Stukalov
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Caleb Marceau
- Department of Microbiology and Immunology, Stanford University School of Medicine, 299 Campus Drive, Stanford, CA 94305, USA
| | - Hans Janssen
- Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, 299 Campus Drive, Stanford, CA 94305, USA
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Jacques Colinge
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria. University of Montpellier, Institut de Recherche en Cancérologie de Montpellier Inserm U1194, Institut régional du Cancer Montpellier, 34000 Montpellier, France.
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria. Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| | - Thijn R Brummelkamp
- Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands. CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria. Cancer Genomics Center (CGC.nl), Plesmanlaan 121, 1066CX, Amsterdam, Netherlands.
| |
Collapse
|
53
|
Jiang H, He X, Feng D, Zhu X, Zheng Y. RanGTP aids anaphase entry through Ubr5-mediated protein turnover. J Cell Biol 2015; 211:7-18. [PMID: 26438829 PMCID: PMC4602037 DOI: 10.1083/jcb.201503122] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/25/2015] [Indexed: 01/14/2023] Open
Abstract
Cells sense the overall chromosome congression state in metaphase to promote anaphase entry using RanGTP, which induces the reduction of two spindle assembly checkpoint proteins, BuGZ and Bub3, via the E3 ligase Ubr5. RanGTP is known to regulate the spindle assembly checkpoint (SAC), but the underlying molecular mechanism is unclear. BuGZ stabilizes SAC protein Bub3 through direct interaction and facilitates its mitotic function. Here we show that RanGTP promotes the turnover of BuGZ and Bub3 in metaphase, which in turn facilitates metaphase-to-anaphase transition. BuGZ and Bub3 interact with either importin-β or an E3 ubiquitin ligase, Ubr5. RanGTP promotes the dissociation of importin-β from BuGZ and Bub3 in metaphase. This results in increased binding of BuGZ and Bub3 to Ubr5, leading to ubiquitination and subsequent turnover of both proteins. We propose that elevated metaphase RanGTP levels use Ubr5 to couple overall chromosome congression to SAC silencing.
Collapse
Affiliation(s)
- Hao Jiang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| | - Xiaonan He
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Di Feng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yixian Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| |
Collapse
|
54
|
Jiang H, Wang S, Huang Y, He X, Cui H, Zhu X, Zheng Y. Phase transition of spindle-associated protein regulate spindle apparatus assembly. Cell 2015; 163:108-22. [PMID: 26388440 DOI: 10.1016/j.cell.2015.08.010] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 06/09/2015] [Accepted: 07/31/2015] [Indexed: 11/24/2022]
Abstract
Spindle assembly required during mitosis depends on microtubule polymerization. We demonstrate that the evolutionarily conserved low-complexity protein, BuGZ, undergoes phase transition or coacervation to promote assembly of both spindles and their associated components. BuGZ forms temperature-dependent liquid droplets alone or on microtubules in physiological buffers. Coacervation in vitro or in spindle and spindle matrix depends on hydrophobic residues in BuGZ. BuGZ coacervation and its binding to microtubules and tubulin are required to promote assembly of spindle and spindle matrix in Xenopus egg extract and in mammalian cells. Since several previously identified spindle-associated components also contain low-complexity regions, we propose that coacervating proteins may be a hallmark of proteins that comprise a spindle matrix that functions to promote assembly of spindles by concentrating its building blocks.
Collapse
Affiliation(s)
- Hao Jiang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | - Shusheng Wang
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | - Yuejia Huang
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | - Xiaonan He
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
| | - Yixian Zheng
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218, USA.
| |
Collapse
|
55
|
Wan C, Borgeson B, Phanse S, Tu F, Drew K, Clark G, Xiong X, Kagan O, Kwan J, Bezginov A, Chessman K, Pal S, Cromar G, Papoulas O, Ni Z, Boutz DR, Stoilova S, Havugimana PC, Guo X, Malty RH, Sarov M, Greenblatt J, Babu M, Derry WB, Tillier ER, Wallingford JB, Parkinson J, Marcotte EM, Emili A. Panorama of ancient metazoan macromolecular complexes. Nature 2015; 525:339-44. [PMID: 26344197 PMCID: PMC5036527 DOI: 10.1038/nature14877] [Citation(s) in RCA: 396] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 06/30/2015] [Indexed: 12/21/2022]
Abstract
Macromolecular complexes are essential to conserved biological processes, but their prevalence across animals is unclear. By combining extensive biochemical fractionation with quantitative mass spectrometry, we directly examined the composition of soluble multiprotein complexes among diverse metazoan models. Using an integrative approach, we then generated a draft conservation map consisting of >1 million putative high-confidence co-complex interactions for species with fully sequenced genomes that encompasses functional modules present broadly across all extant animals. Clustering revealed a spectrum of conservation, ranging from ancient Eukaryal assemblies likely serving cellular housekeeping roles for at least 1 billion years, ancestral complexes that have accrued contemporary components, and rarer metazoan innovations linked to multicellularity. We validated these projections by independent co-fractionation experiments in evolutionarily distant species, by affinity-purification and by functional analyses. The comprehensiveness, centrality and modularity of these reconstructed interactomes reflect their fundamental mechanistic significance and adaptive value to animal cell systems.
Collapse
Affiliation(s)
- Cuihong Wan
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Blake Borgeson
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Sadhna Phanse
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Fan Tu
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Kevin Drew
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Greg Clark
- Department of Medical Biophysics, Toronto, Ontario M5G 1L7, Canada
| | - Xuejian Xiong
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Olga Kagan
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Julian Kwan
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | - Kyle Chessman
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Swati Pal
- Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Graham Cromar
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Ophelia Papoulas
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Zuyao Ni
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Daniel R Boutz
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Snejana Stoilova
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Pierre C Havugimana
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Xinghua Guo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Ramy H Malty
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Mihail Sarov
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Jack Greenblatt
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - W Brent Derry
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | - John B Wallingford
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA.,Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - John Parkinson
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Edward M Marcotte
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA.,Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Andrew Emili
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
56
|
Wan Y, Zheng X, Chen H, Guo Y, Jiang H, He X, Zhu X, Zheng Y. Splicing function of mitotic regulators links R-loop-mediated DNA damage to tumor cell killing. ACTA ACUST UNITED AC 2015; 209:235-46. [PMID: 25918225 PMCID: PMC4411280 DOI: 10.1083/jcb.201409073] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitotic regulators BuGZ and Bub3 play a critical role in RNA splicing during interphase, and disruption of this function leads to R-loop formation, DNA damage, and p53 activation. Although studies suggest that perturbing mitotic progression leads to DNA damage and p53 activation, which in turn lead to either cell apoptosis or senescence, it remains unclear how mitotic defects trigger p53 activation. We show that BuGZ and Bub3, which are two mitotic regulators localized in the interphase nucleus, interact with the splicing machinery and are required for pre-mRNA splicing. Similar to inhibition of RNA splicing by pladienolide B, depletion of either BuGZ or Bub3 led to increased formation of RNA–DNA hybrids (R-loops), which led to DNA damage and p53 activation in both human tumor cells and primary cells. Thus, R-loop–mediated DNA damage and p53 activation offer a mechanistic explanation for apoptosis of cancer cells and senescence of primary cells upon disruption of the dual-function mitotic regulators. This demonstrates the importance of understanding the full range of functions of mitotic regulators to develop antitumor drugs.
Collapse
Affiliation(s)
- Yihan Wan
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| | - Xiaobin Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| | - Haiyang Chen
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| | - Yuxuan Guo
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| | - Hao Jiang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| | - Xiaonan He
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yixian Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| |
Collapse
|
57
|
Zhu S, Jing R, Yang Y, Huang Y, Wang X, Leng Y, Xi J, Wang G, Jia W, Kang J. A motif from Lys216 to Lys222 in human BUB3 protein is a nuclear localization signal and critical for BUB3 function in mitotic checkpoint. J Biol Chem 2015; 290:11282-92. [PMID: 25814666 DOI: 10.1074/jbc.m114.598029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Indexed: 11/06/2022] Open
Abstract
Human BUB3 is a key mitotic checkpoint factor that recognizes centromeric components and recruits other mitotic checkpoint molecules to the unattached kinetochore. The key amino acid residues responsible for its localization are not yet defined. In this study, we identified a motif from Lys(216) to Lys(222) in BUB3 as its nuclear localization signal. A BUB3 mutant with deletion of this motif (Del216-222) was found to localize to both the cytoplasm and the nucleus, distinct from the exclusively nuclear distribution of wild-type BUB3. Further analysis revealed that residues Glu(213), Lys(216), Lys(217), Lys(218), Tyr(219), and Phe(221), but not Lys(222), contribute to nuclear localization. Interestingly, the nuclear localization signal was also critical for the kinetochore localization of BUB3. The deletion mutant Del216-222 and a subtle mutant with four residue changes in this region (E213Q/K216E/K217E/K218E (QE)) did not localize to the kinetochore efficiently or mediate mitotic checkpoint arrest. Protein interaction data suggested that the QE mutant was able to interact with BUB1, MAD2, and BubR1 but that its association with the centromeric components CENP-A and KNL1 was impaired. A motif from Leu(61) to Leu(65) in CENP-A was found to be involved in the association of BUB3 and CENP-A in cells; however, further assays suggested that CENP-A does not physically interact with BUB3 and does not affect BUB3 localization. Our findings help to dissect the mechanisms of BUB3 in mitotic checkpoint signaling.
Collapse
Affiliation(s)
- Songcheng Zhu
- From the Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research at School of Life Science and Technology, Tongji University, 1239 Si-ping Road, Shanghai 200092, China
| | - Ruiqi Jing
- From the Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research at School of Life Science and Technology, Tongji University, 1239 Si-ping Road, Shanghai 200092, China
| | - Yiwei Yang
- From the Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research at School of Life Science and Technology, Tongji University, 1239 Si-ping Road, Shanghai 200092, China
| | - Yitong Huang
- From the Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research at School of Life Science and Technology, Tongji University, 1239 Si-ping Road, Shanghai 200092, China
| | - Xin Wang
- From the Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research at School of Life Science and Technology, Tongji University, 1239 Si-ping Road, Shanghai 200092, China
| | - Ye Leng
- From the Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research at School of Life Science and Technology, Tongji University, 1239 Si-ping Road, Shanghai 200092, China
| | - Jiajie Xi
- From the Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research at School of Life Science and Technology, Tongji University, 1239 Si-ping Road, Shanghai 200092, China
| | - Guiying Wang
- From the Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research at School of Life Science and Technology, Tongji University, 1239 Si-ping Road, Shanghai 200092, China
| | - Wenwen Jia
- From the Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research at School of Life Science and Technology, Tongji University, 1239 Si-ping Road, Shanghai 200092, China
| | - Jiuhong Kang
- From the Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research at School of Life Science and Technology, Tongji University, 1239 Si-ping Road, Shanghai 200092, China
| |
Collapse
|
58
|
Lischetti T, Nilsson J. Regulation of mitotic progression by the spindle assembly checkpoint. Mol Cell Oncol 2015; 2:e970484. [PMID: 27308407 PMCID: PMC4905242 DOI: 10.4161/23723548.2014.970484] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 11/25/2022]
Abstract
Equal segregation of sister chromatids during mitosis requires that pairs of kinetochores establish proper attachment to microtubules emanating from opposite poles of the mitotic spindle. The spindle assembly checkpoint (SAC) protects against errors in segregation by delaying sister separation in response to improper kinetochore–microtubule interactions, and certain checkpoint proteins help to establish proper attachments. Anaphase entry is inhibited by the checkpoint through assembly of the mitotic checkpoint complex (MCC) composed of the 2 checkpoint proteins, Mad2 and BubR1, bound to Cdc20. The outer kinetochore acts as a catalyst for MCC production through the recruitment and proper positioning of checkpoint proteins and recently there has been remarkable progress in understanding how this is achieved. Here, we highlight recent advances in our understanding of kinetochore–checkpoint protein interactions and inhibition of the anaphase promoting complex by the MCC.
Collapse
Affiliation(s)
- Tiziana Lischetti
- The Novo Nordisk Foundation Center for Protein Research; Faculty of Health and Medical Sciences, University of Copenhagen ; Copenhagen, Denmark
| | - Jakob Nilsson
- The Novo Nordisk Foundation Center for Protein Research; Faculty of Health and Medical Sciences, University of Copenhagen ; Copenhagen, Denmark
| |
Collapse
|
59
|
Overlack K, Primorac I, Vleugel M, Krenn V, Maffini S, Hoffmann I, Kops GJPL, Musacchio A. A molecular basis for the differential roles of Bub1 and BubR1 in the spindle assembly checkpoint. eLife 2015; 4:e05269. [PMID: 25611342 PMCID: PMC4337726 DOI: 10.7554/elife.05269] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/21/2015] [Indexed: 01/19/2023] Open
Abstract
The spindle assembly checkpoint (SAC) monitors and promotes kinetochore–microtubule attachment during mitosis. Bub1 and BubR1, SAC components, originated from duplication of an ancestor gene. Subsequent sub-functionalization established subordination: Bub1, recruited first to kinetochores, promotes successive BubR1 recruitment. Because both Bub1 and BubR1 hetero-dimerize with Bub3, a targeting adaptor for phosphorylated kinetochores, the molecular basis for such sub-functionalization is unclear. We demonstrate that Bub1, but not BubR1, enhances binding of Bub3 to phosphorylated kinetochores. Grafting a short motif of Bub1 onto BubR1 promotes Bub1-independent kinetochore recruitment of BubR1. This gain-of-function BubR1 mutant cannot sustain a functional checkpoint. We demonstrate that kinetochore localization of BubR1 relies on direct hetero-dimerization with Bub1 at a pseudo-symmetric interface. This pseudo-symmetric interaction underpins a template–copy relationship crucial for kinetochore–microtubule attachment and SAC signaling. Our results illustrate how gene duplication and sub-functionalization shape the workings of an essential molecular network. DOI:http://dx.doi.org/10.7554/eLife.05269.001 The genetic material within our cells is arranged in structures called chromosomes. Before a cell divides it makes an accurate copy of all of its DNA. The genetic material then needs to be equally split so that both daughter cells have a complete set of chromosomes. As the cell prepares to divide, each chromosome—consisting of two identical sister chromatids—lines up on a structure known as the spindle, which is made of filaments called microtubules. Cells have a sophisticated safety mechanism known as the spindle assembly checkpoint to ensure that chromosomes have time to correctly line up on the spindle before the cell can divide. Once this checkpoint is satisfied, the microtubules pull the sister chromatids apart so that each daughter cell receives one chromatid from each pair. The microtubules attach to the chromosomes through a large protein complex known as the kinetochore that assembles on each sister chromatid. The spindle assembly checkpoint monitors the attachment of the kinetochores to the microtubules; and two proteins, called Bub1 and BubR1, play an essential role in this process. These proteins bind to another protein called Bub3 that is also part of the spindle assembly checkpoint. Although Bub1 and BubR1 are very similar, they do not appear to perform the same roles, but the precise molecular details of their differences remain unclear. In this study, Overlack, Primorac et al. studied Bub1 and BubR1 in human cells. The experiments show that Bub1 can be recruited to kinetochores in the absence of BubR1, but BubR1 will only move to kinetochores when Bub1 is present. Furthermore, BubR1 needs to bind to Bub1 directly to move to the kinetochores. Overlack, Primorac et al. also identified a region in Bub1 that binds to Bub3, and which is considerably different in BubR1. When this region of Bub1 was grafted into BubR1, the resulting protein was able to bind kinetochores even in the absence of Bub1. The genes that encode the Bub1 and BubR1 proteins originate from a single ancestor gene that was duplicated during evolution. Therefore, the findings of Overlack, Primorac et al. show how the duplication of a gene can be beneficial for cells by creating products that have different roles in cells. DOI:http://dx.doi.org/10.7554/eLife.05269.002
Collapse
Affiliation(s)
- Katharina Overlack
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Ivana Primorac
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Mathijs Vleugel
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, Netherlands
| | - Veronica Krenn
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Stefano Maffini
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Ingrid Hoffmann
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Geert J P L Kops
- Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, Netherlands
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| |
Collapse
|
60
|
Bimodal activation of BubR1 by Bub3 sustains mitotic checkpoint signaling. Proc Natl Acad Sci U S A 2014; 111:E4185-93. [PMID: 25246557 DOI: 10.1073/pnas.1416277111] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The mitotic checkpoint (also known as the spindle assembly checkpoint) prevents premature anaphase onset through generation of an inhibitor of the E3 ubiquitin ligase APC/C, whose ubiquitination of cyclin B and securin targets them for degradation. Combining in vitro reconstitution and cell-based assays, we now identify dual mechanisms through which Bub3 promotes mitotic checkpoint signaling. Bub3 enhances signaling at unattached kinetochores not only by facilitating binding of BubR1 but also by enhancing Cdc20 recruitment to kinetochores mediated by BubR1's internal Cdc20 binding site. Downstream of kinetochore-produced complexes, Bub3 promotes binding of BubR1's conserved, amino terminal Cdc20 binding domain to a site in Cdc20 that becomes exposed by initial Mad2 binding. This latter Bub3-stimulated event generates the final mitotic checkpoint complex of Bub3-BubR1-Cdc20 that selectively inhibits ubiquitination of securin and cyclin B by APC/C(Cdc20). Thus, Bub3 promotes two distinct BubR1-Cdc20 interactions, involving each of the two Cdc20 binding sites of BubR1 and acting at unattached kinetochores or cytoplasmically, respectively, to facilitate production of the mitotic checkpoint inhibitor.
Collapse
|
61
|
Sacristan C, Kops GJPL. Joined at the hip: kinetochores, microtubules, and spindle assembly checkpoint signaling. Trends Cell Biol 2014; 25:21-8. [PMID: 25220181 DOI: 10.1016/j.tcb.2014.08.006] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 01/01/2023]
Abstract
Error-free chromosome segregation relies on stable connections between kinetochores and spindle microtubules. The spindle assembly checkpoint (SAC) monitors such connections and relays their absence to the cell cycle machinery to delay cell division. The molecular network at kinetochores that is responsible for microtubule binding is integrated with the core components of the SAC signaling system. Molecular-mechanistic understanding of how the SAC is coupled to the kinetochore-microtubule interface has advanced significantly in recent years. The latest insights not only provide a striking view of the dynamics and regulation of SAC signaling events at the outer kinetochore but also create a framework for understanding how that signaling may be terminated when kinetochores and microtubules connect.
Collapse
Affiliation(s)
- Carlos Sacristan
- Molecular Cancer Research, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Geert J P L Kops
- Molecular Cancer Research, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands; Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands; Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
62
|
Herman JA, Toledo CM, Olson JM, DeLuca JG, Paddison PJ. Molecular pathways: regulation and targeting of kinetochore-microtubule attachment in cancer. Clin Cancer Res 2014; 21:233-9. [PMID: 25104085 DOI: 10.1158/1078-0432.ccr-13-0645] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Kinetochores are large protein structures assembled on centromeric DNA during mitosis that bind to microtubules of the mitotic spindle to orchestrate and power chromosome movements. Deregulation of kinetochore-microtubule (KT-MT) attachments has been implicated in driving chromosome instability and cancer evolution; however, the nature and source of KT-MT attachment defects in cancer cells remain largely unknown. Here, we highlight recent findings suggesting that oncogene-driven changes in kinetochore regulation occur in glioblastoma multiforme (GBM) and possibly other cancers exhibiting chromosome instability, giving rise to novel therapeutic opportunities. In particular, we consider the GLE2p-binding sequence domains of BubR1 and the newly discovered BuGZ, two kinetochore-associated proteins, as candidate therapeutic targets for GBM.
Collapse
Affiliation(s)
- Jacob A Herman
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado
| | - Chad M Toledo
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. Molecular and Cellular Biology Program, University of Washington, Seattle, Washington
| | - James M Olson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jennifer G DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado.
| | - Patrick J Paddison
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. Molecular and Cellular Biology Program, University of Washington, Seattle, Washington.
| |
Collapse
|
63
|
Silva PMA, Reis RM, Bolanos-Garcia VM, Florindo C, Tavares ÁA, Bousbaa H. Dynein-dependent transport of spindle assembly checkpoint proteins off kinetochores toward spindle poles. FEBS Lett 2014; 588:3265-73. [PMID: 25064841 DOI: 10.1016/j.febslet.2014.07.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/24/2014] [Accepted: 07/15/2014] [Indexed: 12/31/2022]
Abstract
A predominant mechanism of spindle assembly checkpoint (SAC) silencing is dynein-mediated transport of certain kinetochore proteins along microtubules. There are still conflicting data as to which SAC proteins are dynein cargoes. Using two ATP reduction assays, we found that the core SAC proteins Mad1, Mad2, Bub1, BubR1, and Bub3 redistributed from attached kinetochores to spindle poles, in a dynein-dependent manner. This redistribution still occurred in metaphase-arrested cells, at a time when the SAC should be satisfied and silenced. Unexpectedly, we found that a pool of Hec1 and Mis12 also relocalizes to spindle poles, suggesting KMN components as additional dynein cargoes. The potential significance of these results for SAC silencing is discussed.
Collapse
Affiliation(s)
- Patrícia M A Silva
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal; Centre for Molecular and Structural Biomedicine,CBME/IBB, University of Algarve, Faro 8005-139, Portugal
| | - Rita M Reis
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Victor M Bolanos-Garcia
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Claudia Florindo
- Centre for Molecular and Structural Biomedicine,CBME/IBB, University of Algarve, Faro 8005-139, Portugal; Departamento Ciências Biomédicas e Medicina, University of Algarve, Faro 8005-139, Portugal
| | - Álvaro A Tavares
- Centre for Molecular and Structural Biomedicine,CBME/IBB, University of Algarve, Faro 8005-139, Portugal; Departamento Ciências Biomédicas e Medicina, University of Algarve, Faro 8005-139, Portugal
| | - Hassan Bousbaa
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal; Centro de Química Medicinal da Universidade do Porto (CEQUIMED-UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.
| |
Collapse
|
64
|
Abstract
In this issue of Developmental Cell, two complementary studies by Jiang et al. (2014) and Toledo et al. (2014) identify BuGZ as an interacting protein of the kinetochore adaptor Bub3 and show that it promotes the stabilization and kinetochore loading of Bub3, chromosome alignment, and mitotic progression.
Collapse
Affiliation(s)
- Zhejian Ji
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Hongtao Yu
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA.
| |
Collapse
|