51
|
Thomas LL, Joiner AMN, Fromme JC. The TRAPPIII complex activates the GTPase Ypt1 (Rab1) in the secretory pathway. J Cell Biol 2017; 217:283-298. [PMID: 29109089 PMCID: PMC5748984 DOI: 10.1083/jcb.201705214] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/01/2017] [Accepted: 10/03/2017] [Indexed: 12/30/2022] Open
Abstract
The TRAPP complexes are nucleotide exchange factors that activate Rab GTPases, and four different versions of TRAPP have been reported. Thomas et al. show that only two versions of TRAPP are detectable in normal cells and demonstrate that the TRAPPIII complex regulates Golgi trafficking in addition to its established role in autophagy. Rab GTPases serve as molecular switches to regulate eukaryotic membrane trafficking pathways. The transport protein particle (TRAPP) complexes activate Rab GTPases by catalyzing GDP/GTP nucleotide exchange. In mammalian cells, there are two distinct TRAPP complexes, yet in budding yeast, four distinct TRAPP complexes have been reported. The apparent differences between the compositions of yeast and mammalian TRAPP complexes have prevented a clear understanding of the specific functions of TRAPP complexes in all cell types. In this study, we demonstrate that akin to mammalian cells, wild-type yeast possess only two TRAPP complexes, TRAPPII and TRAPPIII. We find that TRAPPIII plays a major role in regulating Rab activation and trafficking at the Golgi in addition to its established role in autophagy. These disparate pathways share a common regulatory GTPase Ypt1 (Rab1) that is activated by TRAPPIII. Our findings lead to a simple yet comprehensive model for TRAPPIII function in both normal and starved eukaryotic cells.
Collapse
Affiliation(s)
- Laura L Thomas
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Aaron M N Joiner
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - J Christopher Fromme
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| |
Collapse
|
52
|
Abstract
The Aichi RNA virus remodels host membranes by conscripting two host proteins, PI4KIIIβ (to generate PI4P in the remodeled vesicle) and ACBD3 (that tightly binds PI4KIIIβ), and localizing them on target membranes via Aichi protein 3A. In this issue of Structure, McPhail et al. (2017) reveal structural glimpses of the interfaces involved in this protein threesome using HDX-MS.
Collapse
Affiliation(s)
- Mary F Roberts
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
53
|
Xu P, Hankins HM, MacDonald C, Erlinger SJ, Frazier MN, Diab NS, Piper RC, Jackson LP, MacGurn JA, Graham TR. COPI mediates recycling of an exocytic SNARE by recognition of a ubiquitin sorting signal. eLife 2017; 6:28342. [PMID: 29058666 PMCID: PMC5663479 DOI: 10.7554/elife.28342] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/22/2017] [Indexed: 11/17/2022] Open
Abstract
The COPI coat forms transport vesicles from the Golgi complex and plays a poorly defined role in endocytic trafficking. Here we show that COPI binds K63-linked polyubiquitin and this interaction is crucial for trafficking of a ubiquitinated yeast SNARE (Snc1). Snc1 is a v-SNARE that drives fusion of exocytic vesicles with the plasma membrane, and then recycles through the endocytic pathway to the Golgi for reuse in exocytosis. Removal of ubiquitin from Snc1, or deletion of a β'-COP subunit propeller domain that binds K63-linked polyubiquitin, disrupts Snc1 recycling causing aberrant accumulation in internal compartments. Moreover, replacement of the β'-COP propeller domain with unrelated ubiquitin-binding domains restores Snc1 recycling. These results indicate that ubiquitination, a modification well known to target membrane proteins to the lysosome or vacuole for degradation, can also function as recycling signal to sort a SNARE into COPI vesicles in a non-degradative pathway.
Collapse
Affiliation(s)
- Peng Xu
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Hannah M Hankins
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Chris MacDonald
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Samuel J Erlinger
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Meredith N Frazier
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Nicholas S Diab
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Robert C Piper
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Lauren P Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Jason A MacGurn
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, United States
| | - Todd R Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| |
Collapse
|
54
|
Wang J, Fresquez T, Kandachar V, Deretic D. The Arf GEF GBF1 and Arf4 synergize with the sensory receptor cargo, rhodopsin, to regulate ciliary membrane trafficking. J Cell Sci 2017; 130:3975-3987. [PMID: 29025970 DOI: 10.1242/jcs.205492] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 10/10/2017] [Indexed: 01/05/2023] Open
Abstract
The small GTPase Arf4 and the Arf GTPase-activating protein (GAP) ASAP1 cooperatively sequester sensory receptor cargo into transport carriers targeted to primary cilia, but the input that drives Arf4 activation in this process remains unknown. Here, we show, by using frog retinas and recombinant human proteins, that during the carrier biogenesis from the photoreceptor Golgi/trans-Golgi network (TGN) a functional complex is formed between Arf4, the Arf guanine nucleotide exchange factor (GEF) GBF1 and the light-sensing receptor, rhodopsin. Rhodopsin and Arf4 bind the regulatory N-terminal dimerization and cyclophillin-binding (DCB)-homology upstream of Sec7 (HUS) domain of GBF1. The complex is sensitive to Golgicide A (GCA), a selective inhibitor of GBF1 that accordingly blocks rhodopsin delivery to the cilia, without disrupting the photoreceptor Golgi. The emergence of newly synthesized rhodopsin in the endomembrane system is essential for GBF1-Arf4 complex formation in vivo Notably, GBF1 interacts with the Arf GAP ASAP1 in a GCA-resistant manner. Our findings indicate that converging signals on GBF1 from the influx of cargo into the Golgi/TGN and the feedback from Arf4, combined with input from ASAP1, control Arf4 activation during sensory membrane trafficking to primary cilia.
Collapse
Affiliation(s)
- Jing Wang
- Department of Surgery, Division of Ophthalmology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Theresa Fresquez
- Department of Surgery, Division of Ophthalmology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Vasundhara Kandachar
- Department of Surgery, Division of Ophthalmology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Dusanka Deretic
- Department of Surgery, Division of Ophthalmology, University of New Mexico, Albuquerque, New Mexico 87131, USA .,Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
55
|
Rewiring a Rab regulatory network reveals a possible inhibitory role for the vesicle tether, Uso1. Proc Natl Acad Sci U S A 2017; 114:E8637-E8645. [PMID: 28973856 DOI: 10.1073/pnas.1708394114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ypt1 and Sec4 are essential Rab GTPases that control the early and late stages of the yeast secretory pathway, respectively. A chimera consisting of Ypt1 with the switch I domain of Sec4, Ypt1-SW1Sec4, is efficiently activated in vitro by the Sec4 exchange factor, Sec2. This should lead to its ectopic activation in vivo and thereby disrupt membrane traffic. Nonetheless early studies found that yeast expressing Ypt1-SW1Sec4 as the sole copy of YPT1 exhibit no growth defect. To resolve this conundrum, we have analyzed yeast expressing various levels of Ypt1-SW1Sec4 We show that even normal expression of Ypt1-SW1Sec4 leads to kinetic transport defects at a late stage of the pathway, with secretory vesicles accumulating near exocytic sites. Higher levels are toxic. Toxicity is suppressed by truncation of Uso1, a vesicle tether required for endoplasmic reticulum-Golgi traffic. The globular head of Uso1 binds to Ypt1 and its coiled-coil tail binds to the Golgi-associated SNARE, Sed5. We propose that when Uso1 is inappropriately recruited to secretory vesicles by Ypt1-SW1Sec4, the extended coiled-coil tail blocks docking to the plasma membrane. This putative inhibitory function could serve to increase the fidelity of vesicle docking.
Collapse
|
56
|
Yeast dynamin associates with the GARP tethering complex for endosome-to-Golgi traffic. Eur J Cell Biol 2017; 96:612-621. [DOI: 10.1016/j.ejcb.2017.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/24/2017] [Accepted: 04/18/2017] [Indexed: 11/21/2022] Open
|
57
|
Dalton LE, Bean BDM, Davey M, Conibear E. Quantitative high-content imaging identifies novel regulators of Neo1 trafficking at endosomes. Mol Biol Cell 2017; 28:1539-1550. [PMID: 28404745 PMCID: PMC5449152 DOI: 10.1091/mbc.e16-11-0772] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022] Open
Abstract
P4-ATPases are a family of putative phospholipid flippases that regulate lipid membrane asymmetry, which is important for vesicle formation. Two yeast flippases, Drs2 and Neo1, have nonredundant functions in the recycling of the synaptobrevin-like v-SNARE Snc1 from early endosomes. Drs2 activity is needed to form vesicles and regulate its own trafficking, suggesting that flippase activity and localization are linked. However, the role of Neo1 in endosomal recycling is not well characterized. To identify novel regulators of Neo1 trafficking and activity at endosomes, we first identified mutants with impaired recycling of a Snc1-based reporter and subsequently used high-content microscopy to classify these mutants based on the localization of Neo1 or its binding partners, Mon2 and Dop1. This analysis identified a role for Arl1 in stabilizing the Mon2/Dop1 complex and uncovered a new function for Vps13 in early endosome recycling and Neo1 localization. We further showed that the cargo-selective sorting nexin Snx3 is required for Neo1 trafficking and identified an Snx3 sorting motif in the Neo1 N-terminus. Of importance, the Snx3-dependent sorting of Neo1 was required for the correct sorting of another Snx3 cargo protein, suggesting that the incorporation of Neo1 into recycling tubules may influence their formation.
Collapse
Affiliation(s)
- Lauren E Dalton
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Björn D M Bean
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Michael Davey
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Elizabeth Conibear
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
58
|
Abstract
ADP-ribosylation factors (Arfs) and ADP-ribosylation factor-like proteins (Arls) are highly conserved small GTPases that function as main regulators of vesicular trafficking and cytoskeletal reorganization. Arl1, the first identified member of the large Arl family, is an important regulator of Golgi complex structure and function in organisms ranging from yeast to mammals. Together with its effectors, Arl1 has been shown to be involved in several cellular processes, including endosomal trans-Golgi network and secretory trafficking, lipid droplet and salivary granule formation, innate immunity and neuronal development, stress tolerance, as well as the response of the unfolded protein. In this Commentary, we provide a comprehensive summary of the Arl1-dependent cellular functions and a detailed characterization of several Arl1 effectors. We propose that involvement of Arl1 in these diverse cellular functions reflects the fact that Arl1 is activated at several late-Golgi sites, corresponding to specific molecular complexes that respond to and integrate multiple signals. We also provide insight into how the GTP-GDP cycle of Arl1 is regulated, and highlight a newly discovered mechanism that controls the sophisticated regulation of Arl1 activity at the Golgi complex.
Collapse
Affiliation(s)
- Chia-Jung Yu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Linkou, Tao-Yuan 33302, Taiwan.,Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Tao-Yuan 33305, Taiwan
| | - Fang-Jen S Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan .,Department of Medical Research, National Taiwan University Hospital, Taipei 10002, Taiwan
| |
Collapse
|
59
|
Daboussi L, Costaguta G, Ghukasyan R, Payne GS. Conserved role for Gga proteins in phosphatidylinositol 4-kinase localization to the trans-Golgi network. Proc Natl Acad Sci U S A 2017; 114:3433-3438. [PMID: 28289207 PMCID: PMC5380026 DOI: 10.1073/pnas.1615163114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phosphoinositides serve as key membrane determinants for assembly of clathrin coat proteins that drive formation of clathrin-coated vesicles. At the trans-Golgi network (TGN), phosphatidylinositol 4-phosphate (PtdIns4P) plays important roles in recruitment of two major clathrin adaptors, Gga (Golgi-localized, gamma-adaptin ear homology, Arf-binding) proteins and the AP-1 (assembly protein-1) complex. The molecular mechanisms that mediate localization of phosphatidylinositol kinases responsible for synthesis of PtdIns4P at the TGN are not well characterized. We identify two motifs in the yeast phosphatidylinositol 4-kinase, Pik1, which are required for binding to the VHS domain of Gga2. Mutations in these motifs that inhibit Gga2-VHS binding resulted in reduced Pik1 localization and delayed accumulation of PtdIns4P and recruitment of AP-1 to the TGN. The Pik1 homolog in mammals, PI4KIIIβ, interacted preferentially with the VHS domain of GGA2 compared with VHS domains of GGA1 and GGA3. Depletion of GGA2, but not GGA1 or GGA3, specifically affected PI4KIIIβ localization. These results reveal a conserved role for Gga proteins in regulating phosphatidylinositol 4-kinase function at the TGN.
Collapse
Affiliation(s)
- Lydia Daboussi
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095
| | - Giancarlo Costaguta
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095
| | - Razmik Ghukasyan
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095
| | - Gregory S Payne
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095
| |
Collapse
|
60
|
Labbaoui H, Bogliolo S, Ghugtyal V, Solis NV, Filler SG, Arkowitz RA, Bassilana M. Role of Arf GTPases in fungal morphogenesis and virulence. PLoS Pathog 2017; 13:e1006205. [PMID: 28192532 PMCID: PMC5325608 DOI: 10.1371/journal.ppat.1006205] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/24/2017] [Accepted: 01/29/2017] [Indexed: 12/30/2022] Open
Abstract
Virulence of the human fungal pathogen Candida albicans depends on the switch from budding to filamentous growth, which requires sustained membrane traffic and polarized growth. In many organisms, small GTPases of the Arf (ADP-ribosylation factor) family regulate membrane/protein trafficking, yet little is known about their role in fungal filamentous growth. To investigate these GTPases in C. albicans, we generated loss of function mutants in all 3 Arf proteins, Arf1-Arf3, and 2 Arf-like proteins, Arl1 and Arl3. Our results indicate that of these proteins, Arf2 is required for viability and sensitivity to antifungal drugs. Repressible ARF2 expression results in defects in filamentous growth, cell wall integrity and virulence, likely due to alteration of the Golgi. Arl1 is also required for invasive filamentous growth and, although arl1/arl1 cells can initiate hyphal growth, hyphae are substantially shorter than that of the wild-type, due to the inability of this mutant to maintain hyphal growth at a single site. We show that this defect does not result from an alteration of phospholipid distribution and is unlikely to result from the sole Golgin Imh1 mislocalization, as Imh1 is not required for invasive filamentous growth. Rather, our results suggest that the arl1/arl1 hyphal growth defect results from increased secretion in this mutant. Strikingly, the arl1/arl1 mutant is drastically reduced in virulence during oropharyngeal candidiasis. Together, our results highlight the importance of Arl1 and Arf2 as key regulators of hyphal growth and virulence in C. albicans and identify a unique function of Arl1 in secretion.
Collapse
Affiliation(s)
- Hayet Labbaoui
- Université Côte d’Azur, CNRS, INSERM, iBV, Parc Valrose, Nice, France
| | | | - Vikram Ghugtyal
- Université Côte d’Azur, CNRS, INSERM, iBV, Parc Valrose, Nice, France
| | - Norma V. Solis
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, United States of America
| | - Scott G. Filler
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, United States of America
| | | | - Martine Bassilana
- Université Côte d’Azur, CNRS, INSERM, iBV, Parc Valrose, Nice, France
| |
Collapse
|
61
|
Pantazopoulou A. The Golgi apparatus: insights from filamentous fungi. Mycologia 2017; 108:603-22. [DOI: 10.3852/15-309] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/01/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Areti Pantazopoulou
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| |
Collapse
|
62
|
McPhail JA, Ottosen EH, Jenkins ML, Burke JE. The Molecular Basis of Aichi Virus 3A Protein Activation of Phosphatidylinositol 4 Kinase IIIβ, PI4KB, through ACBD3. Structure 2016; 25:121-131. [PMID: 27989622 DOI: 10.1016/j.str.2016.11.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/19/2016] [Accepted: 11/18/2016] [Indexed: 01/12/2023]
Abstract
Phosphatidylinositol 4-kinase III beta (PI4KIIIβ) is an essential enzyme in mediating membrane transport, and plays key roles in facilitating viral infection. Many pathogenic positive-sense single-stranded RNA viruses activate PI4KIIIβ to generate phosphatidylinositol 4-phosphate (PI4P)-enriched organelles for viral replication. The molecular basis for PI4KIIIβ activation during viral infection has remained largely unclear. We describe the biochemical reconstitution and characterization of the complex of PI4KIIIβ with the Golgi protein Acyl-coenzyme A binding domain containing protein 3 (ACBD3) and Aichi virus 3A protein on membranes. We find that 3A directly activates PI4KIIIβ, and this activation is sensitized by ACBD3. The interfaces between PI4KIIIβ-ACBD3 and ACBD3-3A were mapped with hydrogen-deuterium exchange mass spectrometry (HDX-MS). Determination of the crystal structure of the ACBD3 GOLD domain revealed a unique N terminus that mediates the interaction with 3A. Rationally designed complex-disrupting mutations in both ACBD3 and PI4KIIIβ completely abrogated the sensitization of 3A activation by ACBD3.
Collapse
Affiliation(s)
- Jacob A McPhail
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Erik H Ottosen
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada.
| |
Collapse
|
63
|
Thomas LL, Fromme JC. GTPase cross talk regulates TRAPPII activation of Rab11 homologues during vesicle biogenesis. J Cell Biol 2016; 215:499-513. [PMID: 27872253 PMCID: PMC5119942 DOI: 10.1083/jcb.201608123] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/07/2016] [Accepted: 10/14/2016] [Indexed: 11/22/2022] Open
Abstract
Rab GTPases control vesicle formation and transport, but which proteins are important for their regulation is incompletely understood. Thomas and Fromme provide definitive evidence that TRAPPII is a GEF for the yeast Rab11 homologues Ypt31/32 and implicate the GTPase Arf1 in TRAPPII recruitment, suggesting that a bidirectional cross talk mechanism drives vesicle biogenesis. Rab guanosine triphosphatases (GTPases) control cellular trafficking pathways by regulating vesicle formation, transport, and tethering. Rab11 and its paralogs regulate multiple secretory and endocytic recycling pathways, yet the guanine nucleotide exchange factor (GEF) that activates Rab11 in most eukaryotic cells is unresolved. The large multisubunit transport protein particle (TRAPP) II complex has been proposed to act as a GEF for Rab11 based on genetic evidence, but conflicting biochemical experiments have created uncertainty regarding Rab11 activation. Using physiological Rab-GEF reconstitution reactions, we now provide definitive evidence that TRAPPII is a bona fide GEF for the yeast Rab11 homologues Ypt31/32. We also uncover a direct role for Arf1, a distinct GTPase, in recruiting TRAPPII to anionic membranes. Given the known role of Ypt31/32 in stimulating activation of Arf1, a bidirectional cross talk mechanism appears to drive biogenesis of secretory and endocytic recycling vesicles. By coordinating simultaneous activation of two essential GTPase pathways, this mechanism ensures recruitment of the complete set of effectors needed for vesicle formation, transport, and tethering.
Collapse
Affiliation(s)
- Laura L Thomas
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - J Christopher Fromme
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
64
|
Kim JJ, Lipatova Z, Majumdar U, Segev N. Regulation of Golgi Cisternal Progression by Ypt/Rab GTPases. Dev Cell 2016; 36:440-52. [PMID: 26906739 DOI: 10.1016/j.devcel.2016.01.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/29/2015] [Accepted: 01/22/2016] [Indexed: 10/22/2022]
Abstract
Current models entail that transport through the Golgi-the main sorting compartment of the cell-occurs via cisternal progression/maturation and that Ypt/Rab GTPases regulate this process. However, there is very limited evidence that cisternal progression is regulated, and no evidence for involvement of Ypt/Rab GTPases in such a regulation. Moreover, controversy about the placement of two of the founding members of the Ypt/Rab family, Ypt1 and Ypt31, to specific Golgi cisternae interferes with addressing this question in yeast, where cisternal progression has been extensively studied. Here, we establish the localization of Ypt1 and Ypt31 to opposite faces of the Golgi: early and late, respectively. Moreover, we show that they partially overlap on a transitional compartment. Finally, we determine that changes in Ypt1 and Ypt31 activity affect Golgi cisternal progression, early-to-transitional and transitional-to-late, respectively. These results show that Ypt/Rab GTPases regulate two separate steps of Golgi cisternal progression.
Collapse
Affiliation(s)
- Jane J Kim
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Zhanna Lipatova
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Molecular Biology Research Building, 900 South Ashland Avenue, Chicago, IL 60607, USA
| | - Uddalak Majumdar
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Molecular Biology Research Building, 900 South Ashland Avenue, Chicago, IL 60607, USA
| | - Nava Segev
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Molecular Biology Research Building, 900 South Ashland Avenue, Chicago, IL 60607, USA.
| |
Collapse
|
65
|
Nawrotek A, Zeghouf M, Cherfils J. Allosteric regulation of Arf GTPases and their GEFs at the membrane interface. Small GTPases 2016; 7:283-296. [PMID: 27449855 DOI: 10.1080/21541248.2016.1215778] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Arf GTPases assemble protein complexes on membranes to carry out major functions in cellular traffic. An essential step is their activation by guanine nucleotide exchange factors (GEFs), whose Sec7 domain stimulates GDP/GTP exchange. ArfGEFs form 2 major families: ArfGEFs with DCB, HUS and HDS domains (GBF1 and BIG1/BIG2 in humans), which act at the Golgi; and ArfGEFs with a C-terminal PH domain (cytohesin, EFA6 and BRAG), which function at the plasma membrane and endosomes. In addition, pathogenic bacteria encode an ArfGEF with a unique membrane-binding domain. Here we review the allosteric regulation of Arf GTPases and their GEFs at the membrane interface. Membranes contribute several regulatory layers: at the GTPase level, where activation by GTP is coupled to membrane recruitment by a built-in structural device; at the Sec7 domain, which manipulates this device to ensure that Arf-GTP is attached to membranes; and at the level of non-catalytic ArfGEF domains, which form direct or GTPase-mediated interactions with membranes that enable a spectacular diversity of regulatory regimes. Notably, we show here that membranes increase the efficiency of a large ArfGEF (human BIG1) by 32-fold by interacting directly with its N-terminal DCB and HUS domains. The diversity of allosteric regulatory regimes suggests that ArfGEFs can function in cascades and circuits to modulate the shape, amplitude and duration of Arf signals in cells. Because Arf-like GTPases feature autoinhibitory elements similar to those of Arf GTPases, we propose that their activation also requires allosteric interactions of these elements with membranes or other proteins.
Collapse
Affiliation(s)
- Agata Nawrotek
- a Laboratoire de Biologie et Pharmacologie Appliquée, CNRS, Ecole Normale Supérieure de Cachan and Université Paris-Saclay , Cachan , France
| | - Mahel Zeghouf
- a Laboratoire de Biologie et Pharmacologie Appliquée, CNRS, Ecole Normale Supérieure de Cachan and Université Paris-Saclay , Cachan , France
| | - Jacqueline Cherfils
- a Laboratoire de Biologie et Pharmacologie Appliquée, CNRS, Ecole Normale Supérieure de Cachan and Université Paris-Saclay , Cachan , France
| |
Collapse
|
66
|
Abstract
ASBTRACT Rab GTPases serve as master regulators of membrane traffic, each typically controlling several different aspects of a specific stage of membrane traffic by recruiting diverse effector proteins such as cytoskeletal motors, vesicle tethering proteins and regulators of SNARE complex assembly. Rabs, in turn, are regulated by specific guanine nucleotide exchange factors (GEFs), which catalyze the displacement of GDP and binding of GTP, as well as GTPase activating proteins (GAPs) that stimulate the slow intrinsic rate of GTP hydrolysis. Here I review our studies on the final stages of the yeast secretory pathway that have led us to propose that adjacent Rabs on a pathway are networked to one another through their regulators; specifically we have shown that the Rab, Ypt32, in its GTP-bound form recruits both Sec2, the GEF that activates the downstream Rab, Sec4, as well as Gyp1, the GAP that inactivates the upstream Rab, Ypt1. The postulated effect of these counter-current cascades is a programmed series of abrupt Rab transitions that lead to critical changes in the functional identity of the membrane as it flows along the exocytic pathway. Phosphoinositides also play key roles in the temporal and spatial regulation of membrane traffic. The Golgi pool of phosphatidylinositol 4-phosphate (PI(4)P) works in concert with Ypt32 to initially recruit Sec2, yet a subsequent drop in PI(4)P levels directs a regulatory switch in Sec2 function in which it binds to the Sec4 effector Sec15 generating a positive feedback loop. PI(4)P distribution together with Sec2 phosphorylation by a casein kinase determines when and where each regulatory circuit is used.
Collapse
Affiliation(s)
- Peter Novick
- a Department of Cellular and Molecular Medicine , University of California San Diego , La Jolla , CA , USA
| |
Collapse
|
67
|
Bhosle VK, Rivera JC, Zhou TE, Omri S, Sanchez M, Hamel D, Zhu T, Rouget R, Rabea AA, Hou X, Lahaie I, Ribeiro-da-Silva A, Chemtob S. Nuclear localization of platelet-activating factor receptor controls retinal neovascularization. Cell Discov 2016; 2:16017. [PMID: 27462464 PMCID: PMC4941644 DOI: 10.1038/celldisc.2016.17] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/11/2016] [Indexed: 02/08/2023] Open
Abstract
Platelet-activating factor (PAF) is a pleiotropic phospholipid with proinflammatory, procoagulant and angiogenic actions on the vasculature. We and others have reported the presence of PAF receptor (Ptafr) at intracellular sites such as the nucleus. However, mechanisms of localization and physiologic functions of intracellular Ptafr remain poorly understood. We hereby identify the importance of C-terminal motif of the receptor and uncover novel roles of Rab11a GTPase and importin-5 in nuclear translocation of Ptafr in primary human retinal microvascular endothelial cells. Nuclear localization of Ptafr is independent of exogenous PAF stimulation as well as intracellular PAF biosynthesis. Moreover, nuclear Ptafr is responsible for the upregulation of unique set of growth factors, including vascular endothelial growth factor, in vitro and ex vivo. We further corroborate the intracrine PAF signaling, resulting in angiogenesis in vivo, using Ptafr antagonists with distinct plasma membrane permeability. Collectively, our findings show that nuclear Ptafr translocates in an agonist-independent manner, and distinctive functions of Ptafr based on its cellular localization point to another dimension needed for pharmacologic selectivity of drugs.
Collapse
Affiliation(s)
- Vikrant K Bhosle
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada; CHU Sainte Justine Hospital Research Centre, University of Montréal, Montréal, QC, Canada; Department of Ophthalmology, Research Centre of Hôpital Maisonneuve-Rosemont, University of Montréal, Montréal, QC, Canada
| | - José Carlos Rivera
- CHU Sainte Justine Hospital Research Centre, University of Montréal, Montréal, QC, Canada; Department of Ophthalmology, Research Centre of Hôpital Maisonneuve-Rosemont, University of Montréal, Montréal, QC, Canada
| | - Tianwei Ellen Zhou
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada; CHU Sainte Justine Hospital Research Centre, University of Montréal, Montréal, QC, Canada; Department of Ophthalmology, Research Centre of Hôpital Maisonneuve-Rosemont, University of Montréal, Montréal, QC, Canada; Department of Medicine, McGill University Health Center, Montreal, QC, Canada
| | - Samy Omri
- CHU Sainte Justine Hospital Research Centre, University of Montréal, Montréal, QC, Canada; Department of Ophthalmology, Research Centre of Hôpital Maisonneuve-Rosemont, University of Montréal, Montréal, QC, Canada
| | - Melanie Sanchez
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada; CHU Sainte Justine Hospital Research Centre, University of Montréal, Montréal, QC, Canada; Department of Ophthalmology, Research Centre of Hôpital Maisonneuve-Rosemont, University of Montréal, Montréal, QC, Canada
| | - David Hamel
- CHU Sainte Justine Hospital Research Centre, University of Montréal, Montréal, QC, Canada; Department of Pharmacology, University of Montréal, Montréal, QC, Canada
| | - Tang Zhu
- CHU Sainte Justine Hospital Research Centre, University of Montréal , Montréal, QC, Canada
| | - Raphael Rouget
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada; CHU Sainte Justine Hospital Research Centre, University of Montréal, Montréal, QC, Canada
| | - Areej Al Rabea
- Experimental Surgery, Montreal General Hospital, McGill University , Montréal, QC, Canada
| | - Xin Hou
- CHU Sainte Justine Hospital Research Centre, University of Montréal , Montréal, QC, Canada
| | - Isabelle Lahaie
- CHU Sainte Justine Hospital Research Centre, University of Montréal, Montréal, QC, Canada; Department of Ophthalmology, Research Centre of Hôpital Maisonneuve-Rosemont, University of Montréal, Montréal, QC, Canada
| | - Alfredo Ribeiro-da-Silva
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Sylvain Chemtob
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada; CHU Sainte Justine Hospital Research Centre, University of Montréal, Montréal, QC, Canada; Department of Ophthalmology, Research Centre of Hôpital Maisonneuve-Rosemont, University of Montréal, Montréal, QC, Canada; Department of Pharmacology, University of Montréal, Montréal, QC, Canada; Departments of Pediatrics and Ophthalmology, Faculty of Medicine, University of Montréal, Montréal, QC, Canada
| |
Collapse
|
68
|
Galindo A, Soler N, McLaughlin SH, Yu M, Williams RL, Munro S. Structural Insights into Arl1-Mediated Targeting of the Arf-GEF BIG1 to the trans-Golgi. Cell Rep 2016; 16:839-50. [PMID: 27373159 PMCID: PMC4956616 DOI: 10.1016/j.celrep.2016.06.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 05/09/2016] [Accepted: 06/02/2016] [Indexed: 11/28/2022] Open
Abstract
The GTPase Arf1 is the major regulator of vesicle traffic at both the cis- and trans-Golgi. Arf1 is activated at the cis-Golgi by the guanine nucleotide exchange factor (GEF) GBF1 and at the trans-Golgi by the related GEF BIG1 or its paralog, BIG2. The trans-Golgi-specific targeting of BIG1 and BIG2 depends on the Arf-like GTPase Arl1. We find that Arl1 binds to the dimerization and cyclophilin binding (DCB) domain in BIG1 and report a crystal structure of human Arl1 bound to this domain. Residues in the DCB domain that bind Arl1 are required for BIG1 to locate to the Golgi in vivo. DCB domain-binding residues in Arl1 have a distinct conformation from those in known Arl1-effector complexes, and this plasticity allows Arl1 to interact with different effectors of unrelated structure. The findings provide structural insight into how Arf1 GEFs, and hence active Arf1, achieve their correct subcellular distribution.
Collapse
Affiliation(s)
- Antonio Galindo
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Nicolas Soler
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Stephen H McLaughlin
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Minmin Yu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Roger L Williams
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Sean Munro
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
69
|
Parmar HB, Duncan R. A novel tribasic Golgi export signal directs cargo protein interaction with activated Rab11 and AP-1-dependent Golgi-plasma membrane trafficking. Mol Biol Cell 2016; 27:1320-31. [PMID: 26941330 PMCID: PMC4831885 DOI: 10.1091/mbc.e15-12-0845] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/23/2016] [Indexed: 12/30/2022] Open
Abstract
A novel sorting motif present in the reovirus p14 fusion–associated small transmembrane protein directs interaction with GTP-Rab11 at the TGN and sorting into AP-1–coated vesicles for trafficking to the plasma membrane. This is the first example of cargo protein interaction with activated Rab11 mediating anterograde trafficking from the TGN. The reovirus fusion–associated small transmembrane (FAST) proteins comprise a unique family of viral membrane fusion proteins dedicated to inducing cell–cell fusion. We recently reported that a polybasic motif (PBM) in the cytosolic tail of reptilian reovirus p14 FAST protein functions as a novel tribasic Golgi export signal. Using coimmunoprecipitation and fluorescence resonance energy transfer (FRET) assays, we now show the PBM directs interaction of p14 with GTP-Rab11. Overexpression of dominant-negative Rab11 and RNA interference knockdown of endogenous Rab11 inhibited p14 plasma membrane trafficking and resulted in p14 accumulation in the Golgi complex. This is the first example of Golgi export to the plasma membrane that is dependent on the interaction of membrane protein cargo with activated Rab11. RNA interference and immunofluorescence microscopy further revealed that p14 Golgi export is dependent on AP-1 (but not AP-3 or AP-4) and that Rab11 and AP-1 both colocalize with p14 at the TGN. Together these results imply the PBM mediates interactions of p14 with activated Rab11 at the TGN, resulting in p14 sorting into AP1-coated vesicles for anterograde TGN–plasma membrane transport.
Collapse
Affiliation(s)
- Hirendrasinh B Parmar
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Roy Duncan
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada Department of Pediatrics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
70
|
Richardson BC, Halaby SL, Gustafson MA, Fromme JC. The Sec7 N-terminal regulatory domains facilitate membrane-proximal activation of the Arf1 GTPase. eLife 2016; 5. [PMID: 26765562 PMCID: PMC4764562 DOI: 10.7554/elife.12411] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/13/2016] [Indexed: 11/13/2022] Open
Abstract
The Golgi complex is the central sorting compartment of eukaryotic cells. Arf guanine nucleotide exchange factors (Arf-GEFs) regulate virtually all traffic through the Golgi by activating Arf GTPase trafficking pathways. The Golgi Arf-GEFs contain multiple autoregulatory domains, but the precise mechanisms underlying their function remain largely undefined. We report a crystal structure revealing that the N-terminal DCB and HUS regulatory domains of the Arf-GEF Sec7 form a single structural unit. We demonstrate that the established role of the N-terminal region in dimerization is not conserved; instead, a C-terminal autoinhibitory domain is responsible for dimerization of Sec7. We find that the DCB/HUS domain amplifies the ability of Sec7 to activate Arf1 on the membrane surface by facilitating membrane insertion of the Arf1 amphipathic helix. This enhancing function of the Sec7 N-terminal domains is consistent with the high rate of Arf1-dependent trafficking to the plasma membrane necessary for maximal cell growth.
Collapse
Affiliation(s)
- Brian C Richardson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States.,Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
| | - Steve L Halaby
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States.,Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
| | - Margaret A Gustafson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States.,Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
| | - J Christopher Fromme
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States.,Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
| |
Collapse
|
71
|
Papanikou E, Day KJ, Austin J, Glick BS. COPI selectively drives maturation of the early Golgi. eLife 2015; 4. [PMID: 26709839 PMCID: PMC4758959 DOI: 10.7554/elife.13232] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/27/2015] [Indexed: 12/12/2022] Open
Abstract
COPI coated vesicles carry material between Golgi compartments, but the role of COPI in the secretory pathway has been ambiguous. Previous studies of thermosensitive yeast COPI mutants yielded the surprising conclusion that COPI was dispensable both for the secretion of certain proteins and for Golgi cisternal maturation. To revisit these issues, we optimized the anchor-away method, which allows peripheral membrane proteins such as COPI to be sequestered rapidly by adding rapamycin. Video fluorescence microscopy revealed that COPI inactivation causes an early Golgi protein to remain in place while late Golgi proteins undergo cycles of arrival and departure. These dynamics generate partially functional hybrid Golgi structures that contain both early and late Golgi proteins, explaining how secretion can persist when COPI has been inactivated. Our findings suggest that cisternal maturation involves a COPI-dependent pathway that recycles early Golgi proteins, followed by multiple COPI-independent pathways that recycle late Golgi proteins. DOI:http://dx.doi.org/10.7554/eLife.13232.001 Proteins play many important roles for cells, and these roles often require the proteins to be in particular locations in or around the cells. A set of cell compartments called the Golgi packages certain proteins into bubble-like structures called vesicles to enable the proteins to be used elsewhere in the cell or released to the outside of the cell, in a process called the secretory pathway. The operation of the secretory pathway requires the Golgi compartments to be continually remodeled. Proteins and other materials can be ferried between the compartments of the Golgi by another type of vesicle. These vesicles are coated with a group, or complex, of proteins called COPI, which forms a curved lattice around the vesicles and helps them to capture the materials they will transport. However, it is not clear whether COPI is also involved in remodeling of the Golgi compartments. Papanikou, Day et al. addressed this question using a technique called the “anchor-away method” combined with microscopy to study COPI in yeast cells. The yeast were genetically engineered so that COPI activity was effectively shut down in the presence of a drug called rapamycin. The experiments show that COPI is involved in the early stages of remodeling the Golgi compartments, but not the later stages. This finding supports the emerging view of the Golgi as a self-organizing cellular machine, and it provides a framework for uncovering the engineering principles that underlie the secretory pathway. DOI:http://dx.doi.org/10.7554/eLife.13232.002
Collapse
Affiliation(s)
- Effrosyni Papanikou
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Kasey J Day
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Jotham Austin
- Electron Microscopy Core Facility, The University of Chicago, Chicago, United States
| | - Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| |
Collapse
|
72
|
Vetter M, Wang J, Lorentzen E, Deretic D. Novel topography of the Rab11-effector interaction network within a ciliary membrane targeting complex. Small GTPases 2015; 6:165-73. [PMID: 26399276 DOI: 10.1080/21541248.2015.1091539] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Small GTPases function as universal molecular switches due to the nucleotide dependent conformational changes of their switch regions that allow interacting proteins to discriminate between the active GTP-bound and the inactive GDP-bound states. Guanine nucleotide exchange factors (GEFs) recognize the inactive GDP-bound conformation whereas GTPase activating proteins (GAPs), and the GTPase effectors recognize the active GTP-bound state. Small GTPases are linked to each other through regulatory and effector proteins into functional networks that regulate intracellular membrane traffic through diverse mechanisms that include GEF and GAP cascades, GEF-effector interactions, common effectors and positive feedback loops linking interacting proteins. As more structural and functional information is becoming available, new types of interactions between regulatory proteins, and new mechanisms by which GTPases are networked to control membrane traffic are being revealed. This review will focus on the structure and function of the novel Rab11-FIP3-Rabin8 dual effector complex and its implications for the targeting of sensory receptors to primary cilia, dysfunction of which causes cilia defects underlying human diseases and disorders know as ciliopathies.
Collapse
Affiliation(s)
- Melanie Vetter
- a Department of Structural Cell Biology ; Max-Planck-Institute of Biochemistry ; Martinsried , Germany
| | - Jing Wang
- b Departments of Surgery ; Division of Ophthalmology; University of New Mexico ; Albuquerque , NM USA
| | - Esben Lorentzen
- a Department of Structural Cell Biology ; Max-Planck-Institute of Biochemistry ; Martinsried , Germany
| | - Dusanka Deretic
- b Departments of Surgery ; Division of Ophthalmology; University of New Mexico ; Albuquerque , NM USA.,c Cell Biology and Physiology ; University of New Mexico ; Albuquerque , NM USA
| |
Collapse
|
73
|
Richardson BC, Fromme JC. Biochemical methods for studying kinetic regulation of Arf1 activation by Sec7. Methods Cell Biol 2015; 130:101-26. [PMID: 26360031 DOI: 10.1016/bs.mcb.2015.03.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The ADP ribosylation factor (Arf) family of small guanosine triphosphatases (GTPases) regulates vesicular transport at several locations within the cell, and is in turn regulated by guanine nucleotide exchange factors (GEFs) via a conserved catalytic domain, termed the Sec7 domain. The catalytic activity of the Sec7 domain is well characterized in the context of a few GEFs acting at the periphery of the cell. This chapter describes the techniques used to extend the biochemical analysis of activity to the much larger GEFs acting on the Arf family in the core secretory pathway, using the activity of Saccharomyces cerevisiae Sec7 on Arf1, regulating export from the trans-Golgi network, as a model. The complete methods for purification to near homogeneity of all proteins required, including several Sec7 constructs and multiple relevant small GTPases, are detailed. These are followed by methods for the quantification of the nucleotide exchange activity of Sec7 in a physiologically relevant context, including modifications required to dissect the signal integration functions of Sec7 as an effector of several other small GTPases, and methods for identifying stable Sec7-small GTPase interactions in the presence of membranes. These techniques may be extended to the analysis of similar members of the Sec7 GEF subfamily in other species and acting elsewhere in the secretory pathway.
Collapse
Affiliation(s)
- Brian C Richardson
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - J Christopher Fromme
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
74
|
Galea G, Bexiga MG, Panarella A, O'Neill ED, Simpson JC. A high-content screening microscopy approach to dissect the role of Rab proteins in Golgi-to-ER retrograde trafficking. J Cell Sci 2015; 128:2339-49. [PMID: 25999475 DOI: 10.1242/jcs.167973] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/18/2015] [Indexed: 12/24/2022] Open
Abstract
Here, we describe a high-content microscopy-based screen that allowed us to systematically assess and rank proteins involved in Golgi-to-endoplasmic reticulum (ER) retrograde transport in mammalian cells. Using a cell line stably expressing a GFP-tagged Golgi enzyme, we used brefeldin A treatment to stimulate the production of Golgi-to-ER carriers and then quantitatively analysed populations of cells for changes in this trafficking event. Systematic RNA interference (RNAi)-based depletion of 58 Rab GTPase proteins and 12 Rab accessory proteins of the PRAF, YIPF and YIF protein families revealed that nine of these were strong regulators. In addition to demonstrating roles for Rab1a, Rab1b, Rab2a, and Rab6a or Rab6a' in this transport step, we also identified Rab10 and Rab11a as playing a role and being physically present on a proportion of the Golgi-to-ER tubular intermediates. Combinatorial depletions of Rab proteins also revealed previously undescribed functional co-operation and physical co-occurrence between several Rab proteins. Our approach therefore provides a novel and robust strategy for a more complete investigation of the molecular components required to regulate Golgi-to-ER transport in mammalian cells.
Collapse
Affiliation(s)
- George Galea
- School of Biology and Environmental Science and UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Mariana G Bexiga
- School of Biology and Environmental Science and UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Angela Panarella
- School of Biology and Environmental Science and UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Elaine D O'Neill
- School of Biology and Environmental Science and UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Jeremy C Simpson
- School of Biology and Environmental Science and UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
75
|
TRAPPII regulates exocytic Golgi exit by mediating nucleotide exchange on the Ypt31 ortholog RabERAB11. Proc Natl Acad Sci U S A 2015; 112:4346-51. [PMID: 25831508 DOI: 10.1073/pnas.1419168112] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The oligomeric complex transport protein particle I (TRAPPI) mediates nucleotide exchange on the RAB GTPase RAB1/Ypt1. TRAPPII is composed of TRAPPI plus three additional subunits, Trs120, Trs130, and Trs65. Unclear is whether TRAPPII mediates nucleotide exchange on RAB1/Ypt1, RAB11/Ypt31, or both. In Aspergillus nidulans, RabO(RAB1) resides in the Golgi, RabE(RAB11) localizes to exocytic post-Golgi carriers undergoing transport to the apex, and hypA encodes Trs120. RabE(RAB11), but not RabO(RAB1), immunoprecipitates contain Trs120/Trs130/Trs65, demonstrating specific association of TRAPPII with RabE(RAB11) in vivo. hypA1(ts) rapidly shifts RabE(RAB11), but not RabO(RAB1), to the cytosol, consistent with HypA(Trs120) being specifically required for RabE(RAB11) activation. Missense mutations rescuing hypA1(ts) at 42 °C mapped to rabE, affecting seven residues. Substitutions in six, of which four resulted in 7- to 36-fold accelerated GDP release, rescued lethality associated to TRAPPII deficiency, whereas equivalent substitutions in RabO(RAB1) did not, establishing that the essential role of TRAPPII is facilitating RabE(RAB11) nucleotide exchange. In vitro, TRAPPII purified with HypA(Trs120)-S-tag accelerates nucleotide exchange on RabE(RAB11) and, paradoxically, to a lesser yet substantial extent, on RabO(RAB1). Evidence obtained by exploiting hypA1-mediated destabilization of HypA(Trs120)/HypC(Trs130)/Trs65 assembly onto the TRAPPI core indicates that these subunits sculpt a second RAB binding site on TRAPP apparently independent from that for RabO(RAB1), which would explain TRAPPII in vitro activity on two RABs. Using A. nidulans in vivo microscopy, we show that HypA(Trs120) colocalizes with RabE(RAB11), arriving at late Golgi cisternae as they dissipate into exocytic carriers. Thus, TRAPPII marks, and possibly determines, the Golgi-to-post-Golgi transition.
Collapse
|
76
|
Lipatova Z, Hain AU, Nazarko VY, Segev N. Ypt/Rab GTPases: principles learned from yeast. Crit Rev Biochem Mol Biol 2015; 50:203-11. [PMID: 25702751 DOI: 10.3109/10409238.2015.1014023] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ypt/Rab GTPases are key regulators of all membrane trafficking events in eukaryotic cells. They act as molecular switches that attach to membranes via lipid tails to recruit their multiple downstream effectors, which mediate vesicular transport. Originally discovered in yeast as Ypts, they were later shown to be conserved from yeast to humans, where Rabs are relevant to a wide array of diseases. Major principles learned from our past studies in yeast are currently accepted in the Ypt/Rab field including: (i) Ypt/Rabs are not transport-step specific, but are rather compartment specific, (ii) stimulation by nucleotide exchangers, GEFs, is critical to their function, whereas GTP hydrolysis plays a role in their cycling between membranes and the cytoplasm for multiple rounds of action, (iii) they mediate diverse functions ranging from vesicle formation to vesicle fusion and (iv) they act in GTPase cascades to regulate intracellular trafficking pathways. Our recent studies on Ypt1 and Ypt31/Ypt32 and their modular GEF complex TRAPP raise three exciting novel paradigms for Ypt/Rab function: (a) coordination of vesicular transport substeps, (b) integration of individual transport steps into pathways and (c) coordination of different transport pathways. In addition to its amenability to genetic analysis, yeast provides a superior model system for future studies on the role of Ypt/Rabs in traffic coordination due to the smaller proteome that results in a simpler traffic grid. We propose that different types of coordination are important also in human cells for fine-tuning of intracellular trafficking, and that coordination defects could result in disease.
Collapse
Affiliation(s)
- Zhanna Lipatova
- a Department of Biochemistry and Molecular Genetics , University of Illinois at Chicago , Chicago , IL , USA
| | | | | | | |
Collapse
|
77
|
Hernández-González M, Peñalva MA, Pantazopoulou A. Conditional inactivation ofAspergillus nidulans sarASAR1uncovers the morphogenetic potential of regulating endoplasmic reticulum (ER) exit. Mol Microbiol 2014; 95:491-508. [DOI: 10.1111/mmi.12880] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Miguel Hernández-González
- Departamento de Biología Celular y Molecular; Centro de Investigaciones Biológicas CSIC; Ramiro de Maeztu 9 Madrid 28040 Spain
| | - Miguel A. Peñalva
- Departamento de Biología Celular y Molecular; Centro de Investigaciones Biológicas CSIC; Ramiro de Maeztu 9 Madrid 28040 Spain
| | - Areti Pantazopoulou
- Departamento de Biología Celular y Molecular; Centro de Investigaciones Biológicas CSIC; Ramiro de Maeztu 9 Madrid 28040 Spain
| |
Collapse
|
78
|
Arst HN, Hernandez-Gonzalez M, Peñalva MA, Pantazopoulou A. GBF/Gea mutant with a single substitution sustains fungal growth in the absence of BIG/Sec7. FEBS Lett 2014; 588:4799-806. [PMID: 25451223 PMCID: PMC4266534 DOI: 10.1016/j.febslet.2014.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/07/2014] [Accepted: 11/10/2014] [Indexed: 12/11/2022]
Abstract
A. nidulans has a GBF/Gea and a BIG/Sec7 subfamily Golgi Arf1-GEFs, both essential. The late Golgi Arf1-GEF mutant hypB5 conditionally blocks secretion. Residue substitution in the early Golgi Arf1-GEF GeaA suppresses hypB5 and hypBΔ. The mutation alters a GBF/Gea amino acid motif and shifts GeaA localization. GeaA1 alone satisfies the eukaryotic requirement for two Golgi Arf1 GEFs.
Golgi Arf1-guanine nucleotide exchange factors (GEFs) belong to two subfamilies: GBF/Gea and BIG/Sec7. Both are conserved across eukaryotes, but the physiological role of each is not well understood. Aspergillus nidulans has a single member of the early Golgi GBF/Gea-subfamily, geaA, and the late Golgi BIG/Sec7-subfamily, hypB. Both geaA and hypB are essential. hypB5 conditionally blocks secretion. We sought extragenic hypB5 suppressors and obtained geaA1. geaA1 results in Tyr1022Cys within a conserved GBF/Gea-specific S(Y/W/F)(L/I) motif in GeaA. This mutation alters GeaA localization. Remarkably, geaA1 suppresses hypBΔ, indicating that a single mutant Golgi Arf1-GEF suffices for growth.
Collapse
Affiliation(s)
- Herbert N Arst
- Section of Microbiology, Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom; Centro de Investigaciones Biológicas, CSIC, Madrid 28040, Spain
| | | | | | | |
Collapse
|