51
|
Luo Z, Lin C, Woodfin AR, Bartom ET, Gao X, Smith ER, Shilatifard A. Regulation of the imprinted Dlk1-Dio3 locus by allele-specific enhancer activity. Genes Dev 2016; 30:92-101. [PMID: 26728555 PMCID: PMC4701981 DOI: 10.1101/gad.270413.115] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this study, Luo et al. find that the AFF family protein AFF3 can specifically bind both gametic differentially DNA-methylated regions (gDMRs) and enhancers within imprinted loci in an allele-specific manner. These results provide the mechanistic details of the control of dosage-critical imprinted gene expression through the regulated binding of the transcription elongation factor AFF3 between a DMR and an enhancer. Genomic imprinting is a critical developmental process characteristic of parent of origin-specific gene expression. It is well accepted that differentially DNA-methylated regions (DMRs) and enhancers are two major classes of cis-elements determining parent of origin-specific gene expression, with each recruiting different sets of transcription factors. Previously, we identified the AF4/FMR2 (AFF) family protein AFF3 within the transcription elongation complex SEC-L3. Here, we report that AFF3 can specifically bind both gametic DMRs (gDMRs) and enhancers within imprinted loci in an allele-specific manner. We identify the molecular regulators involved in the recruitment of AFF3 to gDMRs and provide mechanistic insight into the requirement of AFF3 at an enhancer for the expression of an ∼200-kb polycistronic transcript within the imprinted Dlk1-Dio3 locus. Our data suggest that the heterochromatic environment at the gDMR reinforces silencing of its related enhancer by controlling the binding and activity of AFF3 in an allele-specific manner. In summary, this study provides molecular details about the regulation of dosage-critical imprinted gene expression through the regulated binding of the transcription elongation factor AFF3 between a DMR and an enhancer.
Collapse
Affiliation(s)
- Zhuojuan Luo
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA; Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Chengqi Lin
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Ashley R Woodfin
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Xin Gao
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Edwin R Smith
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA; Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; Robert H. Lurie National Cancer Institute Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
52
|
Luo Z, Lin C. Enhancer, epigenetics, and human disease. Curr Opin Genet Dev 2016; 36:27-33. [DOI: 10.1016/j.gde.2016.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/24/2016] [Indexed: 02/09/2023]
|
53
|
Ectopic cross-talk between thyroid and retinoic acid signaling: A possible etiology for spinal neural tube defects. Gene 2015; 573:254-60. [DOI: 10.1016/j.gene.2015.07.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/20/2015] [Accepted: 07/14/2015] [Indexed: 12/17/2022]
|
54
|
Anvar Z, Cammisa M, Riso V, Baglivo I, Kukreja H, Sparago A, Girardot M, Lad S, De Feis I, Cerrato F, Angelini C, Feil R, Pedone PV, Grimaldi G, Riccio A. ZFP57 recognizes multiple and closely spaced sequence motif variants to maintain repressive epigenetic marks in mouse embryonic stem cells. Nucleic Acids Res 2015; 44:1118-32. [PMID: 26481358 PMCID: PMC4756812 DOI: 10.1093/nar/gkv1059] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/01/2015] [Indexed: 12/15/2022] Open
Abstract
Imprinting Control Regions (ICRs) need to maintain their parental allele-specific DNA methylation during early embryogenesis despite genome-wide demethylation and subsequent de novo methylation. ZFP57 and KAP1 are both required for maintaining the repressive DNA methylation and H3-lysine-9-trimethylation (H3K9me3) at ICRs. In vitro, ZFP57 binds a specific hexanucleotide motif that is enriched at its genomic binding sites. We now demonstrate in mouse embryonic stem cells (ESCs) that SNPs disrupting closely-spaced hexanucleotide motifs are associated with lack of ZFP57 binding and H3K9me3 enrichment. Through a transgenic approach in mouse ESCs, we further demonstrate that an ICR fragment containing three ZFP57 motif sequences recapitulates the original methylated or unmethylated status when integrated into the genome at an ectopic position. Mutation of Zfp57 or the hexanucleotide motifs led to loss of ZFP57 binding and DNA methylation of the transgene. Finally, we identified a sequence variant of the hexanucleotide motif that interacts with ZFP57 both in vivo and in vitro. The presence of multiple and closely located copies of ZFP57 motif variants emerges as a distinct characteristic that is required for the faithful maintenance of repressive epigenetic marks at ICRs and other ZFP57 binding sites.
Collapse
Affiliation(s)
- Zahra Anvar
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| | - Marco Cammisa
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| | - Vincenzo Riso
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| | - Ilaria Baglivo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| | - Harpreet Kukreja
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| | - Angela Sparago
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| | - Michael Girardot
- Institute of Molecular Genetics (IGMM), CNRS UMR5535 and University of Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Shraddha Lad
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy
| | - Italia De Feis
- Istituto per le Applicazioni del Calcolo 'Mauro Picone' (IAC), CNR, 80131 Naples, Italy
| | - Flavia Cerrato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| | - Claudia Angelini
- Istituto per le Applicazioni del Calcolo 'Mauro Picone' (IAC), CNR, 80131 Naples, Italy
| | - Robert Feil
- Institute of Molecular Genetics (IGMM), CNRS UMR5535 and University of Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Paolo V Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| | - Giovanna Grimaldi
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy Ceinge Biotecnologie Avanzate s.c.a.r.l., 80145 Naples, Italy
| | - Andrea Riccio
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| |
Collapse
|
55
|
Maupetit-Méhouas S, Montibus B, Nury D, Tayama C, Wassef M, Kota SK, Fogli A, Cerqueira Campos F, Hata K, Feil R, Margueron R, Nakabayashi K, Court F, Arnaud P. Imprinting control regions (ICRs) are marked by mono-allelic bivalent chromatin when transcriptionally inactive. Nucleic Acids Res 2015; 44:621-35. [PMID: 26400168 PMCID: PMC4737186 DOI: 10.1093/nar/gkv960] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/12/2015] [Indexed: 01/10/2023] Open
Abstract
Parental allele-specific expression of imprinted genes is mediated by imprinting control regions (ICRs) that are constitutively marked by DNA methylation imprints on the maternal or paternal allele. Mono-allelic DNA methylation is strictly required for the process of imprinting and has to be faithfully maintained during the entire life-span. While the regulation of DNA methylation itself is well understood, the mechanisms whereby the opposite allele remains unmethylated are unclear. Here, we show that in the mouse, at maternally methylated ICRs, the paternal allele, which is constitutively associated with H3K4me2/3, is marked by default by H3K27me3 when these ICRs are transcriptionally inactive, leading to the formation of a bivalent chromatin signature. Our data suggest that at ICRs, chromatin bivalency has a protective role by ensuring that DNA on the paternal allele remains unmethylated and protected against spurious and unscheduled gene expression. Moreover, they provide the proof of concept that, beside pluripotent cells, chromatin bivalency is the default state of transcriptionally inactive CpG island promoters, regardless of the developmental stage, thereby contributing to protect cell identity.
Collapse
Affiliation(s)
- Stéphanie Maupetit-Méhouas
- CNRS, UMR6293, F-63001 Clermont-Ferrand, France Inserm, U1103, 63001 Clermont-Ferrand, France Université Clermont Auvergne, Laboratoire GReD, BP 10448, 63000 Clermont-Ferrand, France
| | - Bertille Montibus
- CNRS, UMR6293, F-63001 Clermont-Ferrand, France Inserm, U1103, 63001 Clermont-Ferrand, France Université Clermont Auvergne, Laboratoire GReD, BP 10448, 63000 Clermont-Ferrand, France
| | - David Nury
- CNRS, UMR6293, F-63001 Clermont-Ferrand, France Inserm, U1103, 63001 Clermont-Ferrand, France Université Clermont Auvergne, Laboratoire GReD, BP 10448, 63000 Clermont-Ferrand, France
| | - Chiharu Tayama
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Michel Wassef
- Institut Curie, 26 Rue d'Ulm, 75005 Paris, France; INSERM U934, 26 Rue d'Ulm, 75005 Paris, France; CNRS UMR3215, 26 Rue d'Ulm, 75005 Paris, France
| | - Satya K Kota
- Institute of Molecular Genetics, CNRS UMR-5535 and University of Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Anne Fogli
- CNRS, UMR6293, F-63001 Clermont-Ferrand, France Inserm, U1103, 63001 Clermont-Ferrand, France Université Clermont Auvergne, Laboratoire GReD, BP 10448, 63000 Clermont-Ferrand, France
| | - Fabiana Cerqueira Campos
- CNRS, UMR6293, F-63001 Clermont-Ferrand, France Inserm, U1103, 63001 Clermont-Ferrand, France Université Clermont Auvergne, Laboratoire GReD, BP 10448, 63000 Clermont-Ferrand, France
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Robert Feil
- Institute of Molecular Genetics, CNRS UMR-5535 and University of Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Raphael Margueron
- Institut Curie, 26 Rue d'Ulm, 75005 Paris, France; INSERM U934, 26 Rue d'Ulm, 75005 Paris, France; CNRS UMR3215, 26 Rue d'Ulm, 75005 Paris, France
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Franck Court
- CNRS, UMR6293, F-63001 Clermont-Ferrand, France Inserm, U1103, 63001 Clermont-Ferrand, France Université Clermont Auvergne, Laboratoire GReD, BP 10448, 63000 Clermont-Ferrand, France
| | - Philippe Arnaud
- CNRS, UMR6293, F-63001 Clermont-Ferrand, France Inserm, U1103, 63001 Clermont-Ferrand, France Université Clermont Auvergne, Laboratoire GReD, BP 10448, 63000 Clermont-Ferrand, France
| |
Collapse
|
56
|
Ogata T, Kagami M. Kagami-Ogata syndrome: a clinically recognizable upd(14)pat and related disorder affecting the chromosome 14q32.2 imprinted region. J Hum Genet 2015; 61:87-94. [PMID: 26377239 PMCID: PMC4771937 DOI: 10.1038/jhg.2015.113] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/09/2015] [Accepted: 08/25/2015] [Indexed: 11/29/2022]
Abstract
Human chromosome 14q32.2 carries paternally expressed genes including DLK1 and RTL1, and maternally expressed genes including MEG3 and RTL1as, along with the germline-derived DLK1-MEG3 intergenic differentially methylated region (IG-DMR) and the postfertilization-derived MEG3-DMR. Consistent with this, paternal uniparental disomy 14 (upd(14)pat), and epimutations (hypermethylations) and microdeletions affecting the IG-DMR and/or the MEG3-DMR of maternal origin, result in a unique phenotype associated with characteristic face, a small bell-shaped thorax with coat-hanger appearance of the ribs, abdominal wall defects, placentomegaly and polyhydramnios. Recently, the name ‘Kagami–Ogata syndrome' (KOS) has been approved for this clinically recognizable disorder. Here, we review the current knowledge about KOS. Important findings include the following: (1) the facial ‘gestalt' and the increased coat-hanger angle constitute pathognomonic features from infancy through childhood/puberty; (2) the unmethylated IG-DMR and MEG3-DMR of maternal origin function as the imprinting control centers in the placenta and body respectively, with a hierarchical interaction regulated by the IG-DMR for the methylation pattern of the MEG3-DMR in the body; (3) RTL1 expression level becomes ~2.5 times increased in the absence of functional RTL1as-encoded microRNAs that act as a trans-acting repressor for RTL1; (4) excessive RTL1 expression and absent MEG expression constitute the primary underlying factor for the phenotypic development; and (5) upd(14)pat accounts for approximately two-thirds of KOS patients, and epimutations and microdeletions are identified with a similar frequency. Furthermore, we refer to diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
57
|
Han Z, Yu C, Tian Y, Zeng T, Cui W, Mager J, Wu Q. Expression patterns of long noncoding RNAs from Dlk1-Dio3 imprinted region and the potential mechanisms of Gtl2 activation during blastocyst development. Biochem Biophys Res Commun 2015; 463:167-73. [PMID: 26005002 DOI: 10.1016/j.bbrc.2015.04.126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 04/26/2015] [Indexed: 11/26/2022]
Abstract
The function of long noncoding RNAs (lncRNAs) in cell differentiation and development have begun to be revealed in recent years. However, the expression pattern and mechanisms regulating lncRNAs are largely unknown during mammalian preimplantation development. LncRNAs expressed from Dlk1-Dio3 imprinted region have been linked to pluripotency of induced pluripotent cells (iPSCs). In this study we show that these lncRNAs (Gtl2, Rian and Mirg) are first expressed at the morula stage and gradually restricted to the inner cell mass (ICM) as the embryo differentiates into the blastocyst. Analysis of DNA methylation at IG-DMR and Gtl2-DMR showed no change during preimplantation while the presence of the activating histone modification H3K4me3 increased significantly from 8-cell to blastocyst stage, which may explain the expression activation. Additionally, knockdown of transcription factors (Oct4, Sox2 and Nanog) in blastocyst reduced the expression of Gtl2, indicating pluripotency factors regulate transcription of these lncRNAs. This study provides the spatiotemporal expression and dynamic changes of lncRNAs from Dlk1-Dio3 imprinted region in mouse preimplantation stage embryos and offers insight into the potential mechanisms responsible for Gtl2 activation.
Collapse
Affiliation(s)
- Zhengbin Han
- Harbin Institute of Technology, School of Life Science and Technology, State Key Laboratory of Urban Water Resources and Environment, Harbin 150080, China; University of Massachusetts, Veterinary and Animal Science Department, 661 North Pleasant Street, Amherst, MA 01003, USA
| | - Changwei Yu
- Harbin Institute of Technology, School of Life Science and Technology, State Key Laboratory of Urban Water Resources and Environment, Harbin 150080, China
| | - Yijun Tian
- Harbin Institute of Technology, School of Life Science and Technology, State Key Laboratory of Urban Water Resources and Environment, Harbin 150080, China
| | - Tiebo Zeng
- Harbin Institute of Technology, School of Life Science and Technology, State Key Laboratory of Urban Water Resources and Environment, Harbin 150080, China
| | - Wei Cui
- University of Massachusetts, Veterinary and Animal Science Department, 661 North Pleasant Street, Amherst, MA 01003, USA
| | - Jesse Mager
- University of Massachusetts, Veterinary and Animal Science Department, 661 North Pleasant Street, Amherst, MA 01003, USA.
| | - Qiong Wu
- Harbin Institute of Technology, School of Life Science and Technology, State Key Laboratory of Urban Water Resources and Environment, Harbin 150080, China.
| |
Collapse
|
58
|
Kanduri C. Long noncoding RNAs: Lessons from genomic imprinting. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:102-11. [PMID: 26004516 DOI: 10.1016/j.bbagrm.2015.05.006] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/12/2015] [Accepted: 05/15/2015] [Indexed: 12/17/2022]
Abstract
Genomic imprinting has been a great resource for studying transcriptional and post-transcriptional-based gene regulation by long noncoding RNAs (lncRNAs). In this article, I overview the functional role of intergenic lncRNAs (H19, IPW, and MEG3), antisense lncRNAs (Kcnq1ot1, Airn, Nespas, Ube3a-ATS), and enhancer lncRNAs (IG-DMR eRNAs) to understand the diverse mechanisms being employed by them in cis and/or trans to regulate the parent-of-origin-specific expression of target genes. Recent evidence suggests that some of the lncRNAs regulate imprinting by promoting intra-chromosomal higher-order chromatin compartmentalization, affecting replication timing and subnuclear positioning. Whereas others act via transcriptional occlusion or transcriptional collision-based mechanisms. By establishing genomic imprinting of target genes, the lncRNAs play a critical role in important biological functions, such as placental and embryonic growth, pluripotency maintenance, cell differentiation, and neural-related functions such as synaptic development and plasticity. An emerging consensus from the recent evidence is that the imprinted lncRNAs fine-tune gene expression of the protein-coding genes to maintain their dosage in cell. Hence, lncRNAs from imprinted clusters offer insights into their mode of action, and these mechanisms have been the basis for uncovering the mode of action of lncRNAs in several other biological contexts. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
Collapse
Affiliation(s)
- Chandrasekhar Kanduri
- Department of Medical Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden.
| |
Collapse
|
59
|
Ruhrmann S, Stridh P, Kular L, Jagodic M. Genomic imprinting: A missing piece of the Multiple Sclerosis puzzle? Int J Biochem Cell Biol 2015; 67:49-57. [PMID: 26002250 DOI: 10.1016/j.biocel.2015.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/10/2015] [Accepted: 05/11/2015] [Indexed: 12/14/2022]
Abstract
Evidence for parent-of-origin effects in complex diseases such as Multiple Sclerosis (MS) strongly suggests a role for epigenetic mechanisms in their pathogenesis. In this review, we describe the importance of accounting for parent-of-origin when identifying new risk variants for complex diseases and discuss how genomic imprinting, one of the best-characterized epigenetic mechanisms causing parent-of-origin effects, may impact etiology of complex diseases. While the role of imprinted genes in growth and development is well established, the contribution and molecular mechanisms underlying the impact of genomic imprinting in immune functions and inflammatory diseases are still largely unknown. Here we discuss emerging roles of imprinted genes in the regulation of inflammatory responses with a particular focus on the Dlk1 cluster that has been implicated in etiology of experimental MS-like disease and Type 1 Diabetes. Moreover, we speculate on the potential wider impact of imprinting via the action of imprinted microRNAs, which are abundantly present in the Dlk1 locus and predicted to fine-tune important immune functions. Finally, we reflect on how unrelated imprinted genes or imprinted genes together with non-imprinted genes can interact in so-called imprinted gene networks (IGN) and suggest that IGNs could partly explain observed parent-of-origin effects in complex diseases. Unveiling the mechanisms of parent-of-origin effects is therefore likely to teach us not only about the etiology of complex diseases but also about the unknown roles of this fascinating phenomenon underlying uneven genetic contribution from our parents. This article is part of a Directed Issue entitled: Epigenetics dynamics in development and disease.
Collapse
Affiliation(s)
- Sabrina Ruhrmann
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Pernilla Stridh
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lara Kular
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
60
|
Howard M, Charalambous M. Molecular basis of imprinting disorders affecting chromosome 14: lessons from murine models. Reproduction 2015; 149:R237-49. [DOI: 10.1530/rep-14-0660] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Uniparental inheritance of chromosome 14q32 causes developmental failure during gestation and early postnatal development due to mis-expression of a cluster of imprinted genes under common epigenetic control. Two syndromes associated with chromosome 14q32 abnormalities have been described, Kagami–Ogata and Temple syndromes. Both of these syndromes are characterised by specific impairments of intrauterine development, placentation and early postnatal survival. Such abnormalities arise because the processes of intrauterine growth and postnatal adaptation are critically modulated by the dosage of imprinted genes in the chromosome 14q32 cluster. Much of our understanding of how the imprinted genes in this cluster are regulated, as well as their individual functions in the molecular pathways controlling growth and postnatal adaptation, has come from murine models. Mouse chromosome 12qF1 contains an imprinted region syntenic to human chromosome 14q32, collectively referred to as the Dlk1–Dio3 cluster. In this review, we will summarise the wealth of information derived from animal models of chromosome 12 imprinted gene mis-regulation, and explore the relationship between the functions of individual genes and the phenotypic result of their mis-expression. As there is often a considerable overlap between the functions of genes in the Dlk1–Dio3 cluster, we propose that the expression dosage of these genes is controlled by common regulatory mechanisms to co-ordinate the timing of growth and postnatal adaptation. While the diseases associated with mis-regulated chromosome 14 imprinting are rare, studies carried out in mice on the functions of the affected genes as well as their normal regulatory mechanisms have revealed new mechanistic pathways for the control of growth and survival in early life.
Collapse
|
61
|
Sanli I, Feil R. Chromatin mechanisms in the developmental control of imprinted gene expression. Int J Biochem Cell Biol 2015; 67:139-47. [PMID: 25908531 DOI: 10.1016/j.biocel.2015.04.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
Hundreds of protein-coding genes and regulatory non-coding RNAs (ncRNAs) are subject to genomic imprinting. The mono-allelic DNA methylation marks that control imprinted gene expression are somatically maintained throughout development, and this process is linked to specific chromatin features. Yet, at many imprinted genes, the mono-allelic expression is lineage or tissue-specific. Recent studies provide mechanistic insights into the developmentally-restricted action of the 'imprinting control regions' (ICRs). At several imprinted domains, the ICR expresses a long ncRNA that mediates chromatin repression in cis (and probably in trans as well). ICRs at other imprinted domains mediate higher-order chromatin structuration that enhances, or prevents, transcription of close-by genes. Here, we present how chromatin and ncRNAs contribute to developmental control of imprinted gene expression and discuss implications for disease. This article is part of a Directed Issue entitled: Epigenetics dynamics in development and disease.
Collapse
Affiliation(s)
- Ildem Sanli
- Institute of Molecular Genetics (IGMM), UMR-5535, CNRS, University of Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Robert Feil
- Institute of Molecular Genetics (IGMM), UMR-5535, CNRS, University of Montpellier, 1919 route de Mende, 34293 Montpellier, France.
| |
Collapse
|