51
|
Abstract
The myosin holoenzyme is a multimeric protein complex consisting of heavy chains and light chains. Myosin light chains are calmodulin family members which are crucially involved in the mechanoenzymatic function of the myosin holoenzyme. This review examines the diversity of light chains within the myosin superfamily, discusses interactions between the light chain and the myosin heavy chain as well as regulatory and structural functions of the light chain as a subunit of the myosin holoenzyme. It covers aspects of the myosin light chain in the localization of the myosin holoenzyme, protein-protein interactions and light chain binding to non-myosin binding partners. Finally, this review challenges the dogma that myosin regulatory and essential light chain exclusively associate with conventional myosin heavy chains while unconventional myosin heavy chains usually associate with calmodulin.
Collapse
Affiliation(s)
- Sarah M Heissler
- a Laboratory of Molecular Physiology; National Heart, Lung, and Blood Institute; National Institutes of Health ; Bethesda , MD USA
| | - James R Sellers
- a Laboratory of Molecular Physiology; National Heart, Lung, and Blood Institute; National Institutes of Health ; Bethesda , MD USA
| |
Collapse
|
52
|
King SJ, Asokan SB, Haynes EM, Zimmerman SP, Rotty JD, Alb JG, Tagliatela A, Blake DR, Lebedeva IP, Marston D, Johnson HE, Parsons M, Sharpless NE, Kuhlman B, Haugh JM, Bear JE. Lamellipodia are crucial for haptotactic sensing and response. J Cell Sci 2016; 129:2329-42. [PMID: 27173494 DOI: 10.1242/jcs.184507] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 05/05/2016] [Indexed: 12/11/2022] Open
Abstract
Haptotaxis is the process by which cells respond to gradients of substrate-bound cues, such as extracellular matrix proteins (ECM); however, the cellular mechanism of this response remains poorly understood and has mainly been studied by comparing cell behavior on uniform ECMs with different concentrations of components. To study haptotaxis in response to gradients, we utilized microfluidic chambers to generate gradients of the ECM protein fibronectin, and imaged the cell migration response. Lamellipodia are fan-shaped protrusions that are common in migrating cells. Here, we define a new function for lamellipodia and the cellular mechanism required for haptotaxis - differential actin and lamellipodial protrusion dynamics lead to biased cell migration. Modest differences in lamellipodial dynamics occurring over time periods of seconds to minutes are summed over hours to produce differential whole cell movement towards higher concentrations of fibronectin. We identify a specific subset of lamellipodia regulators as being crucial for haptotaxis. Numerous studies have linked components of this pathway to cancer metastasis and, consistent with this, we find that expression of the oncogenic Rac1 P29S mutation abrogates haptotaxis. Finally, we show that haptotaxis also operates through this pathway in 3D environments.
Collapse
Affiliation(s)
- Samantha J King
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sreeja B Asokan
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elizabeth M Haynes
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Seth P Zimmerman
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jeremy D Rotty
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - James G Alb
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alicia Tagliatela
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Devon R Blake
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA Department of Pharmacology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA
| | - Irina P Lebedeva
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA Howard Hughes Medical Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniel Marston
- Department of Pharmacology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA
| | - Heath E Johnson
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Maddy Parsons
- King's College London, Randall Institute, London SE1 8RT, UK
| | - Norman E Sharpless
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brian Kuhlman
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jason M Haugh
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - James E Bear
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA Howard Hughes Medical Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
53
|
Swaney KF, Li R. Function and regulation of the Arp2/3 complex during cell migration in diverse environments. Curr Opin Cell Biol 2016; 42:63-72. [PMID: 27164504 DOI: 10.1016/j.ceb.2016.04.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 02/06/2023]
Abstract
As the first de novo actin nucleator discovered, the Arp2/3 complex has been a central player in models of protrusive force production via the dynamic actin network. Here, we review recent studies on the functional role of the Arp2/3 complex in the migration of diverse cell types in different migratory environments. These findings have revealed an unexpected level of plasticity, both in how cells rely on the Arp2/3 complex for migration and other physiological functions and in the intricate modulation of the Arp2/3 complex by other actin regulators and upstream signaling cascades.
Collapse
Affiliation(s)
- Kristen F Swaney
- Department of Cell Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 450 Rangos Building, Baltimore, MD 21205, USA; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, 3400 North Charles Street, 100 Croft Hall, Baltimore, MD 21218, USA.
| | - Rong Li
- Department of Cell Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 450 Rangos Building, Baltimore, MD 21205, USA; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, 3400 North Charles Street, 100 Croft Hall, Baltimore, MD 21218, USA
| |
Collapse
|
54
|
Heissler SM, Sellers JR. Various Themes of Myosin Regulation. J Mol Biol 2016; 428:1927-46. [PMID: 26827725 DOI: 10.1016/j.jmb.2016.01.022] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/12/2016] [Accepted: 01/19/2016] [Indexed: 10/24/2022]
Abstract
Members of the myosin superfamily are actin-based molecular motors that are indispensable for cellular homeostasis. The vast functional and structural diversity of myosins accounts for the variety and complexity of the underlying allosteric regulatory mechanisms that determine the activation or inhibition of myosin motor activity and enable precise timing and spatial aspects of myosin function at the cellular level. This review focuses on the molecular basis of posttranslational regulation of eukaryotic myosins from different classes across species by allosteric intrinsic and extrinsic effectors. First, we highlight the impact of heavy and light chain phosphorylation. Second, we outline intramolecular regulatory mechanisms such as autoinhibition and subsequent activation. Third, we discuss diverse extramolecular allosteric mechanisms ranging from actin-linked regulatory mechanisms to myosin:cargo interactions. At last, we briefly outline the allosteric regulation of myosins with synthetic compounds.
Collapse
Affiliation(s)
- Sarah M Heissler
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, 50 South Drive, B50/3529, Bethesda, MD 20892-8015, USA.
| | - James R Sellers
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, 50 South Drive, B50/3529, Bethesda, MD 20892-8015, USA
| |
Collapse
|
55
|
Oudin MJ, Jonas O, Kosciuk T, Broye LC, Guido BC, Wyckoff J, Riquelme D, Lamar JM, Asokan SB, Whittaker C, Ma D, Langer R, Cima MJ, Wisinski KB, Hynes RO, Lauffenburger DA, Keely PJ, Bear JE, Gertler FB. Tumor Cell-Driven Extracellular Matrix Remodeling Drives Haptotaxis during Metastatic Progression. Cancer Discov 2016; 6:516-31. [PMID: 26811325 DOI: 10.1158/2159-8290.cd-15-1183] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/21/2016] [Indexed: 12/14/2022]
Abstract
UNLABELLED Fibronectin (FN) is a major component of the tumor microenvironment, but its role in promoting metastasis is incompletely understood. Here, we show that FN gradients elicit directional movement of breast cancer cells, in vitro and in vivo Haptotaxis on FN gradients requires direct interaction between α5β1 integrin and MENA, an actin regulator, and involves increases in focal complex signaling and tumor cell-mediated extracellular matrix (ECM) remodeling. Compared with MENA, higher levels of the prometastatic MENA(INV) isoform associate with α5, which enables 3-D haptotaxis of tumor cells toward the high FN concentrations typically present in perivascular space and in the periphery of breast tumor tissue. MENA(INV) and FN levels were correlated in two breast cancer cohorts, and high levels of MENA(INV) were significantly associated with increased tumor recurrence as well as decreased patient survival. Our results identify a novel tumor cell-intrinsic mechanism that promotes metastasis through ECM remodeling and ECM-guided directional migration. SIGNIFICANCE Here, we provide new insight into how tumor cell:ECM interactions generate signals and structures that promote directed tumor cell migration, a critical component of metastasis. Our results identify a tumor cell-intrinsic mechanism driven by the actin regulatory protein MENA that promotes ECM remodeling and haptotaxis along FN gradients. Cancer Discov; 6(5); 516-31. ©2016 AACR.See related commentary by Santiago-Medina and Yang, p. 474This article is highlighted in the In This Issue feature, p. 461.
Collapse
Affiliation(s)
- Madeleine J Oudin
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Oliver Jonas
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Tatsiana Kosciuk
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Liliane C Broye
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Bruna C Guido
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Jeff Wyckoff
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Daisy Riquelme
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - John M Lamar
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Sreeja B Asokan
- Lineberger Comprehensive Cancer Center, UNC Chapel Hill, Chapel Hill, North Carolina
| | - Charlie Whittaker
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Duanduan Ma
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Michael J Cima
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Kari B Wisinski
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, Wisconsin
| | - Richard O Hynes
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts. Department of Biology, MIT, Cambridge, Massachusetts. Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Douglas A Lauffenburger
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts. Department of Biological Engineering, MIT, Cambridge, Massachusetts
| | - Patricia J Keely
- Department of Cell and Regenerative Biology, University of Wisconsin Madison, Madison, Wisconsin
| | - James E Bear
- Lineberger Comprehensive Cancer Center, UNC Chapel Hill, Chapel Hill, North Carolina. Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Frank B Gertler
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts. Department of Biology, MIT, Cambridge, Massachusetts.
| |
Collapse
|
56
|
Kang DS, Yang YR, Lee C, Kim S, Ryu SH, Suh PG. Roles of phosphoinositide-specific phospholipase Cγ1 in brain development. Adv Biol Regul 2016; 60:167-173. [PMID: 26588873 DOI: 10.1016/j.jbior.2015.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/02/2015] [Indexed: 06/05/2023]
Abstract
Over the past decade, converging evidence suggests that PLCγ1 signaling has key roles in controlling neural development steps. PLCγ1 functions as a signal transducer that converts an extracellular stimulus into intracellular signals by generating second messengers such as DAG and IP3. DAG functions as an activator of either PKC or transient receptor potential cation channels (TRPCs), while IP3 induces the calcium release from intracellular calcium stores. These second messengers regulate the morphological change of neuron, such as neurite outgrowth, migration, axon pathfinding, and synapse formation. These morphological changes depend on finely tuned calcium signaling following receptor tyrosine kinase-mediated PLCγ1 signaling. Thus, deregulation of PLCγ1 signaling causes various abnormalities of neuronal development and it may be associated with diverse neurological disorders. Herein, we discuss the current understanding of the PLCγ1 signaling pathway in neural development and provide recent advances of how PLCγ1 signaling is involved in the formation of neuronal processes for functionally faithful brain development.
Collapse
Affiliation(s)
- Du-Seock Kang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | - Yong Ryoul Yang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | - Cheol Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | - SaetByeol Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | - Sung Ho Ryu
- Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea.
| |
Collapse
|
57
|
Newell-Litwa KA, Horwitz R, Lamers ML. Non-muscle myosin II in disease: mechanisms and therapeutic opportunities. Dis Model Mech 2015; 8:1495-515. [PMID: 26542704 PMCID: PMC4728321 DOI: 10.1242/dmm.022103] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The actin motor protein non-muscle myosin II (NMII) acts as a master regulator of cell morphology, with a role in several essential cellular processes, including cell migration and post-synaptic dendritic spine plasticity in neurons. NMII also generates forces that alter biochemical signaling, by driving changes in interactions between actin-associated proteins that can ultimately regulate gene transcription. In addition to its roles in normal cellular physiology, NMII has recently emerged as a critical regulator of diverse, genetically complex diseases, including neuronal disorders, cancers and vascular disease. In the context of these disorders, NMII regulatory pathways can be directly mutated or indirectly altered by disease-causing mutations. NMII regulatory pathway genes are also increasingly found in disease-associated copy-number variants, particularly in neuronal disorders such as autism and schizophrenia. Furthermore, manipulation of NMII-mediated contractility regulates stem cell pluripotency and differentiation, thus highlighting the key role of NMII-based pharmaceuticals in the clinical success of stem cell therapies. In this Review, we discuss the emerging role of NMII activity and its regulation by kinases and microRNAs in the pathogenesis and prognosis of a diverse range of diseases, including neuronal disorders, cancer and vascular disease. We also address promising clinical applications and limitations of NMII-based inhibitors in the treatment of these diseases and the development of stem-cell-based therapies.
Collapse
Affiliation(s)
- Karen A Newell-Litwa
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Rick Horwitz
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Marcelo L Lamers
- Department of Morphological Sciences, Institute of Basic Health Science, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-010, Brazil
| |
Collapse
|
58
|
Competition for actin between two distinct F-actin networks defines a bistable switch for cell polarization. Nat Cell Biol 2015; 17:1435-45. [PMID: 26414403 PMCID: PMC4628555 DOI: 10.1038/ncb3246] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/26/2015] [Indexed: 02/07/2023]
Abstract
Symmetry-breaking polarization enables functional plasticity of cells and tissues and is yet not well understood. Here we show that epithelial cells, hard-wired to maintain a static morphology and to preserve tissue organization, can spontaneously switch to a migratory polarized phenotype upon relaxation of the actomyosin cytoskeleton. We find that myosin-II engages actin in the formation of cortical actomyosin bundles and thus makes it unavailable for deployment in the process of dendritic growth normally driving cell motility. At low contractility regimes epithelial cells polarize in a front-back manner due to emergence of actin retrograde flows powered by dendritic polymerization of actin. Coupled to cell movement, the flows transport myosin-II from the front to the back of the cell, where the motor locally “locks” actin in contractile bundles. This polarization mechanism could be employed by embryonic and cancer epithelial cells in microenvironments where high contractility-driven cell motion is inefficient.
Collapse
|
59
|
Haynes EM, Asokan SB, King SJ, Johnson HE, Haugh JM, Bear JE. GMFβ controls branched actin content and lamellipodial retraction in fibroblasts. J Cell Biol 2015; 209:803-12. [PMID: 26101216 PMCID: PMC4477851 DOI: 10.1083/jcb.201501094] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The primary activity of GMFβ in vivo is actin branch disassembly (and not inhibition of Arp2/3 activation), and this activity plays an important role in lamellipodial dynamics and directional migration toward ECM cues. The lamellipodium is an important structure for cell migration containing branched actin nucleated via the Arp2/3 complex. The formation of branched actin is relatively well studied, but less is known about its disassembly and how this influences migration. GMF is implicated in both Arp2/3 debranching and inhibition of Arp2/3 activation. Modulation of GMFβ, a ubiquitous GMF isoform, by depletion or overexpression resulted in changes in lamellipodial dynamics, branched actin content, and migration. Acute pharmacological inhibition of Arp2/3 by CK-666, coupled to quantitative live-cell imaging of the complex, showed that depletion of GMFβ decreased the rate of branched actin disassembly. These data, along with mutagenesis studies, suggest that debranching (not inhibition of Arp2/3 activation) is a primary activity of GMFβ in vivo. Furthermore, depletion or overexpression of GMFβ disrupted the ability of cells to directionally migrate to a gradient of fibronectin (haptotaxis). These data suggest that debranching by GMFβ plays an important role in branched actin regulation, lamellipodial dynamics, and directional migration.
Collapse
Affiliation(s)
- Elizabeth M Haynes
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514 Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Sreeja B Asokan
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514 Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Samantha J King
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514 Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Heath E Johnson
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| | - Jason M Haugh
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| | - James E Bear
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514 Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 Howard Hughes Medical Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
60
|
Ricci C, Ferri N. Naturally occurring PDGF receptor inhibitors with potential anti-atherosclerotic properties. Vascul Pharmacol 2015; 70:1-7. [DOI: 10.1016/j.vph.2015.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 02/18/2015] [Accepted: 02/20/2015] [Indexed: 01/03/2023]
|
61
|
Gagliardi PA, Puliafito A, di Blasio L, Chianale F, Somale D, Seano G, Bussolino F, Primo L. Real-time monitoring of cell protrusion dynamics by impedance responses. Sci Rep 2015; 5:10206. [PMID: 25976978 PMCID: PMC4432390 DOI: 10.1038/srep10206] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/02/2015] [Indexed: 01/17/2023] Open
Abstract
Cellular protrusions are highly dynamic structures involved in fundamental processes, including cell migration and invasion. For a cell to migrate, its leading edge must form protrusions, and then adhere or retract. The spatial and temporal coordination of protrusions and retraction is yet to be fully understood. The study of protrusion dynamics mainly relies on live-microscopy often coupled to fluorescent labeling. Here we report the use of an alternative, label-free, quantitative and rapid assay to analyze protrusion dynamics in a cell population based on the real-time recording of cell activity by means of electronic sensors. Cells are seeded on a plate covered with electrodes and their shape changes map into measured impedance variations. Upon growth factor stimulation the impedance increases due to protrusive activity and decreases following retraction. Compared to microscopy-based methods, impedance measurements are suitable to high-throughput studies on different cell lines, growth factors and chemical compounds. We present data indicating that this assay lends itself to dissect the biochemical signaling pathways controlling adhesive protrusions. Indeed, we show that the protrusion phase is sustained by actin polymerization, directly driven by growth factor stimulation. Contraction instead mainly relies on myosin action, pointing at a pivotal role of myosin in lamellipodia retraction.
Collapse
Affiliation(s)
- Paolo Armando Gagliardi
- 1] Department of Oncology, University of Torino, Torino, 10043, Italy [2] Candiolo Cancer Institute-FPO IRCCS, Candiolo, 10060, Italy
| | | | - Laura di Blasio
- 1] Department of Oncology, University of Torino, Torino, 10043, Italy [2] Candiolo Cancer Institute-FPO IRCCS, Candiolo, 10060, Italy
| | | | - Desiana Somale
- 1] Department of Oncology, University of Torino, Torino, 10043, Italy [2] Candiolo Cancer Institute-FPO IRCCS, Candiolo, 10060, Italy
| | - Giorgio Seano
- 1] Department of Oncology, University of Torino, Torino, 10043, Italy [2] Candiolo Cancer Institute-FPO IRCCS, Candiolo, 10060, Italy
| | - Federico Bussolino
- 1] Department of Oncology, University of Torino, Torino, 10043, Italy [2] Candiolo Cancer Institute-FPO IRCCS, Candiolo, 10060, Italy [3] Center for Molecular Systems Biology, University of Torino, 10124, Torino, Italy
| | - Luca Primo
- 1] Department of Oncology, University of Torino, Torino, 10043, Italy [2] Candiolo Cancer Institute-FPO IRCCS, Candiolo, 10060, Italy [3] Center for Molecular Systems Biology, University of Torino, 10124, Torino, Italy
| |
Collapse
|
62
|
Tozluoglu M, Mao Y, Bates PA, Sahai E. Cost-benefit analysis of the mechanisms that enable migrating cells to sustain motility upon changes in matrix environments. J R Soc Interface 2015; 12:20141355. [PMID: 25878128 PMCID: PMC4424668 DOI: 10.1098/rsif.2014.1355] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/19/2015] [Indexed: 12/30/2022] Open
Abstract
Cells can move through extracellular environments with varying geometries and adhesive properties. Adaptation to these differences is achieved by switching between different modes of motility, including lamellipod-driven and blebbing motility. Further, cells can modulate their level of adhesion to the extracellular matrix (ECM) depending on both the level of force applied to the adhesions and cell intrinsic biochemical properties. We have constructed a computational model of cell motility to investigate how motile cells transition between extracellular environments with varying surface continuity, confinement and adhesion. Changes in migration strategy are an emergent property of cells as the ECM geometry and adhesion changes. The transition into confined environments with discontinuous ECM fibres is sufficient to induce shifts from lamellipod-based to blebbing motility, while changes in confinement alone within a continuous geometry are not. The geometry of the ECM facilitates plasticity, by inducing shifts where the cell has high marginal gain from a mode change, and conserving persistency where the cell can continue movement regardless of the motility mode. This regulation of cell motility is independent of global changes in cytoskeletal properties, but requires locally higher linkage between the actin network and the plasma membrane at the cell rear, and changes in internal cell pressure. In addition to matrix geometry, we consider how cells might transition between ECM of different adhesiveness. We find that this requires positive feedback between the forces cells apply on the adhesion points, and the strength of the cell-ECM adhesions on those sites. This positive feedback leads to the emergence of a small number of highly adhesive cores, similar to focal adhesions. While the range of ECM adhesion levels the cell can invade is expanded with this feedback mechanism; the velocities are lowered for conditions where the positive feedback is not vital. Thus, plasticity of cell motility sacrifices the benefits of specialization, for robustness.
Collapse
Affiliation(s)
- Melda Tozluoglu
- MRC/UCL Laboratory for Molecular Cell Biology, University College London, London, UK Biomolecular Modelling Laboratory, London Research Institute, Cancer Research UK, London, UK Tumour Cell Biology Laboratory, London Research Institute, Cancer Research UK, London, UK
| | - Yanlan Mao
- MRC/UCL Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Paul A Bates
- Biomolecular Modelling Laboratory, London Research Institute, Cancer Research UK, London, UK
| | - Erik Sahai
- Tumour Cell Biology Laboratory, London Research Institute, Cancer Research UK, London, UK
| |
Collapse
|
63
|
Moehle MS, Daher JPL, Hull TD, Boddu R, Abdelmotilib HA, Mobley J, Kannarkat GT, Tansey MG, West AB. The G2019S LRRK2 mutation increases myeloid cell chemotactic responses and enhances LRRK2 binding to actin-regulatory proteins. Hum Mol Genet 2015; 24:4250-67. [PMID: 25926623 DOI: 10.1093/hmg/ddv157] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/27/2015] [Indexed: 12/20/2022] Open
Abstract
The Leucine rich repeat kinase 2 (LRRK2) gene is genetically and biochemically linked to several diseases that involve innate immunity. LRRK2 protein is highly expressed in phagocytic cells of the innate immune system, most notably in myeloid cells capable of mounting potent pro-inflammatory responses. Knockdown of LRRK2 protein in these cells reduces pro-inflammatory responses. However, the effect of LRRK2 pathogenic mutations that cause Parkinson's disease on myeloid cell function is not clear but could provide insight into LRRK2-linked disease. Here, we find that rats expressing G2019S LRRK2 have exaggerated pro-inflammatory responses and subsequent neurodegeneration after lipopolysaccharide injections in the substantia nigra, with a marked increase in the recruitment of CD68 myeloid cells to the site of injection. While G2019S LRRK2 expression did not affect immunological homeostasis, myeloid cells expressing G2019S LRRK2 show enhanced chemotaxis both in vitro in two-chamber assays and in vivo in response to thioglycollate injections in the peritoneum. The G2019S mutation enhanced the association between LRRK2 and actin-regulatory proteins that control chemotaxis. The interaction between G2019S LRRK2 and actin-regulatory proteins can be blocked by LRRK2 kinase inhibitors, although we did not find evidence that LRRK2 phosphorylated these interacting proteins. These results suggest that the primary mechanism of G2019S LRRK2 with respect to myeloid cell function in disease may be related to exaggerated chemotactic responses.
Collapse
Affiliation(s)
- Mark S Moehle
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics
| | | | | | - Ravindra Boddu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA and
| | | | | | - George T Kannarkat
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Malú G Tansey
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Andrew B West
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics,
| |
Collapse
|
64
|
Millarte V, Boncompain G, Tillmann K, Perez F, Sztul E, Farhan H. Phospholipase C γ1 regulates early secretory trafficking and cell migration via interaction with p115. Mol Biol Cell 2015; 26:2263-78. [PMID: 25904324 PMCID: PMC4462944 DOI: 10.1091/mbc.e15-03-0178] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/14/2015] [Indexed: 12/19/2022] Open
Abstract
The role of early secretory trafficking in the regulation of cell motility remains incompletely understood. Here we used a small interfering RNA screen to monitor the effects on structure of the Golgi apparatus and cell migration. Two major Golgi phenotypes were observed-fragmented and small Golgi. The latter exhibited a stronger correlation with a defect in cell migration. Among the small Golgi hits, we focused on phospholipase C γ1 (PLCγ1). We show that PLCγ1 regulates Golgi structure and cell migration independently of its catalytic activity but in a manner that depends on interaction with the tethering protein p115. PLCγ1 regulates the dynamics of p115 in the early secretory pathway, thereby controlling trafficking from the endoplasmic reticulum to the Golgi. Our results uncover a new function of PLCγ1 that is independent of its catalytic function and link early secretory trafficking to the regulation of cell migration.
Collapse
Affiliation(s)
- Valentina Millarte
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany Biotechnology Institute Thurgau, 8280 Kreuzlingen, Switzerland
| | | | - Kerstin Tillmann
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany Biotechnology Institute Thurgau, 8280 Kreuzlingen, Switzerland
| | - Franck Perez
- Institut Curie, CNRS UMR 144, 75248 Paris, France
| | - Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Hesso Farhan
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany Biotechnology Institute Thurgau, 8280 Kreuzlingen, Switzerland
| |
Collapse
|
65
|
Abstract
In this issue of Developmental Cell, Asokan and colleagues (2014) report that the phospholipase Cγ (PLCγ)-diacyl glycerol (DAG) protein kinase Cα (PKCα) signaling axis inhibits actomyosin bundling. This preferentially occurs at the leading edge of chemotactic mesenchymal cells via noncanonical phosphorylation of the regulatory light chain (RLC) of nonmuscle myosin II.
Collapse
Affiliation(s)
- Rocío Aguilar-Cuenca
- Universidad Autónoma de Madrid School of Medicine and Instituto de Investigación Sanitaria- Hospital Universitario de la Princesa (IIS-IP), Diego de León 62, 28006 Madrid, Spain
| | - Miguel Vicente-Manzanares
- Universidad Autónoma de Madrid School of Medicine and Instituto de Investigación Sanitaria- Hospital Universitario de la Princesa (IIS-IP), Diego de León 62, 28006 Madrid, Spain.
| |
Collapse
|
66
|
Beach JR, Hammer JA. Myosin II isoform co-assembly and differential regulation in mammalian systems. Exp Cell Res 2015; 334:2-9. [PMID: 25655283 DOI: 10.1016/j.yexcr.2015.01.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 10/24/2022]
Abstract
Non-muscle myosin 2 (NM2) is a major force-producing, actin-based motor in mammalian non-muscle cells, where it plays important roles in a broad range of fundamental biological processes, including cytokinesis, cell migration, and epithelial barrier function. This breadth of function at the tissue and cellular levels suggests extensive diversity and differential regulation of NM2 bipolar filaments, the major, if not sole, functional form of NM2s in vivo. Previous in vitro, cellular and animal studies indicate that some of this diversity is supported by the existence of multiple NM2 isoforms. Moreover, two recent studies have shown that these isoforms can co-assemble to form heterotypic filaments, further expanding functional diversity. In addition to isoform co-assembly, cells may differentially regulate NM2 function via isoform-specific expression, RLC phosphorylation, MHC phosphorylation or regulation via binding partners. Here, we provide a brief summary of NM2 filament assembly, summarize the recent findings regarding NM2 isoform co-assembly, consider the mechanisms cells might utilize to differentially regulate NM2 isoforms, and review the data available to support these mechanisms.
Collapse
Affiliation(s)
- Jordan R Beach
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - John A Hammer
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|