51
|
Vendel KJA, Tschirpke S, Shamsi F, Dogterom M, Laan L. Minimal in vitro systems shed light on cell polarity. J Cell Sci 2019; 132:132/4/jcs217554. [PMID: 30700498 DOI: 10.1242/jcs.217554] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cell polarity - the morphological and functional differentiation of cellular compartments in a directional manner - is required for processes such as orientation of cell division, directed cellular growth and motility. How the interplay of components within the complexity of a cell leads to cell polarity is still heavily debated. In this Review, we focus on one specific aspect of cell polarity: the non-uniform accumulation of proteins on the cell membrane. In cells, this is achieved through reaction-diffusion and/or cytoskeleton-based mechanisms. In reaction-diffusion systems, components are transformed into each other by chemical reactions and are moving through space by diffusion. In cytoskeleton-based processes, cellular components (i.e. proteins) are actively transported by microtubules (MTs) and actin filaments to specific locations in the cell. We examine how minimal systems - in vitro reconstitutions of a particular cellular function with a minimal number of components - are designed, how they contribute to our understanding of cell polarity (i.e. protein accumulation), and how they complement in vivo investigations. We start by discussing the Min protein system from Escherichia coli, which represents a reaction-diffusion system with a well-established minimal system. This is followed by a discussion of MT-based directed transport for cell polarity markers as an example of a cytoskeleton-based mechanism. To conclude, we discuss, as an example, the interplay of reaction-diffusion and cytoskeleton-based mechanisms during polarity establishment in budding yeast.
Collapse
Affiliation(s)
- Kim J A Vendel
- Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, The Netherlands
| | - Sophie Tschirpke
- Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, The Netherlands
| | - Fayezeh Shamsi
- Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, The Netherlands
| | - Marileen Dogterom
- Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, The Netherlands
| | - Liedewij Laan
- Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, The Netherlands
| |
Collapse
|
52
|
Maechler FA, Allier C, Roux A, Tomba C. Curvature-dependent constraints drive remodeling of epithelia. J Cell Sci 2019; 132:jcs222372. [PMID: 30578312 PMCID: PMC6398478 DOI: 10.1242/jcs.222372] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 12/17/2018] [Indexed: 12/16/2022] Open
Abstract
Epithelial tissues function as barriers that separate the organism from the environment. They usually have highly curved shapes, such as tubules or cysts. However, the processes by which the geometry of the environment and the cell's mechanical properties set the epithelium shape are not yet known. In this study, we encapsulated two epithelial cell lines, MDCK and J3B1A, into hollow alginate tubes and grew them under cylindrical confinement forming a complete monolayer. MDCK monolayers detached from the alginate shell at a constant rate, whereas J3B1A monolayers detached at a low rate unless the tube radius was reduced. We showed that this detachment is driven by contractile stresses in the epithelium and can be enhanced by local curvature. This allows us to conclude that J3B1A cells exhibit smaller contractility than MDCK cells. Monolayers inside curved tubes detach at a higher rate on the outside of a curve, confirming that detachment is driven by contraction.
Collapse
Affiliation(s)
- Florian A Maechler
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Cédric Allier
- CEA, LETI, DTBS, LISA, Université Grenoble Alpes, F-38000 Grenoble, France
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
- NCCR Chemical Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Caterina Tomba
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
53
|
Abstract
For over a century, the centrosome has been an organelle more easily tracked than understood, and the study of its peregrinations within the cell remains a chief underpinning of its functional investigation. Increasing attention and new approaches have been brought to bear on mechanisms that control centrosome localization in the context of cleavage plane determination, ciliogenesis, directional migration, and immunological synapse formation, among other cellular and developmental processes. The Golgi complex, often linked with the centrosome, presents a contrasting case of a pleiomorphic organelle for which functional studies advanced somewhat more rapidly than positional tracking. However, Golgi orientation and distribution has emerged as an area of considerable interest with respect to polarized cellular function. This chapter will review our current understanding of the mechanism and significance of the positioning of these organelles.
Collapse
|
54
|
Roman AC, Garrido-Jimenez S, Diaz-Chamorro S, Centeno F, Carvajal-Gonzalez JM. Centriole Positioning: Not Just a Little Dot in the Cell. Results Probl Cell Differ 2019; 67:201-221. [PMID: 31435796 DOI: 10.1007/978-3-030-23173-6_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Organelle positioning as many other morphological parameters in a cell is not random. Centriole positioning as centrosomes or ciliary basal bodies is not an exception to this rule in cell biology. Indeed, centriole positioning is a tightly regulated process that occurs during development, and it is critical for many organs to function properly, not just during development but also in the adulthood. In this book chapter, we overview our knowledge on centriole positioning in different and highly specialized animal cells like photoreceptor or ependymal cells. We will also discuss recent advances in the discovery of molecular pathways involved in this process, mostly related to the cytoskeleton and the cell polarity pathways. And finally, we present quantitative methods that have been used to assess centriole positioning in different cell types although mostly in epithelial cells.
Collapse
Affiliation(s)
- Angel-Carlos Roman
- Facultad de Ciencias, Departamento de Bioquímica, Biología Molecular y Genética, Universidad de Extremadura, Badajoz, Spain
| | - Sergio Garrido-Jimenez
- Facultad de Ciencias, Departamento de Bioquímica, Biología Molecular y Genética, Universidad de Extremadura, Badajoz, Spain
| | - Selene Diaz-Chamorro
- Facultad de Ciencias, Departamento de Bioquímica, Biología Molecular y Genética, Universidad de Extremadura, Badajoz, Spain
| | - Francisco Centeno
- Facultad de Ciencias, Departamento de Bioquímica, Biología Molecular y Genética, Universidad de Extremadura, Badajoz, Spain
| | - Jose Maria Carvajal-Gonzalez
- Facultad de Ciencias, Departamento de Bioquímica, Biología Molecular y Genética, Universidad de Extremadura, Badajoz, Spain.
| |
Collapse
|
55
|
Galis F, Metz JA, van Alphen JJ. Development and Evolutionary Constraints in Animals. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2018. [DOI: 10.1146/annurev-ecolsys-110617-062339] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We review the evolutionary importance of developmental mechanisms in constraining evolutionary changes in animals—in other words, developmental constraints. We focus on hard constraints that can act on macroevolutionary timescales. In particular, we discuss the causes and evolutionary consequences of the ancient metazoan constraint that differentiated cells cannot divide and constraints against changes of phylotypic stages in vertebrates and other higher taxa. We conclude that in all cases these constraints are caused by complex and highly controlled global interactivity of development, the disturbance of which has grave consequences. Mutations that affect such global interactivity almost unavoidably have many deleterious pleiotropic effects, which will be strongly selected against and will lead to long-term evolutionary stasis. The discussed developmental constraints have pervasive consequences for evolution and critically restrict regeneration capacity and body plan evolution.
Collapse
Affiliation(s)
- Frietson Galis
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
| | - Johan A.J. Metz
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
- International Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria
- Mathematical Institute, University of Leiden; 2333 CA Leiden, The Netherlands
| | - Jacques J.M. van Alphen
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| |
Collapse
|
56
|
Ma L, Yu Y, Qu X. Suppressing serum response factor inhibits invasion in cervical cancer cell lines via regulating Egr‑1 and epithelial-mesenchymal transition. Int J Mol Med 2018; 43:614-620. [PMID: 30365040 DOI: 10.3892/ijmm.2018.3954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/27/2018] [Indexed: 11/06/2022] Open
Abstract
Serum response factor (SRF) is a transcription factor that has important roles in tumor progression. However, its role in cervical cancer cell proliferation and invasion remains unclear. The present study revealed that SRF silencing constrained cervical cancer cell proliferation and invasion via controlling early growth response‑1 (Egr‑1). The results demonstrated that SRF was significantly increased in cervical cancer tissues and cell lines, compared with normal. Suppressing SRF, by using a loss‑of‑function experiment, constrained cervical cancer cell proliferation, invasion, and epithelial‑mesenchymal transition. Furthermore, SRF knockdown significantly downregulated Egr‑1 expression in cervical cancer cell lines, and overexpression of Egr‑1 reversed the effect of SRF on cell proliferation, invasion, and epithelial‑mesenchymal transition. Therefore, SRF may control cell proliferation and invasion by regulating Egr‑1 in cervical cancer.
Collapse
Affiliation(s)
- Liya Ma
- Clinical Skills Training Center, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Ying Yu
- Perinatal Care Division, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, P.R. China
| | - Xiaohui Qu
- Obstetrics and Gynecology, Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China
| |
Collapse
|
57
|
Blin G, Wisniewski D, Picart C, Thery M, Puceat M, Lowell S. Geometrical confinement controls the asymmetric patterning of brachyury in cultures of pluripotent cells. Development 2018; 145:dev166025. [PMID: 30115626 PMCID: PMC6176930 DOI: 10.1242/dev.166025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 07/30/2018] [Indexed: 01/02/2023]
Abstract
Diffusible signals are known to orchestrate patterning during embryogenesis, yet diffusion is sensitive to noise. The fact that embryogenesis is remarkably robust suggests that additional layers of regulation reinforce patterning. Here, we demonstrate that geometrical confinement orchestrates the spatial organisation of initially randomly positioned subpopulations of spontaneously differentiating mouse embryonic stem cells. We use micropatterning in combination with pharmacological manipulations and quantitative imaging to dissociate the multiple effects of geometry. We show that the positioning of a pre-streak-like population marked by brachyury (T) is decoupled from the size of its population, and that breaking radial symmetry of patterns imposes polarised patterning. We provide evidence for a model in which the overall level of diffusible signals together with the history of the cell culture define the number of T+ cells, whereas geometrical constraints guide patterning in a multi-step process involving a differential response of the cells to multicellular spatial organisation. Our work provides a framework for investigating robustness of patterning and provides insights into how to guide symmetry-breaking events in aggregates of pluripotent cells.
Collapse
Affiliation(s)
- Guillaume Blin
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Darren Wisniewski
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Catherine Picart
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Manuel Thery
- Univ. Grenoble-Alpes, CEA, CNRS, INRA, Biosciences and Biotechnology Institute of Grenoble, Laboratoire de Physiologie Cellulaire and Végétale, UMR5168, CytoMorpho Lab, 38054 Grenoble, France
- Univ. Paris Diderot, CEA, INSERM, Hôpital Saint Louis, Institut Universitaire d'Hematologie, UMRS1160, CytoMorpho Lab, 75010 Paris, France
| | - Michel Puceat
- INSERM U1251, Université Aix-Marseille, MMG, 13885 Marseille, France
| | - Sally Lowell
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH16 4UU, UK
| |
Collapse
|
58
|
Gavilan MP, Gandolfo P, Balestra FR, Arias F, Bornens M, Rios RM. The dual role of the centrosome in organizing the microtubule network in interphase. EMBO Rep 2018; 19:embr.201845942. [PMID: 30224411 DOI: 10.15252/embr.201845942] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 11/09/2022] Open
Abstract
Here, we address the regulation of microtubule nucleation during interphase by genetically ablating one, or two, of three major mammalian γ-TuRC-binding factors namely pericentrin, CDK5Rap2, and AKAP450. Unexpectedly, we find that while all of them participate in microtubule nucleation at the Golgi apparatus, they only modestly contribute at the centrosome where CEP192 has a more predominant function. We also show that inhibiting microtubule nucleation at the Golgi does not affect centrosomal activity, whereas manipulating the number of centrosomes with centrinone modifies microtubule nucleation activity of the Golgi apparatus. In centrosome-free cells, inhibition of Golgi-based microtubule nucleation triggers pericentrin-dependent formation of cytoplasmic-nucleating structures. Further depletion of pericentrin under these conditions leads to the generation of individual microtubules in a γ-tubulin-dependent manner. In all cases, a conspicuous MT network forms. Strikingly, centrosome loss increases microtubule number independently of where they were growing from. Our results lead to an unexpected view of the interphase centrosome that would control microtubule network organization not only by nucleating microtubules, but also by modulating the activity of alternative microtubule-organizing centers.
Collapse
Affiliation(s)
- Maria P Gavilan
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Pablo Gandolfo
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Fernando R Balestra
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Francisco Arias
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | | | - Rosa M Rios
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
59
|
Abstract
We present an overview of symmetry breaking in early mammalian development as a continuous process from compaction to specification of the body axes. While earlier studies have focused on individual symmetry-breaking events, recent advances enable us to explore progressive symmetry breaking during early mammalian development. Although we primarily discuss embryonic development of the mouse, as it is the best-studied mammalian model system to date, we also highlight the shared and distinct aspects between different mammalian species. Finally, we discuss how insights gained from studying mammalian development can be generalized in light of self-organization principles. With this review, we hope to highlight new perspectives in studying symmetry breaking and self-organization in multicellular systems.
Collapse
Affiliation(s)
- Hui Ting Zhang
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany;
| | - Takashi Hiiragi
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany;
| |
Collapse
|
60
|
Bornens M. Cell polarity: having and making sense of direction-on the evolutionary significance of the primary cilium/centrosome organ in Metazoa. Open Biol 2018; 8:180052. [PMID: 30068565 PMCID: PMC6119866 DOI: 10.1098/rsob.180052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022] Open
Abstract
Cell-autonomous polarity in Metazoans is evolutionarily conserved. I assume that permanent polarity in unicellular eukaryotes is required for cell motion and sensory reception, integration of these two activities being an evolutionarily constrained function. Metazoans are unique in making cohesive multicellular organisms through complete cell divisions. They evolved a primary cilium/centrosome (PC/C) organ, ensuring similar functions to the basal body/flagellum of unicellular eukaryotes, but in different cells, or in the same cell at different moments. The possibility that this innovation contributed to the evolution of individuality, in being instrumental in the early specification of the germ line during development, is further discussed. Then, using the example of highly regenerative organisms like planarians, which have lost PC/C organ in dividing cells, I discuss the possibility that part of the remodelling necessary to reach a new higher-level unit of selection in multi-cellular organisms has been triggered by conflicts among individual cell polarities to reach an organismic polarity. Finally, I briefly consider organisms with a sensorimotor organ like the brain that requires exceedingly elongated polarized cells for its activity. I conclude that beyond critical consequences for embryo development, the conservation of cell-autonomous polarity in Metazoans had far-reaching implications for the evolution of individuality.
Collapse
Affiliation(s)
- Michel Bornens
- Institut Curie, PSL Research University, CNRS - UMR 144, 75005 Paris, France
| |
Collapse
|
61
|
Chan CJ, Heisenberg CP, Hiiragi T. Coordination of Morphogenesis and Cell-Fate Specification in Development. Curr Biol 2018; 27:R1024-R1035. [PMID: 28950087 DOI: 10.1016/j.cub.2017.07.010] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During animal development, cell-fate-specific changes in gene expression can modify the material properties of a tissue and drive tissue morphogenesis. While mechanistic insights into the genetic control of tissue-shaping events are beginning to emerge, how tissue morphogenesis and mechanics can reciprocally impact cell-fate specification remains relatively unexplored. Here we review recent findings reporting how multicellular morphogenetic events and their underlying mechanical forces can feed back into gene regulatory pathways to specify cell fate. We further discuss emerging techniques that allow for the direct measurement and manipulation of mechanical signals in vivo, offering unprecedented access to study mechanotransduction during development. Examination of the mechanical control of cell fate during tissue morphogenesis will pave the way to an integrated understanding of the design principles that underlie robust tissue patterning in embryonic development.
Collapse
Affiliation(s)
- Chii J Chan
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | | | - Takashi Hiiragi
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| |
Collapse
|
62
|
Kim EJY, Korotkevich E, Hiiragi T. Coordination of Cell Polarity, Mechanics and Fate in Tissue Self-organization. Trends Cell Biol 2018; 28:541-550. [DOI: 10.1016/j.tcb.2018.02.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 02/06/2023]
|
63
|
St Johnston D. Establishing and transducing cell polarity: common themes and variations. Curr Opin Cell Biol 2018; 51:33-41. [PMID: 29153703 DOI: 10.1016/j.ceb.2017.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/10/2017] [Indexed: 12/17/2022]
Abstract
All cells in vivo have a primary axis of polarity that controls many aspects of their behaviour, such as the direction of protein secretion and signalling, the orientation of cell division and directed cell movement and morphogenesis. Cell polarise in response to extracellular cues or intracellular landmarks that initiate a signal transduction process that establishes complementary cortical domains of conserved polarity factors. These cortical domains then transmit this polarity to the rest of the cell by regulating the organisation of the cytoskeleton and membrane trafficking systems. Here I review work over the past couple of years that has elucidated many key features of how polarity is established and transduced in different systems, but has also revealed unexpected variations in polarity mechanisms depending on context.
Collapse
Affiliation(s)
- Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QN, UK.
| |
Collapse
|
64
|
Laurent J, Blin G, Chatelain F, Vanneaux V, Fuchs A, Larghero J, Théry M. Convergence of microengineering and cellular self-organization towards functional tissue manufacturing. Nat Biomed Eng 2017; 1:939-956. [DOI: 10.1038/s41551-017-0166-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/07/2017] [Indexed: 12/18/2022]
|
65
|
Kasioulis I, Das RM, Storey KG. Inter-dependent apical microtubule and actin dynamics orchestrate centrosome retention and neuronal delamination. eLife 2017; 6:e26215. [PMID: 29058679 PMCID: PMC5653239 DOI: 10.7554/elife.26215] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 09/11/2017] [Indexed: 12/27/2022] Open
Abstract
Detachment of newborn neurons from the neuroepithelium is required for correct neuronal architecture and functional circuitry. This process, also known as delamination, involves adherens-junction disassembly and acto-myosin-mediated abscission, during which the centrosome is retained while apical/ciliary membranes are shed. Cell-biological mechanisms mediating delamination are, however, poorly understood. Using live-tissue and super-resolution imaging, we uncover a centrosome-nucleated wheel-like microtubule configuration, aligned with the apical actin cable and adherens-junctions within chick and mouse neuroepithelial cells. These microtubules maintain adherens-junctions while actin maintains microtubules, adherens-junctions and apical end-foot dimensions. During neuronal delamination, acto-myosin constriction generates a tunnel-like actin-microtubule configuration through which the centrosome translocates. This movement requires inter-dependent actin and microtubule activity, and we identify drebrin as a potential coordinator of these cytoskeletal dynamics. Furthermore, centrosome compromise revealed that this organelle is required for delamination. These findings identify new cytoskeletal configurations and regulatory relationships that orchestrate neuronal delamination and may inform mechanisms underlying pathological epithelial cell detachment.
Collapse
Affiliation(s)
- Ioannis Kasioulis
- Division of Cell and Developmental Biology, School of Life SciencesUniversity of DundeeDundeeUnited Kingdom
| | - Raman M Das
- Division of Cell and Developmental Biology, School of Life SciencesUniversity of DundeeDundeeUnited Kingdom
| | - Kate G Storey
- Division of Cell and Developmental Biology, School of Life SciencesUniversity of DundeeDundeeUnited Kingdom
| |
Collapse
|
66
|
Dubois F, Alpha K, Turner CE. Paxillin regulates cell polarization and anterograde vesicle trafficking during cell migration. Mol Biol Cell 2017; 28:3815-3831. [PMID: 29046398 PMCID: PMC5739297 DOI: 10.1091/mbc.e17-08-0488] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/26/2017] [Accepted: 10/13/2017] [Indexed: 12/25/2022] Open
Abstract
Cell polarization and directed migration play pivotal roles in diverse physiological and pathological processes. Herein, we identify new roles for paxillin-mediated HDAC6 inhibition in regulating key aspects of cell polarization in both two-dimensional and one-dimensional matrix environments. Paxillin, by modulating microtubule acetylation through HDAC6 regulation, was shown to control centrosome and Golgi reorientation toward the leading edge, a hallmark of cell polarization to ensure directed trafficking of promigratory factors. Paxillin was also required for pericentrosomal Golgi localization and centrosome cohesion, independent of its localization to, and role in, focal adhesion signaling. In addition, we provide evidence of an accumulation of paxillin at the centrosome that is dependent on focal adhesion kinase (FAK) and identify an important collaboration between paxillin and FAK signaling in the modulation of microtubule acetylation, as well as centrosome and Golgi organization and polarization. Finally, paxillin was also shown to be required for optimal anterograde vesicular trafficking to the plasma membrane.
Collapse
Affiliation(s)
- Fatemeh Dubois
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Kyle Alpha
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Christopher E Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
67
|
Pitaval A, Senger F, Letort G, Gidrol X, Guyon L, Sillibourne J, Théry M. Microtubule stabilization drives 3D centrosome migration to initiate primary ciliogenesis. J Cell Biol 2017; 216:3713-3728. [PMID: 28993469 PMCID: PMC5674878 DOI: 10.1083/jcb.201610039] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 06/02/2017] [Accepted: 08/17/2017] [Indexed: 01/09/2023] Open
Abstract
The classical view of centrosome decentering and migration to the cell periphery during ciliogenesis is that it is pulled toward its final destination. Here, Pitaval et al. argue that microtubule stabilization in the early stages of ciliogenesis generates pushing forces that propel the centrosome toward the apical pole. Primary cilia are sensory organelles located at the cell surface. Their assembly is primed by centrosome migration to the apical surface, yet surprisingly little is known about this initiating step. To gain insight into the mechanisms driving centrosome migration, we exploited the reproducibility of cell architecture on adhesive micropatterns to investigate the cytoskeletal remodeling supporting it. Microtubule network densification and bundling, with the transient formation of an array of cold-stable microtubules, and actin cytoskeleton asymmetrical contraction participate in concert to drive apical centrosome migration. The distal appendage protein Cep164 appears to be a key actor involved in the cytoskeleton remodeling and centrosome migration, whereas intraflagellar transport 88’s role seems to be restricted to axoneme elongation. Together, our data elucidate the hitherto unexplored mechanism of centrosome migration and show that it is driven by the increase and clustering of mechanical forces to push the centrosome toward the cell apical pole.
Collapse
Affiliation(s)
- Amandine Pitaval
- UMR_S 1038, Biomics Lab, University Grenoble-Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Institut National de la Santé et de la Recherche, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble, France.,UMR 5168, CytoMorpho Lab, University Grenoble-Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble, France
| | - Fabrice Senger
- UMR 5168, CytoMorpho Lab, University Grenoble-Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble, France
| | - Gaëlle Letort
- UMR 5168, CytoMorpho Lab, University Grenoble-Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble, France
| | - Xavier Gidrol
- UMR_S 1038, Biomics Lab, University Grenoble-Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Institut National de la Santé et de la Recherche, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble, France
| | - Laurent Guyon
- UMR_S 1036, Biologie du Cancer et de l'Infection, University Grenoble-Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Institut National de la Santé et de la Recherche, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble, France
| | - James Sillibourne
- UMR 5168, CytoMorpho Lab, University Grenoble-Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble, France .,UMRS 1160, CytoMorpho Lab, University Paris Diderot, Institut National de la Santé et de la Recherche, Hôpital Saint Louis, Institut Universitaire d'Hematologie, Paris, France
| | - Manuel Théry
- UMR 5168, CytoMorpho Lab, University Grenoble-Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble, France .,UMRS 1160, CytoMorpho Lab, University Paris Diderot, Institut National de la Santé et de la Recherche, Hôpital Saint Louis, Institut Universitaire d'Hematologie, Paris, France
| |
Collapse
|
68
|
Chu TL, Connell M, Zhou L, He Z, Won J, Chen H, Rahavi SM, Mohan P, Nemirovsky O, Fotovati A, Pujana MA, Reid GS, Nielsen TO, Pante N, Maxwell CA. Cell Cycle–Dependent Tumor Engraftment and Migration Are Enabled by Aurora-A. Mol Cancer Res 2017; 16:16-31. [DOI: 10.1158/1541-7786.mcr-17-0417] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/27/2017] [Accepted: 10/04/2017] [Indexed: 11/16/2022]
|
69
|
Duchemin-Pelletier E, Baulard M, Spreux E, Prioux M, Burute M, Mograbi B, Guyon L, Théry M, Cochet C, Filhol O. Stem Cell-Like Properties of CK2β-down Regulated Mammary Cells. Cancers (Basel) 2017; 9:cancers9090114. [PMID: 28858215 PMCID: PMC5615329 DOI: 10.3390/cancers9090114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 08/21/2017] [Accepted: 08/28/2017] [Indexed: 01/01/2023] Open
Abstract
The ubiquitous protein kinase CK2 has been demonstrated to be overexpressed in a number of human tumours. This enzyme is composed of two catalytic α or α’ subunits and a dimer of β regulatory subunits whose expression levels are probably implicated in CK2 regulation. Several recent papers reported that unbalanced expression of CK2 subunits is sufficient to drive epithelial to mesenchymal transition, a process involved in cancer invasion and metastasis. Herein, through transcriptomic and miRNA analysis together with comparison of cellular properties between wild type and CK2β-knock-down MCF10A cells, we show that down-regulation of CK2β subunit in mammary epithelial cells induces the acquisition of stem cell-like properties associated with perturbed polarity, CD44high/CD24low antigenic phenotype and the ability to grow under anchorage-independent conditions. These data demonstrate that a CK2β level establishes a critical cell fate threshold in the control of epithelial cell plasticity. Thus, this regulatory subunit functions as a nodal protein to maintain an epithelial phenotype and its depletion drives breast cell stemness.
Collapse
Affiliation(s)
- Eve Duchemin-Pelletier
- Chemistry and Biology Department, Université Grenoble Alpes, F-38400 Grenoble, France.
- Biology of Cancer and Infection, UMRS1036, Inserm, F-38054 Grenoble, France.
- Biology of Cancer and Infection, Biosciences & Biotechnology Institute of Grenoble, CEA, F-38054 Grenoble, France.
| | - Megghane Baulard
- Chemistry and Biology Department, Université Grenoble Alpes, F-38400 Grenoble, France.
- Biology of Cancer and Infection, UMRS1036, Inserm, F-38054 Grenoble, France.
- Biology of Cancer and Infection, Biosciences & Biotechnology Institute of Grenoble, CEA, F-38054 Grenoble, France.
| | - Elodie Spreux
- Chemistry and Biology Department, Université Grenoble Alpes, F-38400 Grenoble, France.
- Biology of Cancer and Infection, UMRS1036, Inserm, F-38054 Grenoble, France.
- Biology of Cancer and Infection, Biosciences & Biotechnology Institute of Grenoble, CEA, F-38054 Grenoble, France.
| | - Magali Prioux
- Chemistry and Biology Department, Université Grenoble Alpes, F-38400 Grenoble, France.
- Biology of Cancer and Infection, UMRS1036, Inserm, F-38054 Grenoble, France.
- Biology of Cancer and Infection, Biosciences & Biotechnology Institute of Grenoble, CEA, F-38054 Grenoble, France.
- Laboratoire de Physiologie Cellulaire et Végétale, Biosciences & Biotechnology Institute of Grenoble, UMR5168, CEA/INRA/CNRS, F-38054 Grenoble, France.
| | - Mithila Burute
- Laboratoire de Physiologie Cellulaire et Végétale, Biosciences & Biotechnology Institute of Grenoble, UMR5168, CEA/INRA/CNRS, F-38054 Grenoble, France.
| | - Baharia Mograbi
- Biology Department, Inserm, CNRS, IRCAN, Université Côte d'Azur, F-06000 Nice, France.
| | - Laurent Guyon
- Chemistry and Biology Department, Université Grenoble Alpes, F-38400 Grenoble, France.
- Biology of Cancer and Infection, UMRS1036, Inserm, F-38054 Grenoble, France.
- Biology of Cancer and Infection, Biosciences & Biotechnology Institute of Grenoble, CEA, F-38054 Grenoble, France.
| | - Manuel Théry
- Laboratoire de Physiologie Cellulaire et Végétale, Biosciences & Biotechnology Institute of Grenoble, UMR5168, CEA/INRA/CNRS, F-38054 Grenoble, France.
| | - Claude Cochet
- Chemistry and Biology Department, Université Grenoble Alpes, F-38400 Grenoble, France.
- Biology of Cancer and Infection, UMRS1036, Inserm, F-38054 Grenoble, France.
- Biology of Cancer and Infection, Biosciences & Biotechnology Institute of Grenoble, CEA, F-38054 Grenoble, France.
| | - Odile Filhol
- Chemistry and Biology Department, Université Grenoble Alpes, F-38400 Grenoble, France.
- Biology of Cancer and Infection, UMRS1036, Inserm, F-38054 Grenoble, France.
- Biology of Cancer and Infection, Biosciences & Biotechnology Institute of Grenoble, CEA, F-38054 Grenoble, France.
| |
Collapse
|
70
|
Abstract
The organization of microtubule networks is crucial for controlling chromosome segregation during cell division, for positioning and transport of different organelles, and for cell polarity and morphogenesis. The geometry of microtubule arrays strongly depends on the localization and activity of the sites where microtubules are nucleated and where their minus ends are anchored. Such sites are often clustered into structures known as microtubule-organizing centers, which include the centrosomes in animals and spindle pole bodies in fungi. In addition, other microtubules, as well as membrane compartments such as the cell nucleus, the Golgi apparatus, and the cell cortex, can nucleate, stabilize, and tether microtubule minus ends. These activities depend on microtubule-nucleating factors, such as γ-tubulin-containing complexes and their activators and receptors, and microtubule minus end-stabilizing proteins with their binding partners. Here, we provide an overview of the current knowledge on how such factors work together to control microtubule organization in different systems.
Collapse
Affiliation(s)
- Jingchao Wu
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, The Netherlands; ,
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, The Netherlands; ,
| |
Collapse
|
71
|
Mihalko EP, Brown AC. Material Strategies for Modulating Epithelial to Mesenchymal Transitions. ACS Biomater Sci Eng 2017; 4:1149-1161. [PMID: 33418653 DOI: 10.1021/acsbiomaterials.6b00751] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Epithelial to mesenchymal transitions (EMT) involve the phenotypic change of epithelial cells into fibroblast-like cells. This process is accompanied by the loss of cell-cell contacts, increased extracellular matrix (ECM) production, stress fiber alignment, and an increase in cell mobility. While essential for development and wound repair, EMT has also been recognized as a contributing factor to fibrotic diseases and cancer. Both chemical and mechanical cues, such as tumor necrosis factor alpha, NF-κB, Wnt, Notch, interleukin-8, metalloproteinase-3, ECM proteins, and ECM stiffness can determine the degree and duration of EMT events. Additionally, transforming growth factor beta is a primary driver of EMT and, interestingly, can be activated through cell-mediated mechanoactivation. In this review, we highlight recent findings demonstrating the contribution of mechanical stimuli, such as tissue and material stiffness, in driving EMT. We then highlight material strategies for controlling EMT events. Finally, we discuss drivers of the similar process of endothelial to mesenchymal transition (EndoMT) and corresponding material strategies for controlling EndoMT.
Collapse
Affiliation(s)
- Emily P Mihalko
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ashley C Brown
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|