51
|
Abstract
Chromosome segregation errors in human oocytes lead to aneuploid embryos that cause infertility and birth defects. Here we provide an overview of the chromosome-segregation process in the mammalian oocyte, highlighting mechanistic differences between oocytes and somatic cells that render oocytes so prone to segregation error. These differences include the extremely large size of the oocyte cytoplasm, the unique geometry of meiosis-I chromosomes, idiosyncratic function of the spindle assembly checkpoint, and dramatically altered oocyte cell-cycle control and spindle assembly, as compared to typical somatic cells. We summarise recent work suggesting that aging leads to a further deterioration in fidelity of chromosome segregation by impacting multiple components of the chromosome-segregation machinery. In addition, we compare and contrast recent results from mouse and human oocytes, which exhibit overlapping defects to differing extents. We conclude that the striking propensity of the oocyte to mis-segregate chromosomes reflects the unique challenges faced by the spindle in a highly unusual cellular environment.
Collapse
Affiliation(s)
- Aleksandar I Mihajlović
- Centre Recherche CHUM and Department OBGYN, Université de Montreal, Montreal, Quebec, Canada
| | - Greg FitzHarris
- Centre Recherche CHUM and Department OBGYN, Université de Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
52
|
Akera T, Trimm E, Lampson MA. Molecular Strategies of Meiotic Cheating by Selfish Centromeres. Cell 2019; 178:1132-1144.e10. [PMID: 31402175 DOI: 10.1016/j.cell.2019.07.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/11/2019] [Accepted: 06/25/2019] [Indexed: 10/26/2022]
Abstract
Asymmetric division in female meiosis creates selective pressure favoring selfish centromeres that bias their transmission to the egg. This centromere drive can explain the paradoxical rapid evolution of both centromere DNA and centromere-binding proteins despite conserved centromere function. Here, we define a molecular pathway linking expanded centromeres to histone phosphorylation and recruitment of microtubule destabilizing factors, leading to detachment of selfish centromeres from spindle microtubules that would direct them to the polar body. Exploiting centromere divergence between species, we show that selfish centromeres in two hybrid mouse models use the same molecular pathway but modulate it differently to enrich destabilizing factors. Our results indicate that increasing microtubule destabilizing activity is a general strategy for drive in both models, but centromeres have evolved distinct mechanisms to increase that activity. Furthermore, we show that drive depends on slowing meiotic progression, suggesting that selfish centromeres can be suppressed by regulating meiotic timing.
Collapse
Affiliation(s)
- Takashi Akera
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emily Trimm
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael A Lampson
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
53
|
Rieckhoff EM, Ishihara K, Brugués J. How to tune spindle size relative to cell size? Curr Opin Cell Biol 2019; 60:139-144. [PMID: 31377657 DOI: 10.1016/j.ceb.2019.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 12/20/2022]
Abstract
Cells need to regulate the size and shape of their organelles for proper function. For example, the mitotic spindle adapts its size to changes in cell size over several orders of magnitude, but we lack a mechanistic understanding of how this is achieved. Here, we review our current knowledge of how small and large spindles assemble and ask which microtubule-based biophysical processes (nucleation, polymerization dynamics, transport) may be responsible for spindle size regulation. Finally, we review possible cell-scale mechanisms that put spindle size under the regulation of cell size.
Collapse
Affiliation(s)
- Elisa Maria Rieckhoff
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Keisuke Ishihara
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Jan Brugués
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
| |
Collapse
|
54
|
Heasley LR, DeLuca JG, Markus SM. Effectors of the spindle assembly checkpoint are confined within the nucleus of Saccharomyces cerevisiae. Biol Open 2019; 8:bio.037424. [PMID: 31182632 PMCID: PMC6602339 DOI: 10.1242/bio.037424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The spindle assembly checkpoint (SAC) prevents erroneous chromosome segregation by delaying mitotic progression when chromosomes are incorrectly attached to the mitotic spindle. This delay is mediated by mitotic checkpoint complexes (MCCs), which assemble at unattached kinetochores and repress the activity of the anaphase promoting complex/cyclosome (APC/C). The cellular localizations of MCCs are likely critical for proper SAC function, yet remain poorly defined. We recently demonstrated that in mammalian cells, in which the nuclear envelope disassembles during mitosis, MCCs diffuse throughout the spindle region and cytoplasm. Here, we employed an approach using binucleate yeast zygotes to examine the localization dynamics of SAC effectors required for MCC assembly and function in budding yeast, in which the nuclear envelope remains intact throughout mitosis. Our findings indicate that in yeast, MCCs are confined to the nuclear compartment and excluded from the cytoplasm during mitosis. Summary: The effectors of the spindle assembly checkpoint are confined with the nuclear compartment of budding yeast, and cannot exchange between nuclei in a binucleate zygote.
Collapse
Affiliation(s)
- Lydia R Heasley
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Jennifer G DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Steven M Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
55
|
Namgoong S, Kim NH. Meiotic spindle formation in mammalian oocytes: implications for human infertility. Biol Reprod 2019; 98:153-161. [PMID: 29342242 DOI: 10.1093/biolre/iox145] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/27/2017] [Indexed: 12/12/2022] Open
Abstract
In the final stage of oogenesis, mammalian oocytes generate a meiotic spindle and undergo chromosome segregation to yield an egg that is ready for fertilization. Herein, we describe the recent advances in understanding the mechanisms controlling formation of the meiotic spindle in metaphase I (MI) and metaphase II (MII) in mammalian oocytes, and focus on the differences between mouse and human oocytes. Unlike mitotic cells, mammalian oocytes lack typical centrosomes that consist of two centrioles and the surrounding pericentriolar matrix proteins, which serve as microtubule-organizing centers (MTOCs) in most somatic cells. Instead, oocytes rely on different mechanisms for the formation of microtubules in MI spindles. Two different mechanisms have been described for MI spindle formation in mammalian oocytes. Chromosome-mediated microtubule formation, including RAN-mediated spindle formation and chromosomal passenger complex-mediated spindle elongation, controls the growth of microtubules from chromatin, while acentriolar MTOC-mediated microtubule formation contributes to spindle formation. Mouse oocytes utilize both chromatin- and MTOC-mediated pathways for microtubule formation. The existence of both pathways may provide a fail-safe mechanism to ensure high fidelity of chromosome segregation during meiosis. Unlike mouse oocytes, human oocytes considered unsuitable for clinical in vitro fertilization procedures, lack MTOCs; this may explain why meiosis in human oocytes is often error-prone. Understanding the mechanisms of MI/MII spindle formation, spindle assembly checkpoint, and chromosome segregation, in mammalian oocytes, will provide valuable insights into the molecular mechanisms of human infertility.
Collapse
Affiliation(s)
| | - Nam-Hyung Kim
- Department of Animal Science, Chungbuk National University, Cheong-Ju, Chungbuk, Republic of Korea
| |
Collapse
|
56
|
Schneider I, Ellenberg J. Mysteries in embryonic development: How can errors arise so frequently at the beginning of mammalian life? PLoS Biol 2019; 17:e3000173. [PMID: 30840627 PMCID: PMC6422315 DOI: 10.1371/journal.pbio.3000173] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/18/2019] [Indexed: 12/21/2022] Open
Abstract
Chromosome segregation errors occur frequently during female meiosis but also in the first mitoses of mammalian preimplantation development. Such errors can lead to aneuploidy, spontaneous abortions, and birth defects. Some of the mechanisms underlying these errors in meiosis have been deciphered but which mechanisms could cause chromosome missegregation in the first embryonic cleavage divisions is mostly a “mystery”. In this article, we describe the starting conditions and challenges of these preimplantation divisions, which might impair faithful chromosome segregation. We also highlight the pending research to provide detailed insight into the mechanisms and regulation of preimplantation mitoses. Starting a new life is a challenging business. This Essay explores the changes at the oocyte-to-embryo transition to highlight the circumstances under which the very first and decisive — but ‘mysteriously’ error-prone — mitotic divisions occur.
Collapse
Affiliation(s)
- Isabell Schneider
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Candidate for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
57
|
Cahoon CK, Libuda DE. Leagues of their own: sexually dimorphic features of meiotic prophase I. Chromosoma 2019; 128:199-214. [PMID: 30826870 PMCID: PMC6823309 DOI: 10.1007/s00412-019-00692-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/28/2019] [Accepted: 02/05/2019] [Indexed: 01/12/2023]
Abstract
Meiosis is a conserved cell division process that is used by sexually reproducing organisms to generate haploid gametes. Males and females produce different end products of meiosis: eggs (females) and sperm (males). In addition, these unique end products demonstrate sex-specific differences that occur throughout meiosis to produce the final genetic material that is packaged into distinct gametes with unique extracellular morphologies and nuclear sizes. These sexually dimorphic features of meiosis include the meiotic chromosome architecture, in which both the lengths of the chromosomes and the requirement for specific meiotic axis proteins being different between the sexes. Moreover, these changes likely cause sex-specific changes in the recombination landscape with the sex that has the longer chromosomes usually obtaining more crossovers. Additionally, epigenetic regulation of meiosis may contribute to sexually dimorphic recombination landscapes. Here we explore the sexually dimorphic features of both the chromosome axis and crossing over for each stage of meiotic prophase I in Mus musculus, Caenorhabditis elegans, and Arabidopsis thaliana. Furthermore, we consider how sex-specific changes in the meiotic chromosome axes and the epigenetic landscape may function together to regulate crossing over in each sex, indicating that the mechanisms controlling crossing over may be different in oogenesis and spermatogenesis.
Collapse
Affiliation(s)
- Cori K Cahoon
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1370 Franklin Boulevard, Eugene, OR, 97403-1229, USA
| | - Diana E Libuda
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1370 Franklin Boulevard, Eugene, OR, 97403-1229, USA.
| |
Collapse
|
58
|
Lane S, Kauppi L. Meiotic spindle assembly checkpoint and aneuploidy in males versus females. Cell Mol Life Sci 2019; 76:1135-1150. [PMID: 30564841 PMCID: PMC6513798 DOI: 10.1007/s00018-018-2986-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/12/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022]
Abstract
The production of gametes (sperm and eggs in mammals) involves two sequential cell divisions, meiosis I and meiosis II. In meiosis I, homologous chromosomes segregate to different daughter cells, and meiosis II resembles mitotic divisions in that sister chromatids separate. While in principle the process is identical in males and females, the time frame and susceptibility to chromosomal defects, including achiasmy and cohesion weakening, and the response to mis-segregating chromosomes are not. In this review, we compare and contrast meiotic spindle assembly checkpoint function and aneuploidy in the two sexes.
Collapse
Affiliation(s)
- Simon Lane
- Department of Chemistry and the Institute for Life Sciences, University of Southampton, Building 85, Highfield Campus, Southampton, SO171BJ, UK
| | - Liisa Kauppi
- Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00014, Helsinki, Finland.
| |
Collapse
|
59
|
|
60
|
Cell-Size-Independent Spindle Checkpoint Failure Underlies Chromosome Segregation Error in Mouse Embryos. Curr Biol 2019; 29:865-873.e3. [PMID: 30773364 DOI: 10.1016/j.cub.2018.12.042] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/23/2018] [Accepted: 12/21/2018] [Indexed: 12/31/2022]
Abstract
Chromosome segregation errors during mammalian preimplantation development cause "mosaic" embryos comprising a mixture of euploid and aneuploid cells, which reduce the potential for a successful pregnancy [1-5], but why these errors are common is unknown. In most cells, chromosome segregation error is averted by the spindle assembly checkpoint (SAC), which prevents anaphase-promoting complex (APC/C) activation and anaphase onset until chromosomes are aligned with kinetochores attached to spindle microtubules [6, 7], but little is known about the SAC's role in the early mammalian embryo. In C. elegans, the SAC is weak in early embryos, and it strengthens during early embryogenesis as a result of progressively lessening cell size [8, 9]. Here, using live imaging, micromanipulation, gene knockdown, and pharmacological approaches, we show that this is not the case in mammalian embryos. Misaligned chromosomes in the early mouse embryo can recruit SAC components to mount a checkpoint signal, but this signal fails to prevent anaphase onset, leading to high levels of chromosome segregation error. We find that failure of the SAC to prolong mitosis is not attributable to cell size. We show that mild chemical inhibition of APC/C can extend mitosis, thereby allowing more time for correct chromosome alignment and reducing segregation errors. SAC-APC/C disconnect thus presents a mechanistic explanation for frequent chromosome segregation errors in early mammalian embryos. Moreover, our data provide proof of principle that modulation of the SAC-APC/C axis can increase the likelihood of error-free chromosome segregation in cultured mammalian embryos.
Collapse
|
61
|
Kyogoku H, Wakayama T, Kitajima TS, Miyano T. Single nucleolus precursor body formation in the pronucleus of mouse zygotes and SCNT embryos. PLoS One 2018; 13:e0202663. [PMID: 30125305 PMCID: PMC6101414 DOI: 10.1371/journal.pone.0202663] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/07/2018] [Indexed: 11/18/2022] Open
Abstract
Mammalian oocytes and zygotes have nucleoli that are transcriptionally inactive and structurally distinct from nucleoli in somatic cells. These nucleoli have been termed nucleolus precursor bodies (NPBs). Recent research has shown that NPBs are important for embryonic development, but they are only required during pronuclear formation. After fertilization, multiple small NPBs are transiently formed in male and female pronuclei and then fuse into a single large NPB in zygotes. In cloned embryos produced by somatic cell nuclear transfer (SCNT), multiple NPBs are formed and maintained in the pseudo-pronucleus, and this is considered an abnormality of the cloned embryos. Despite this difference between SCNT and normal embryos, it is unclear how the size and number of NPBs in pronuclei is determined. Here, we show that in mouse embryos, the volume of NPB materials plays a major role in the NPB scaling through a limiting component mechanism and determines whether a single or multiple NPBs will form in the pronucleus. Extra NPB- and extra MII spindle-injection experiments demonstrated that the total volume of NPBs was maintained regardless of the pronucleus number and the ratio of pronucleus/NPB is important for fusion into a single NPB. Based on these results, we examined whether extra-NPB injection rescued multiple NPB maintenance in SCNT embryos. When extra-NPBs were injected into enucleated-MII oocytes before SCNT, the number of NPBs in pseudo-pronuclei of SCNT embryos was reduced. These results indicate that multiple NPB maintenance in SCNT embryos is caused by insufficient volume of NPB.
Collapse
Affiliation(s)
- Hirohisa Kyogoku
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Laboratory for Chromosome Segregation, Center for Developmental Biology, RIKEN, Kobe, Japan
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- * E-mail:
| | - Teruhiko Wakayama
- Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Japan
| | - Tomoya S. Kitajima
- Laboratory for Chromosome Segregation, Center for Developmental Biology, RIKEN, Kobe, Japan
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Takashi Miyano
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|
62
|
Regulation of the meiotic divisions of mammalian oocytes and eggs. Biochem Soc Trans 2018; 46:797-806. [PMID: 29934303 PMCID: PMC6103459 DOI: 10.1042/bst20170493] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 12/28/2022]
Abstract
Initiated by luteinizing hormone and finalized by the fertilizing sperm, the mammalian oocyte completes its two meiotic divisions. The first division occurs in the mature Graafian follicle during the hours preceding ovulation and culminates in an extreme asymmetric cell division and the segregation of the two pairs of homologous chromosomes. The newly created mature egg rearrests at metaphase of the second meiotic division prior to ovulation and only completes meiosis following a Ca2+ signal initiated by the sperm at gamete fusion. Here, we review the cellular events that govern the passage of the oocyte through meiosis I with a focus on the role of the spindle assembly checkpoint in regulating its timing. In meiosis II, we examine how the egg achieves its arrest and how the fertilization Ca2+ signal allows the initiation of embryo development.
Collapse
|
63
|
Heald R, Gibeaux R. Subcellular scaling: does size matter for cell division? Curr Opin Cell Biol 2018; 52:88-95. [PMID: 29501026 PMCID: PMC5988940 DOI: 10.1016/j.ceb.2018.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/05/2018] [Accepted: 02/13/2018] [Indexed: 12/14/2022]
Abstract
Among different species or cell types, or during early embryonic cell divisions that occur in the absence of cell growth, the size of subcellular structures, including the nucleus, chromosomes, and mitotic spindle, scale with cell size. Maintaining correct subcellular scales is thought to be important for many cellular processes and, in particular, for mitosis. In this review, we provide an update on nuclear and chromosome scaling mechanisms and their significance in metazoans, with a focus on Caenorhabditis elegans, Xenopus and mammalian systems, for which a common role for the Ran (Ras-related nuclear protein)-dependent nuclear transport system has emerged.
Collapse
Affiliation(s)
- Rebecca Heald
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| | - Romain Gibeaux
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
64
|
Gerhold AR, Poupart V, Labbé JC, Maddox PS. Spindle assembly checkpoint strength is linked to cell fate in the Caenorhabditis elegans embryo. Mol Biol Cell 2018; 29:1435-1448. [PMID: 29688794 PMCID: PMC6014101 DOI: 10.1091/mbc.e18-04-0215] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The spindle assembly checkpoint (SAC) is a conserved mitotic regulator that preserves genome stability by monitoring kinetochore-microtubule attachments and blocking anaphase onset until chromosome biorientation is achieved. Despite its central role in maintaining mitotic fidelity, the ability of the SAC to delay mitotic exit in the presence of kinetochore-microtubule attachment defects (SAC "strength") appears to vary widely. How different cellular aspects drive this variation remains largely unknown. Here we show that SAC strength is correlated with cell fate during development of Caenorhabditis elegans embryos, with germline-fated cells experiencing longer mitotic delays upon spindle perturbation than somatic cells. These differences are entirely dependent on an intact checkpoint and only partially attributable to differences in cell size. In two-cell embryos, cell size accounts for half of the difference in SAC strength between the larger somatic AB and the smaller germline P1 blastomeres. The remaining difference requires asymmetric cytoplasmic partitioning downstream of PAR polarity proteins, suggesting that checkpoint-regulating factors are distributed asymmetrically during early germ cell divisions. Our results indicate that SAC activity is linked to cell fate and reveal a hitherto unknown interaction between asymmetric cell division and the SAC.
Collapse
Affiliation(s)
- Abigail R Gerhold
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Vincent Poupart
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Jean-Claude Labbé
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada.,Department of Pathology and Cell Biology, Université de Montréal, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Paul S Maddox
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
65
|
Milunovic-Jevtic A, Jevtic P, Levy DL, Gatlin JC. In vivo mitotic spindle scaling can be modulated by changing the levels of a single protein: the microtubule polymerase XMAP215. Mol Biol Cell 2018; 29:1311-1317. [PMID: 29851557 PMCID: PMC5994900 DOI: 10.1091/mbc.e18-01-0011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In many organisms, early embryonic development is characterized by a series of reductive cell divisions that result in rapid increases in cell number and concomitant decreases in cell size. Intracellular organelles, such as the nucleus and mitotic spindle, also become progressively smaller during this developmental window, but the molecular and mechanistic underpinnings of these scaling relationships are not fully understood. For the mitotic spindle, changes in cytoplasmic volume are sufficient to account for size scaling during early development in certain organisms. This observation is consistent with models that evoke a limiting component, whereby the smaller absolute number of spindle components in smaller cells limits spindle size. Here we investigate the role of a candidate factor for developmental spindle scaling, the microtubule polymerase XMAP215. Microinjection of additional XMAP215 protein into Xenopus laevis embryos was sufficient to induce the assembly of larger spindles during developmental stages 6.5, 7, and 8, whereas addition of a polymerase-incompetent XMAP215 mutant resulted in a downward shift in the in vivo spindle scaling curve. In sum, these results indicate that even small cells are able to produce larger spindles if microtubule growth rates are increased and suggest that structural components are not limiting.
Collapse
Affiliation(s)
- Ana Milunovic-Jevtic
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071.,Molecular and Cellular Life Sciences Program, University of Wyoming, Laramie, WY 82071
| | - Predrag Jevtic
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071.,Molecular and Cellular Life Sciences Program, University of Wyoming, Laramie, WY 82071
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071.,Molecular and Cellular Life Sciences Program, University of Wyoming, Laramie, WY 82071
| | - J C Gatlin
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071.,Molecular and Cellular Life Sciences Program, University of Wyoming, Laramie, WY 82071
| |
Collapse
|
66
|
Bennabi I, Quéguiner I, Kolano A, Boudier T, Mailly P, Verlhac MH, Terret ME. Shifting meiotic to mitotic spindle assembly in oocytes disrupts chromosome alignment. EMBO Rep 2018; 19:368-381. [PMID: 29330318 PMCID: PMC5797964 DOI: 10.15252/embr.201745225] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 11/10/2022] Open
Abstract
Mitotic spindles assemble from two centrosomes, which are major microtubule-organizing centers (MTOCs) that contain centrioles. Meiotic spindles in oocytes, however, lack centrioles. In mouse oocytes, spindle microtubules are nucleated from multiple acentriolar MTOCs that are sorted and clustered prior to completion of spindle assembly in an "inside-out" mechanism, ending with establishment of the poles. We used HSET (kinesin-14) as a tool to shift meiotic spindle assembly toward a mitotic "outside-in" mode and analyzed the consequences on the fidelity of the division. We show that HSET levels must be tightly gated in meiosis I and that even slight overexpression of HSET forces spindle morphogenesis to become more mitotic-like: rapid spindle bipolarization and pole assembly coupled with focused poles. The unusual length of meiosis I is not sufficient to correct these early spindle morphogenesis defects, resulting in severe chromosome alignment abnormalities. Thus, the unique "inside-out" mechanism of meiotic spindle assembly is essential to prevent chromosomal misalignment and production of aneuploidy gametes.
Collapse
Affiliation(s)
- Isma Bennabi
- Center for Interdisciplinary Research in Biology (CIRB) College de France, CNRS, INSERM, PSL Research University, Equipe labellisée FRM, Paris, France
| | - Isabelle Quéguiner
- Center for Interdisciplinary Research in Biology (CIRB) College de France, CNRS, INSERM, PSL Research University, Equipe labellisée FRM, Paris, France
| | - Agnieszka Kolano
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Thomas Boudier
- Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Philippe Mailly
- Center for Interdisciplinary Research in Biology (CIRB) College de France, CNRS, INSERM, PSL Research University, Equipe labellisée FRM, Paris, France
| | - Marie-Hélène Verlhac
- Center for Interdisciplinary Research in Biology (CIRB) College de France, CNRS, INSERM, PSL Research University, Equipe labellisée FRM, Paris, France
| | - Marie-Emilie Terret
- Center for Interdisciplinary Research in Biology (CIRB) College de France, CNRS, INSERM, PSL Research University, Equipe labellisée FRM, Paris, France
| |
Collapse
|
67
|
Kitajima TS. Mechanisms of kinetochore-microtubule attachment errors in mammalian oocytes. Dev Growth Differ 2018; 60:33-43. [PMID: 29318599 PMCID: PMC11520954 DOI: 10.1111/dgd.12410] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 12/21/2022]
Abstract
Proper kinetochore-microtubule attachment is essential for correct chromosome segregation. Therefore, cells normally possess multiple mechanisms for the prevention of errors in kinetochore-microtubule attachments and for selective stabilization of correct attachments. However, the oocyte, a cell that produces an egg through meiosis, exhibits a high frequency of errors in kinetochore-microtubule attachments. These attachment errors predispose oocytes to chromosome segregation errors, resulting in aneuploidy in eggs. This review aims to provide possible explanations for the error-prone nature of oocytes by examining key differences among other cell types in the mechanisms for the establishment of kinetochore-microtubule attachments.
Collapse
Affiliation(s)
- Tomoya S. Kitajima
- Laboratory for Chromosome SegregationRIKEN Center for Developmental BiologyKobe650‐0047Japan
| |
Collapse
|
68
|
Abstract
Meiotic division is a dynamic process that exhibits active interactive behaviors amongst different intracellular structures and components for spindle assembly and chromosome segregation. Understanding the mechanisms of meiotic spindle assembly and chromosome segregation therefore requires a quantitative analysis of spatiotemporal relationships among different structures and components. In this chapter, we describe a method for triple-color live imaging of meiotic division in mouse oocytes. This approach combines the microinjection of RNAs encoding proteins tagged with green and red fluorescent proteins and the visualization of microtubules with the fluorogenic far-red probe SiR-Tubulin. This method enables the simultaneous spatiotemporal mapping of three different components of the spindle and chromosomes, which opens the way to quantitative analysis of their interactive behaviors.
Collapse
Affiliation(s)
- Aurélien Courtois
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Petr Solc
- Institute of Animal Physiology and Genetics AS CR, Libechov, Czech Republic.
| | - Tomoya S Kitajima
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.
| |
Collapse
|
69
|
Vázquez-Diez C, FitzHarris G. Causes and consequences of chromosome segregation error in preimplantation embryos. Reproduction 2018; 155:R63-R76. [DOI: 10.1530/rep-17-0569] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/19/2017] [Accepted: 11/06/2017] [Indexed: 01/04/2023]
Abstract
Errors in chromosome segregation are common during the mitotic divisions of preimplantation development in mammalian embryos, giving rise to so-called ‘mosaic’ embryos possessing a mixture of euploid and aneuploid cells. Mosaicism is widely considered to be detrimental to embryo quality and is frequently used as criteria to select embryos for transfer in human fertility clinics. However, despite the clear clinical importance, the underlying defects in cell division that result in mosaic aneuploidy remain elusive. In this review, we summarise recent findings from clinical and animal model studies that provide new insights into the fundamental mechanisms of chromosome segregation in the highly unusual cellular environment of early preimplantation development and consider recent clues as to why errors should commonly occur in this setting. We furthermore discuss recent evidence suggesting that mosaicism is not an irrevocable barrier to a healthy pregnancy. Understanding the causes and biological impacts of mosaic aneuploidy will be pivotal in the development and fine-tuning of clinical embryo selection methods.
Collapse
|
70
|
Greaney J, Wei Z, Homer H. Regulation of chromosome segregation in oocytes and the cellular basis for female meiotic errors. Hum Reprod Update 2017; 24:135-161. [PMID: 29244163 DOI: 10.1093/humupd/dmx035] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 09/12/2017] [Accepted: 11/26/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Meiotic chromosome segregation in human oocytes is notoriously error-prone, especially with ageing. Such errors markedly reduce the reproductive chances of increasing numbers of women embarking on pregnancy later in life. However, understanding the basis for these errors is hampered by limited access to human oocytes. OBJECTIVE AND RATIONALE Important new discoveries have arisen from molecular analyses of human female recombination and aneuploidy along with high-resolution analyses of human oocyte maturation and mouse models. Here, we review these findings to provide a contemporary picture of the key players choreographing chromosome segregation in mammalian oocytes and the cellular basis for errors. SEARCH METHODS A search of PubMed was conducted using keywords including meiosis, oocytes, recombination, cohesion, cohesin complex, chromosome segregation, kinetochores, spindle, aneuploidy, meiotic cell cycle, spindle assembly checkpoint, anaphase-promoting complex, DNA damage, telomeres, mitochondria, female ageing and female fertility. We extracted papers focusing on mouse and human oocytes that best aligned with the themes of this review and that reported transformative and novel discoveries. OUTCOMES Meiosis incorporates two sequential rounds of chromosome segregation executed by a spindle whose component microtubules bind chromosomes via kinetochores. Cohesion mediated by the cohesin complex holds chromosomes together and should be resolved at the appropriate time, in a specific step-wise manner and in conjunction with meiotically programmed kinetochore behaviour. In women, the stage is set for meiotic error even before birth when female-specific crossover maturation inefficiency leads to the formation of at-risk recombination patterns. In adult life, multiple co-conspiring factors interact with at-risk crossovers to increase the likelihood of mis-segregation. Available evidence support that these factors include, but are not limited to, cohesion deterioration, uncoordinated sister kinetochore behaviour, erroneous microtubule attachments, spindle instability and structural chromosomal defects that impact centromeres and telomeres. Data from mice indicate that cohesin and centromere-specific histones are long-lived proteins in oocytes. Since these proteins are pivotal for chromosome segregation, but lack any obvious renewal pathway, their deterioration with age provides an appealing explanation for at least some of the problems in older oocytes. WIDER IMPLICATIONS Research in the mouse model has identified a number of candidate genes and pathways that are important for chromosome segregation in this species. However, many of these have not yet been investigated in human oocytes so it is uncertain at this stage to what extent they apply to women. The challenge for the future involves applying emerging knowledge of female meiotic molecular regulation towards improving clinical fertility management.
Collapse
Affiliation(s)
- Jessica Greaney
- Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus, Herston QLD 4029, Australia
| | - Zhe Wei
- Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus, Herston QLD 4029, Australia
| | - Hayden Homer
- Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus, Herston QLD 4029, Australia
| |
Collapse
|
71
|
Hirano T, Nishiyama T, Shirahige K. Hot debate in hot springs: Report on the second international meeting on SMC proteins. Genes Cells 2017; 22:934-938. [PMID: 29067760 DOI: 10.1111/gtc.12539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 08/31/2017] [Indexed: 11/27/2022]
Abstract
The second international meeting on "SMC proteins: Chromosomal Organizers from Bacteria to Human" (SMC2017) was held in Nanyo City, Yamagata, Japan, from 13 to 16 June 2017. The meeting was attended by 134 participants (among them, 76 from outside of Japan) who were interested in one of the highly conserved classes of chromosomal proteins regulating large-scale chromosome structure and function. A keynote lecture was followed by 41 oral presentations and 71 poster presentations in the four-day meeting. Diverse topics surrounding eukaryotic SMC protein complexes (cohesins, condensins and SMC5/6) and prokaryotic SMCs, and a wide range of cutting-edge approaches (from polymer physics through medical genetics) were presented. Dominant themes discussed in the meeting included mechanistically how the SMC protein complexes might form chromatin loops and domains. The participants enjoyed both exciting debate about chromosome organization and warm welcome offered by local people in a small city located in the northern part of Japan.
Collapse
Affiliation(s)
| | - Tomoko Nishiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Katsuhiko Shirahige
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
72
|
Lane SIR, Jones KT. Chromosome biorientation and APC activity remain uncoupled in oocytes with reduced volume. J Cell Biol 2017; 216:3949-3957. [PMID: 28978643 PMCID: PMC5716262 DOI: 10.1083/jcb.201606134] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/28/2017] [Accepted: 09/07/2017] [Indexed: 11/23/2022] Open
Abstract
Lane and Jones use serial bisection of mouse oocytes to analyze the influence of cytoplasmic volume on spindle assembly checkpoint function. Volume reduction promotes inhibition of APC but cannot prevent chromosome segregation errors at anaphase. The spindle assembly checkpoint (SAC) prevents chromosome missegregation by coupling anaphase onset with correct chromosome attachment and tension to microtubules. It does this by generating a diffusible signal from free kinetochores into the cytoplasm, inhibiting the anaphase-promoting complex (APC). The volume in which this signal remains effective is unknown. This raises the possibility that cell volume may be the reason the SAC is weak, and chromosome segregation error-prone, in mammalian oocytes. Here, by a process of serial bisection, we analyzed the influence of oocyte volume on the ability of the SAC to inhibit bivalent segregation in meiosis I. We were able to generate oocytes with cytoplasmic volumes reduced by 86% and observed changes in APC activity consistent with increased SAC control. However, bivalent biorientation remained uncoupled from APC activity, leading to error-prone chromosome segregation. We conclude that volume is one factor contributing to SAC weakness in oocytes. However, additional factors likely uncouple chromosome biorientation with APC activity.
Collapse
Affiliation(s)
- Simon I R Lane
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK .,School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Keith T Jones
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
73
|
Abstract
In this issue of Developmental Cell, Kyogoku and Kitajima (2017) investigate the effect of cytoplasmic volume on the fidelity of chromosome segregation during meiosis in mouse oocytes. The authors find that large cytoplasmic volume affects spindle pole morphology, chromosome alignment, and stringency of checkpoint signaling, resulting in error-prone chromosome segregation.
Collapse
Affiliation(s)
- Predrag Jevtić
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|