51
|
Schuster R, Anton V, Simões T, Altin S, den Brave F, Hermanns T, Hospenthal M, Komander D, Dittmar G, Dohmen RJ, Escobar-Henriques M. Dual role of a GTPase conformational switch for membrane fusion by mitofusin ubiquitylation. Life Sci Alliance 2020; 3:e201900476. [PMID: 31857350 PMCID: PMC6925385 DOI: 10.26508/lsa.201900476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are essential organelles whose function is upheld by their dynamic nature. This plasticity is mediated by large dynamin-related GTPases, called mitofusins in the case of fusion between two mitochondrial outer membranes. Fusion requires ubiquitylation, attached to K398 in the yeast mitofusin Fzo1, occurring in atypical and conserved forms. Here, modelling located ubiquitylation to α4 of the GTPase domain, a critical helix in Ras-mediated events. Structure-driven analysis revealed a dual role of K398. First, it is required for GTP-dependent dynamic changes of α4. Indeed, mutations designed to restore the conformational switch, in the absence of K398, rescued wild-type-like ubiquitylation on Fzo1 and allowed fusion. Second, K398 is needed for Fzo1 recognition by the pro-fusion factors Cdc48 and Ubp2. Finally, the atypical ubiquitylation pattern is stringently required bilaterally on both involved mitochondria. In contrast, exchange of the conserved pattern with conventional ubiquitin chains was not sufficient for fusion. In sum, α4 lysines from both small and large GTPases could generally have an electrostatic function for membrane interaction, followed by posttranslational modifications, thus driving membrane fusion events.
Collapse
Affiliation(s)
- Ramona Schuster
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Vincent Anton
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Tânia Simões
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Selver Altin
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Fabian den Brave
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Thomas Hermanns
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Manuela Hospenthal
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - David Komander
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Gunnar Dittmar
- Proteomics of Cellular Signalling, Luxembourg Institute of Health, Strassen, Luxembourg
| | - R Jürgen Dohmen
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Mafalda Escobar-Henriques
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
52
|
Patton-Vogt J, de Kroon AIPM. Phospholipid turnover and acyl chain remodeling in the yeast ER. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158462. [PMID: 31146038 PMCID: PMC10716787 DOI: 10.1016/j.bbalip.2019.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/01/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
The turnover of phospholipids plays an essential role in membrane lipid homeostasis by impacting both lipid head group and acyl chain composition. This review focusses on the degradation and acyl chain remodeling of the major phospholipid classes present in the ER membrane of the reference eukaryote Saccharomyces cerevisiae, i.e. phosphatidylcholine (PC), phosphatidylinositol (PI) and phosphatidylethanolamine (PE). Phospholipid turnover reactions are introduced, and the occurrence and important functions of phospholipid remodeling in higher eukaryotes are briefly summarized. After presenting an inventory of established mechanisms of phospholipid acyl chain exchange, current knowledge of phospholipid degradation and remodeling by phospholipases and acyltransferases localized to the yeast ER is summarized. PC is subject to the PC deacylation-reacylation remodeling pathway (PC-DRP) involving a phospholipase B, the recently identified glycerophosphocholine acyltransferase Gpc1p, and the broad specificity acyltransferase Ale1p. PI is post-synthetically enriched in C18:0 acyl chains by remodeling reactions involving Cst26p. PE may undergo turnover by the phospholipid: diacylglycerol acyltransferase Lro1p as first step in acyl chain remodeling. Clues as to the functions of phospholipid acyl chain remodeling are discussed.
Collapse
Affiliation(s)
- Jana Patton-Vogt
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Anton I P M de Kroon
- Membrane Biochemistry & Biophysics, Bijvoet Center and Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
53
|
Yang X, Liang J, Ding L, Li X, Lam SM, Shui G, Ding M, Huang X. Phosphatidylserine synthase regulates cellular homeostasis through distinct metabolic mechanisms. PLoS Genet 2019; 15:e1008548. [PMID: 31869331 PMCID: PMC6946173 DOI: 10.1371/journal.pgen.1008548] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 01/07/2020] [Accepted: 12/02/2019] [Indexed: 12/18/2022] Open
Abstract
Phosphatidylserine (PS), synthesized in the endoplasmic reticulum (ER) by phosphatidylserine synthase (PSS), is transported to the plasma membrane (PM) and mitochondria through distinct routes. The in vivo functions of PS at different subcellular locations and the coordination between different PS transport routes are not fully understood. Here, we report that Drosophila PSS regulates cell growth, lipid storage and mitochondrial function. In pss RNAi, reduced PS depletes plasma membrane Akt, contributing to cell growth defects; the metabolic shift from phospholipid synthesis to neutral lipid synthesis results in ectopic lipid accumulation; and the reduction of mitochondrial PS impairs mitochondrial protein import and mitochondrial integrity. Importantly, reducing PS transport from the ER to PM by loss of PI4KIIIα partially rescues the mitochondrial defects of pss RNAi. Together, our results uncover a balance between different PS transport routes and reveal that PSS regulates cellular homeostasis through distinct metabolic mechanisms. Phosphatidylserine (PS), a membrane phospholipid synthesized in the endoplasmic reticulum (ER) by the enzyme phosphatidylserine synthase (PSS), is transported to the plasma membrane (PM) and mitochondria through different paths. The cellular functions of PS at different places in the cell and the mechanisms that coordinate the different PS transport paths are not fully understood. Here, we identified that PSS regulates cell growth, lipid storage and mitochondrial function in the fruit fly larval salivary gland. We showed that loss of pss function has three effects: (1) reduced levels of PS lead to reduced levels of plasma membrane Akt, a key component in the insulin pathway, which is important for cell growth; (2) it causes a shift from phospholipid synthesis to neutral lipid synthesis, which results in excess lipid accumulation; and (3) it reduces the level of mitochondrial PS, which impairs mitochondrial protein import and mitochondrial morphology. We also found that reducing the transport of PS from the ER to PM partially rescues the mitochondrial defects caused by loss of pss function. Together, our results reveal that PSS regulates cellular homeostasis through distinct metabolic changes, and uncover a balance between different PS transport pathways.
Collapse
Affiliation(s)
- Xiao Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, TaiAn, China
| | - Jingjing Liang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Long Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xia Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Sin-Man Lam
- LipidAll Technologies Co., Ltd. Changzhou, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Mei Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
54
|
Implications of gut microbiota dysbiosis and metabolic changes in prion disease. Neurobiol Dis 2019; 135:104704. [PMID: 31837420 DOI: 10.1016/j.nbd.2019.104704] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/22/2019] [Accepted: 12/08/2019] [Indexed: 02/06/2023] Open
Abstract
Evidence of the gut microbiota influencing neurodegenerative diseases has been reported for several neural diseases. However, there is little insight regarding the relationship between the gut microbiota and prion disease. Here, using fecal samples of 12 prion-infected mice and 25 healthy controls, we analyzed the structure of the gut microbiota and metabolic changes by 16S rRNA sequencing and LC-MS-based metabolomics respectively as multi-omic analyses. Additionally, SCFAs and common amino acids were detected by GC-MS and UPLC respectively. Enteric changes induced by prion disease affected both structure and abundances of the gut microbiota. The gut microbiota of infected mice displayed greater numbers of Proteobacteria and less Saccharibacteria at the phylum level and more Lactobacillaceae and Helicobacteraceae and less Prevotellaceae and Ruminococcaceae at the family level. A total of 145 fecal metabolites were found to be significantly different in prion infection, and most (114) of these were lipid metabolites. Using KEGG pathway enrichment analysis, we found that 3 phosphatidylcholine (PC) compounds significantly decreased and 4 hydrophobic bile acids significantly increased. Decreases of 8 types of short-chain acids (SCFAs) and increases of Cys and Tyr and decreases of His, Trp, and Arg were observed in prion infection. Correlation analysis indicated that the gut microbiota changes observed in our study may have been the shared outcome of prion disease. These findings suggest that prion disease can cause significant shifts in the gut microbiota. Certain bacterial taxa can then respond to the resulting change to the enteric environment by causing dramatic shifts in metabolite levels. Our data highlight the health impact of the gut microbiota and related metabolites in prion disease.
Collapse
|
55
|
Abstract
Lipids are distributed in a highly heterogeneous fashion in different cellular membranes. Only a minority of lipids achieve their final intracellular distribution through transport by vesicles. Instead, the bulk of lipid traffic is mediated by a large group of lipid transfer proteins (LTPs), which move small numbers of lipids at a time using hydrophobic cavities that stabilize lipid molecules outside membranes. Although the first LTPs were discovered almost 50 years ago, most progress in understanding these proteins has been made in the past few years, leading to considerable temporal and spatial refinement of our understanding of the function of these lipid transporters. The number of known LTPs has increased, with exciting discoveries of their multimeric assembly. Structural studies of LTPs have progressed from static crystal structures to dynamic structural approaches that show how conformational changes contribute to lipid handling at a sub-millisecond timescale. A major development has been the finding that many intracellular LTPs localize to two organelles at the same time, forming a shuttle, bridge or tube that links donor and acceptor compartments. The understanding of how different lipids achieve their final destination at the molecular level allows a better explanation of the range of defects that occur in diseases associated with lipid transport and distribution, opening up the possibility of developing therapies that specifically target lipid transfer.
Collapse
|
56
|
Effects of ochratoxin A on membrane phospholipids of the intestine of broiler chickens, practical consequences. Animal 2019; 14:933-941. [PMID: 31662132 DOI: 10.1017/s1751731119002593] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by various species of Aspergillus and Penicillium. Ochratoxin A was classified as a group 2B carcinogen and is one of the major intestinal pathogenic mycotoxins. One of the most frequent modes of intoxication is consumption of contaminated food with mycotoxins. Feed represents the major cost and has a direct impact on the economical viability of broiler's production system, since it must contain the necessary elements that allow the animal to express the maximum genetic potential while providing its nutritional requirements. Thus, the animal has to digest the feed and absorb its nutrients, which is in direct correlation with the gastrointestinal tract, especially the small intestine and the development of the mucosal surface area. Once ingested, OTA is absorbed by passive diffusion, mainly the jejunum. Ochratoxin A's presence affects lipid membranes and could lead to the degradation of their normal structure and functionality. All of these effects contribute to the development of malabsorption. It was very interesting to study the effect of OTA on the layer of phospholipids of the bowel. The experimental group received OTA (0.05 to mg/kg BW) through an intra-peritoneal injection, every other day for 21 days. We noted that feed conversion ratio and average daily gain were reduced. Histological studies showed important alterations at the level of the mucosal membrane of the intestine (villosities, crypts) following intra-peritoneal administration of the mycotoxin. Thinning and enlargement at the base of the villosities, hyperplasia and crypts in irregular forms, blunting and denudation were observed through the examination of intestinal morphology. Biochemical studies, such as total lipid and phospholipid compositions, allowed us to have more detailed results. All identified mucosal phospholipids were modified, particularly the phosphatidylcholine (PC) and the phosphatidylethanolamine (PE) in the jejunum mucosa. In fact, there was a decrease by 55.81% for PC, 56.66% for PE, while a significant increase by 32.91% was noted for phosphatidylserine in the jejunum. It was very interesting to study the effect of OTA on the phospholipids layer of the bowel, as the mucous membrane of the small intestine represents the main site of absorption and transformation of nutriments. To avoid such disturbances and prevent the effects of the OTA, precautions must be taken to inhibit mold growth at the level of the feed manufactory units. Phosphatidylcholine and PE administrations may represent an option that could allow reestablishment of phospholipid equilibrium in the intestine.
Collapse
|
57
|
Tsuji T, Cheng J, Tatematsu T, Ebata A, Kamikawa H, Fujita A, Gyobu S, Segawa K, Arai H, Taguchi T, Nagata S, Fujimoto T. Predominant localization of phosphatidylserine at the cytoplasmic leaflet of the ER, and its TMEM16K-dependent redistribution. Proc Natl Acad Sci U S A 2019; 116:13368-13373. [PMID: 31217287 PMCID: PMC6613088 DOI: 10.1073/pnas.1822025116] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
TMEM16K, a membrane protein carrying 10 transmembrane regions, has phospholipid scramblase activity. TMEM16K is localized to intracellular membranes, but whether it actually scrambles phospholipids inside cells has not been demonstrated, due to technical difficulties in studying intracellular lipid distributions. Here, we developed a freeze-fracture electron microscopy method that enabled us to determine the phosphatidylserine (PtdSer) distribution in the individual leaflets of cellular membranes. Using this method, we found that the endoplasmic reticulum (ER) of mammalian cells harbored abundant PtdSer in its cytoplasmic leaflet and much less in the luminal leaflet, whereas the outer and inner nuclear membranes (NMs) had equivalent amounts of PtdSer in both leaflets. The ER and NMs of budding yeast also harbored PtdSer in their cytoplasmic leaflet, but asymmetrical distribution in the ER was not observed. Treating mouse embryonic fibroblasts with the Ca2+ ionophore A23187 compromised the cytoplasmic leaflet-dominant PtdSer asymmetry in the ER and increased PtdSer in the NMs, especially in the nucleoplasmic leaflet of the inner NM. This Ca2+-induced PtdSer redistribution was not observed in TMEM16K-null fibroblasts, but was recovered in these cells by reexpressing TMEM16K. These results indicate that, similar to the plasma membrane, PtdSer in the ER of mammalian cells is predominantly localized to the cytoplasmic leaflet, and that TMEM16K directly or indirectly mediates Ca2+-dependent phospholipid scrambling in the ER.
Collapse
Affiliation(s)
- Takuma Tsuji
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 466-8550 Nagoya, Japan
| | - Jinglei Cheng
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 466-8550 Nagoya, Japan
| | - Tsuyako Tatematsu
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 466-8550 Nagoya, Japan
| | - Aoi Ebata
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 466-8550 Nagoya, Japan
| | - Hiroki Kamikawa
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 466-8550 Nagoya, Japan
| | - Akikazu Fujita
- Field of Veterinary Pathobiology, Joint Faculty of Veterinary Medicine, Kagoshima University, 890-0065 Kagoshima, Japan
| | - Sayuri Gyobu
- Biochemistry and Immunology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Katsumori Segawa
- Biochemistry and Immunology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Hiroyuki Arai
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 113-0033 Tokyo, Japan
| | - Tomohiko Taguchi
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, 980-8578 Sendai, Japan
| | - Shigekazu Nagata
- Biochemistry and Immunology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Toyoshi Fujimoto
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 466-8550 Nagoya, Japan;
| |
Collapse
|
58
|
Becker T, Song J, Pfanner N. Versatility of Preprotein Transfer from the Cytosol to Mitochondria. Trends Cell Biol 2019; 29:534-548. [PMID: 31030976 DOI: 10.1016/j.tcb.2019.03.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 11/16/2022]
Abstract
Mitochondrial biogenesis requires the import of a large number of precursor proteins from the cytosol. Although specific membrane-bound preprotein translocases have been characterized in detail, it was assumed that protein transfer from the cytosol to mitochondria mainly involved unselective binding to molecular chaperones. Recent findings suggest an unexpected versatility of protein transfer to mitochondria. Cytosolic factors have been identified that bind to selected subsets of preproteins and guide them to mitochondrial receptors in a post-translational manner. Cotranslational import processes are emerging. Mechanisms for crosstalk between protein targeting to mitochondria and other cell organelles, in particular the endoplasmic reticulum (ER) and peroxisomes, have been uncovered. We discuss how a network of cytosolic machineries and targeting pathways promote and regulate preprotein transfer into mitochondria.
Collapse
Affiliation(s)
- Thomas Becker
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany.
| | - Jiyao Song
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
59
|
Hendricson A, Umlauf S, Choi JY, Thekkiniath J, Surovtseva YV, Fuller KK, Reynolds TB, Voelker DR, Ben Mamoun C. High-throughput screening for phosphatidylserine decarboxylase inhibitors using a distyrylbenzene-bis-aldehyde (DSB-3)-based fluorescence assay. J Biol Chem 2019; 294:12146-12156. [PMID: 31227523 DOI: 10.1074/jbc.ra119.007766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 06/18/2019] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylserine decarboxylases (PSDs) catalyze the decarboxylation of phosphatidylserine to generate phosphatidylethanolamine, a critical step in phospholipid metabolism in both prokaryotes and eukaryotes. Most PSDs are membrane-bound, and classical radioisotope-based assays for determining their activity in vitro are not suitable for high-throughput drug screening. The finding that the PkPSD from Plasmodium knowlesi can be purified in a soluble and active form and the recent development of a fluorescence-based distyrylbenzene-bis-aldehyde (DSB-3) assay to measure PSD activity in vitro have laid the groundwork for screening chemical libraries for PSD inhibitors. Using this assay, here we conducted a high-throughput screen of a structurally diverse 130,858-compound library against PkPSD. Further characterization of the hits identified in this screening yielded five PkPSD inhibitors with IC50 values ranging from 3.1 to 42.3 μm Lead compounds were evaluated against the pathogenic yeast Candida albicans in the absence or presence of exogenous ethanolamine, and YU253467 and YU254403 were identified as inhibiting both native C. albicans PSD mitochondrial activity and C. albicans growth, with an MIC50 of 22.5 and 15 μg/ml without ethanolamine and an MIC50 of 75 and 60 μg/ml with ethanolamine, respectively. Together, these results provide the first proof of principle for the application of DSB-3-based fluorescent readouts in high-throughput screening for PSD inhibitors. The data set the stage for future analyses to identify more selective and potent PSD inhibitors with antimicrobial or antitumor activities.
Collapse
Affiliation(s)
- Adam Hendricson
- Yale Center for Molecular Discovery, West Haven, Connecticut 06516
| | - Sheila Umlauf
- Yale Center for Molecular Discovery, West Haven, Connecticut 06516
| | - Jae-Yeon Choi
- Basic Science Section, Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Jose Thekkiniath
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut 06520
| | | | - Kevin K Fuller
- Departments of Ophthalmology and Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Todd B Reynolds
- Department of Microbiology, College of Arts and Sciences, University of Tennessee, Knoxville, Tennessee 37996
| | - Dennis R Voelker
- Basic Science Section, Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Choukri Ben Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut 06520.
| |
Collapse
|
60
|
Guaragnella N, Coyne LP, Chen XJ, Giannattasio S. Mitochondria-cytosol-nucleus crosstalk: learning from Saccharomyces cerevisiae. FEMS Yeast Res 2019; 18:5066171. [PMID: 30165482 DOI: 10.1093/femsyr/foy088] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are key cell organelles with a prominent role in both energetic metabolism and the maintenance of cellular homeostasis. Since mitochondria harbor their own genome, which encodes a limited number of proteins critical for oxidative phosphorylation and protein translation, their function and biogenesis strictly depend upon nuclear control. The yeast Saccharomyces cerevisiae has been a unique model for understanding mitochondrial DNA organization and inheritance as well as for deciphering the process of assembly of mitochondrial components. In the last three decades, yeast also provided a powerful tool for unveiling the communication network that coordinates the functions of the nucleus, the cytosol and mitochondria. This crosstalk regulates how cells respond to extra- and intracellular changes either to maintain cellular homeostasis or to activate cell death. This review is focused on the key pathways that mediate nucleus-cytosol-mitochondria communications through both transcriptional regulation and proteostatic signaling. We aim to highlight yeast that likely continues to serve as a productive model organism for mitochondrial research in the years to come.
Collapse
Affiliation(s)
- Nicoletta Guaragnella
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, Via Amendola 165/A, 70126 Bari, Italy
| | - Liam P Coyne
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Xin Jie Chen
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Sergio Giannattasio
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, Via Amendola 165/A, 70126 Bari, Italy
| |
Collapse
|
61
|
Balla T, Sengupta N, Kim YJ. Lipid synthesis and transport are coupled to regulate membrane lipid dynamics in the endoplasmic reticulum. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158461. [PMID: 31108203 DOI: 10.1016/j.bbalip.2019.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 11/27/2022]
Abstract
Structural lipids are mostly synthesized in the endoplasmic reticulum (ER), from which they are actively transported to the membranes of other organelles. Lipids can leave the ER through vesicular trafficking or non-vesicular lipid transfer and, curiously, both processes can be regulated either by the transported lipid cargos themselves or by different secondary lipid species. For most structural lipids, transport out of the ER membrane is a key regulatory component controlling their synthesis. Distribution of the lipids between the two leaflets of the ER bilayer or between the ER and other membranes is also critical for maintaining the unique membrane properties of each cellular organelle. How cells integrate these processes within the ER depends on fine spatial segregation of the molecular components and intricate metabolic channeling, both of which we are only beginning to understand. This review will summarize some of these complex processes and attempt to identify the organizing principles that start to emerge. This article is part of a Special Issue entitled Endoplasmic reticulum platforms for lipid dynamics edited by Shamshad Cockcroft and Christopher Stefan.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Nivedita Sengupta
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
62
|
Escobar-Henriques M, Joaquim M. Mitofusins: Disease Gatekeepers and Hubs in Mitochondrial Quality Control by E3 Ligases. Front Physiol 2019; 10:517. [PMID: 31156446 PMCID: PMC6533591 DOI: 10.3389/fphys.2019.00517] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are dynamic organelles engaged in quality control and aging processes. They constantly undergo fusion, fission, transport, and anchoring events, which empower mitochondria with a very interactive behavior. The membrane remodeling processes needed for fusion require conserved proteins named mitofusins, MFN1 and MFN2 in mammals and Fzo1 in yeast. They are the first determinants deciding on whether communication and content exchange between different mitochondrial populations should occur. Importantly, each cell possesses hundreds of mitochondria, with a different severity of mitochondrial mutations or dysfunctional proteins, which potentially spread damage to the entire network. Therefore, the degree of their merging capacity critically influences cellular fitness. In turn, the mitochondrial network rapidly and dramatically changes in response to metabolic and environmental cues. Notably, cancer or obesity conditions, and stress experienced by neurons and cardiomyocytes, for example, triggers the downregulation of mitofusins and thus fragmentation of mitochondria. This places mitofusins upfront in sensing and transmitting stress. In fact, mitofusins are almost entirely exposed to the cytoplasm, a topology suitable for a critical relay point in information exchange between mitochondria and their cellular environment. Consistent with their topology, mitofusins are either activated or repressed by cytosolic post-translational modifiers, mainly by ubiquitin. Ubiquitin is a ubiquitous small protein orchestrating multiple quality control pathways, which is covalently attached to lysine residues in its substrates, or in ubiquitin itself. Importantly, from a chain of events also mediated by E1 and E2 enzymes, E3 ligases perform the ultimate and determinant step in substrate choice. Here, we review the ubiquitin E3 ligases that modify mitofusins. Two mitochondrial E3 enzymes—March5 and MUL1—one ligase located to the ER—Gp78—and finally three cytosolic enzymes—MGRN1, HUWE1, and Parkin—were shown to ubiquitylate mitofusins, in response to a variety of cellular inputs. The respective outcomes on mitochondrial morphology, on contact sites to the endoplasmic reticulum and on destructive processes, like mitophagy or apoptosis, are presented. Ultimately, understanding the mechanisms by which E3 ligases and mitofusins sense and bi-directionally signal mitochondria-cytosolic dysfunctions could pave the way for therapeutic approaches in neurodegenerative, cardiovascular, and obesity-linked diseases.
Collapse
Affiliation(s)
- Mafalda Escobar-Henriques
- Center for Molecular Medicine Cologne (CMMC), Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Mariana Joaquim
- Center for Molecular Medicine Cologne (CMMC), Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
63
|
Mizuike A, Kobayashi S, Rikukawa T, Ohta A, Horiuchi H, Fukuda R. Suppression of respiratory growth defect of mitochondrial phosphatidylserine decarboxylase deficient mutant by overproduction of Sfh1, a Sec14 homolog, in yeast. PLoS One 2019; 14:e0215009. [PMID: 30958856 PMCID: PMC6453485 DOI: 10.1371/journal.pone.0215009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 03/25/2019] [Indexed: 12/15/2022] Open
Abstract
Interorganelle phospholipid transfer is critical for eukaryotic membrane biogenesis. In the yeast Saccharomyces cerevisiae, phosphatidylserine (PS) synthesized by PS synthase, Pss1, in the endoplasmic reticulum (ER) is decarboxylated to phosphatidylethanolamine (PE) by PS decarboxylase, Psd1, in the ER and mitochondria or by Psd2 in the endosome, Golgi, and/or vacuole, but the mechanism of interorganelle PS transport remains to be elucidated. Here we report that Sfh1, a member of Sec14 family proteins of S. cerevisiae, possesses the ability to enhance PE production by Psd2. Overexpression of SFH1 in the strain defective in Psd1 restored its growth on non-fermentable carbon sources and increased the intracellular and mitochondrial PE levels. Sfh1 was found to bind various phospholipids, including PS, in vivo. Bacterially expressed and purified Sfh1 was suggested to have the ability to transport fluorescently labeled PS between liposomes by fluorescence dequenching assay in vitro. Biochemical subcellular fractionation suggested that a fraction of Sfh1 localizes to the endosome, Golgi, and/or vacuole. We propose a model that Sfh1 promotes PE production by Psd2 by transferring phospholipids between the ER and endosome.
Collapse
Affiliation(s)
- Aya Mizuike
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shingo Kobayashi
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takashi Rikukawa
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akinori Ohta
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Hiroyuki Horiuchi
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryouichi Fukuda
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
64
|
Subramanian K, Jochem A, Le Vasseur M, Lewis S, Paulson BR, Reddy TR, Russell JD, Coon JJ, Pagliarini DJ, Nunnari J. Coenzyme Q biosynthetic proteins assemble in a substrate-dependent manner into domains at ER-mitochondria contacts. J Cell Biol 2019; 218:1353-1369. [PMID: 30674579 PMCID: PMC6446851 DOI: 10.1083/jcb.201808044] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/05/2018] [Accepted: 01/10/2019] [Indexed: 12/30/2022] Open
Abstract
Coenzyme Q (CoQ) lipids are ancient electron carriers that, in eukaryotes, function in the mitochondrial respiratory chain. In mitochondria, CoQ lipids are built by an inner membrane-associated, multicomponent, biosynthetic pathway via successive steps of isoprenyl tail polymerization, 4-hydroxybenzoate head-to-tail attachment, and head modification, resulting in the production of CoQ. In yeast, we discovered that head-modifying CoQ pathway components selectively colocalize to multiple resolvable domains in vivo, representing supramolecular assemblies. In cells engineered with conditional ON or OFF CoQ pathways, domains were strictly correlated with CoQ production and substrate flux, respectively, indicating that CoQ lipid intermediates are required for domain formation. Mitochondrial CoQ domains were also observed in human cells, underscoring their conserved functional importance. CoQ domains within cells were highly enriched adjacent to ER-mitochondria contact sites. Together, our data suggest that CoQ domains function to facilitate substrate accessibility for processive and efficient CoQ production and distribution in cells.
Collapse
Affiliation(s)
- Kelly Subramanian
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA
| | - Adam Jochem
- Morgridge Institute for Research, Madison, WI
| | - Maxence Le Vasseur
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA
| | - Samantha Lewis
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA
| | | | | | - Jason D Russell
- Morgridge Institute for Research, Madison, WI
- Genome Center of Wisconsin, Madison, WI
| | - Joshua J Coon
- Morgridge Institute for Research, Madison, WI
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI
- Genome Center of Wisconsin, Madison, WI
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI
| | - David J Pagliarini
- Morgridge Institute for Research, Madison, WI
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI
| | - Jodi Nunnari
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA
| |
Collapse
|
65
|
Covino R, Hummer G, Ernst R. Integrated Functions of Membrane Property Sensors and a Hidden Side of the Unfolded Protein Response. Mol Cell 2019; 71:458-467. [PMID: 30075144 DOI: 10.1016/j.molcel.2018.07.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/09/2018] [Accepted: 07/17/2018] [Indexed: 12/26/2022]
Abstract
Eukaryotic cells face the challenge of maintaining the complex composition of several coexisting organelles. The molecular mechanisms underlying the homeostasis of subcellular membranes and their adaptation during stress are only now starting to emerge. Here, we discuss three membrane property sensors of the endoplasmic reticulum (ER), namely OPI1, MGA2, and IRE1, each controlling a large cellular program impacting the lipid metabolic network. OPI1 coordinates the production of membrane and storage lipids, MGA2 regulates the production of unsaturated fatty acids required for membrane biogenesis, and IRE1 controls the unfolded protein response (UPR) to adjust ER size, protein folding, and the secretory capacity of the cell. Although these proteins use remarkably distinct sensing mechanisms, they are functionally connected via the ER membrane and cooperate to maintain membrane homeostasis. As a rationalization of the recently described mechanism of UPR activation by lipid bilayer stress, we propose that IRE1 can sense the protein-to-lipid ratio in the ER membrane to ensure a balanced production of membrane proteins and lipids.
Collapse
Affiliation(s)
- Roberto Covino
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany; Institute of Biophysics, Goethe University, 60438 Frankfurt am Main, Germany
| | - Robert Ernst
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Kirrberger Str. 100, Gebäude 61.4, 66421 Homburg, Germany.
| |
Collapse
|
66
|
Tamura Y, Kawano S, Endo T. Organelle contact zones as sites for lipid transfer. J Biochem 2019; 165:115-123. [PMID: 30371789 DOI: 10.1093/jb/mvy088] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/26/2018] [Indexed: 01/06/2023] Open
Abstract
Since the 1950s, electron microscopic observations have suggested the existence of special regions where the distinct organelle membranes are closely apposed to each other, yet their molecular basis and functions have not been examined for a long time. Recent studies using yeast as a model organism identified multiple organelle-membrane tethering sites/factors, such as ERMES (ER-mitochondria encounter structure), NVJ (Nuclear-vacuole junction), vCLAMP (Vacuole and mitochondria patch) and MICOS (Mitochondrial contact site). Among them, ERMES is the best-characterized contact-site protein complex, which was found to function as not only an organelle-tethering factor but also a phospholipid transfer protein complex. In this review, we will discuss recent advances in the characterization of ERMES and other organelle contact zones, vCLAMP, NVJ and MICOS in yeast.
Collapse
Affiliation(s)
- Yasushi Tamura
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Japan
| | - Shin Kawano
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, Japan.,Research Center for Protein Dynamics, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, Japan.,Research Center for Protein Dynamics, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, Japan
| |
Collapse
|
67
|
Tamura Y, Kojima R, Endo T. Advanced In Vitro Assay System to Measure Phosphatidylserine and Phosphatidylethanolamine Transport at ER/Mitochondria Interface. Methods Mol Biol 2019; 1949:57-67. [PMID: 30790249 DOI: 10.1007/978-1-4939-9136-5_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A number of previous studies have shown that phospholipid molecules come and go between the endoplasmic reticulum (ER) and mitochondrial membranes while the molecular basis of non-vesicular phospholipid transport is still not understood well. In this chapter, we describe an optimized method that uses membrane fractions isolated from yeast cells to directly analyze phospholipid transport between the ER and mitochondria. With this assay, we are able to assess not only the ER-to-mitochondria but also mitochondria-to-ER transports at the same time. We believe that this assay system can accelerate the research on inter-organelle phospholipid trafficking.
Collapse
Affiliation(s)
- Yasushi Tamura
- Faculty of Science, Yamagata University, Yamagata, Japan.
| | - Rieko Kojima
- Faculty of Science, Yamagata University, Yamagata, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| |
Collapse
|
68
|
Lipid exchange at ER-mitochondria contact sites: a puzzle falling into place with quite a few pieces missing. Curr Opin Cell Biol 2018; 57:71-76. [PMID: 30554079 DOI: 10.1016/j.ceb.2018.11.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/31/2022]
Abstract
Over the last years, the importance of inter-organelle communication has become more and more evident, attested by the fast growing number of newly-identified membrane contact sites (MCS). At MCSs two organelles are connected via protein tethers that bring them in close proximity to facilitate metabolite exchange. In this review, we will focus on the MCSs connecting the ER and mitochondria, which have been implicated in phospholipid transport. While we already know the molecular identity of some tethers, we are still far from understanding the mechanisms underlying the phospholipid transport processes. In vitro studies suggest that some proteins in MCSs are capable of transporting lipids, however only at rates that do not meet the mitochondrial lipid demand. In vivo studies are even more puzzling as it appears that many redundant lipid transport routes, involving various lipid transport proteins and various MCSs, compensate for each other when necessary. Here, we will discuss the challenges in interpreting the data on lipid transport between ER and mitochondria from in vitro and in vivo experiments by highlighting some critical aspects that might be worth addressing in the future.
Collapse
|
69
|
Martins VM, Fernandes TR, Lopes D, Afonso CB, Domingues MRM, Côrte-Real M, Sousa MJ. Contacts in Death: The Role of the ER-Mitochondria Axis in Acetic Acid-Induced Apoptosis in Yeast. J Mol Biol 2018; 431:273-288. [PMID: 30414966 DOI: 10.1016/j.jmb.2018.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/12/2018] [Accepted: 11/05/2018] [Indexed: 02/08/2023]
Abstract
Endoplasmic reticulum-mitochondria contact sites have been a subject of increasing scientific interest since the discovery that these structures are disrupted in several pathologies. Due to the emerging data that correlate endoplasmic reticulum-mitochondria contact sites function with known events of the apoptotic program, we aimed to dissect this interplay using our well-established model of acetic acid-induced apoptosis in Saccharomyces cerevisiae. Until recently, the only known tethering complex between ER and mitochondria in this organism was the ER-mitochondria encounter structure (ERMES). Following our results from a screening designed to identify genes whose deletion rendered cells with an altered sensitivity to acetic acid, we hypothesized that the ERMES complex could be involved in cell death mediated by this stressor. Herein we demonstrate that single ablation of the ERMES components Mdm10p, Mdm12p and Mdm34p increases the resistance of S. cerevisiae to acetic acid-induced apoptosis, which is associated with a prominent delay in the appearance of several apoptotic markers. Moreover, abrogation of Mdm10p or Mdm34p abolished cytochrome c release from mitochondria. Since these two proteins are embedded in the mitochondrial outer membrane, we propose that the ERMES complex plays a part in cytochrome c release, a key event of the apoptotic cascade. In all, these findings will aid in targeted therapies for diseases where apoptosis is disrupted, as well as assist in the development of acetic acid-resistant strains for industrial processes.
Collapse
Affiliation(s)
- Vítor M Martins
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Tânia R Fernandes
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Diana Lopes
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Department of Chemistry & CESAM & ECOMARE, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Catarina B Afonso
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Maria R M Domingues
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Department of Chemistry & CESAM & ECOMARE, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Manuela Côrte-Real
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Maria J Sousa
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
70
|
Dudek J, Hartmann M, Rehling P. The role of mitochondrial cardiolipin in heart function and its implication in cardiac disease. Biochim Biophys Acta Mol Basis Dis 2018; 1865:810-821. [PMID: 30837070 DOI: 10.1016/j.bbadis.2018.08.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 01/21/2023]
Abstract
Mitochondria play an essential role in the energy metabolism of the heart. Many of the essential functions are associated with mitochondrial membranes and oxidative phosphorylation driven by the respiratory chain. Mitochondrial membranes are unique in the cell as they contain the phospholipid cardiolipin. The important role of cardiolipin in cardiovascular health is highlighted by several cardiac diseases, in which cardiolipin plays a fundamental role. Barth syndrome, Sengers syndrome, and Dilated cardiomyopathy with ataxia (DCMA) are genetic disorders, which affect cardiolipin biosynthesis. Other cardiovascular diseases including ischemia/reperfusion injury and heart failure are also associated with changes in the cardiolipin pool. Here, we summarize molecular functions of cardiolipin in mitochondrial biogenesis and morphology. We highlight the role of cardiolipin for the respiratory chain, metabolite carriers, and mitochondrial metabolism and describe links to apoptosis and mitochondria specific autophagy (mitophagy) with possible implications in cardiac disease.
Collapse
Affiliation(s)
- Jan Dudek
- Institute of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Magnus Hartmann
- Institute of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Peter Rehling
- Institute of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany; Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany.
| |
Collapse
|
71
|
Vance JE. Historical perspective: phosphatidylserine and phosphatidylethanolamine from the 1800s to the present. J Lipid Res 2018; 59:923-944. [PMID: 29661786 DOI: 10.1194/jlr.r084004] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/12/2018] [Indexed: 12/17/2022] Open
Abstract
This article provides a historical account of the discovery, chemistry, and biochemistry of two ubiquitous phosphoglycerolipids, phosphatidylserine (PS) and phosphatidylethanolamine (PE), including the ether lipids. In addition, the article describes the biosynthetic pathways for these phospholipids and how these pathways were elucidated. Several unique functions of PS and PE in mammalian cells in addition to their ability to define physical properties of membranes are discussed. For example, the translocation of PS from the inner to the outer leaflet of the plasma membrane of cells occurs during apoptosis and during some other specific physiological processes, and this translocation is responsible for profound life-or-death events. Moreover, mitochondrial function is severely impaired when the PE content of mitochondria is reduced below a threshold level. The discovery and implications of the existence of membrane contact sites between the endoplasmic reticulum and mitochondria and their relevance for PS and PE metabolism, as well as for mitochondrial function, are also discussed. Many of the recent advances in these fields are due to the use of isotope labeling for tracing biochemical pathways. In addition, techniques for disruption of specific genes in mice are now widely used and have provided major breakthroughs in understanding the roles and metabolism of PS and PE in vivo.
Collapse
Affiliation(s)
- Jean E Vance
- Department of Medicine and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2S2, Canada.
| |
Collapse
|
72
|
Moehle EA, Shen K, Dillin A. Mitochondrial proteostasis in the context of cellular and organismal health and aging. J Biol Chem 2018; 294:5396-5407. [PMID: 29622680 DOI: 10.1074/jbc.tm117.000893] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
As a central hub of cellular metabolism and signaling, the mitochondrion is a crucial organelle whose dysfunction can cause disease and whose activity is intimately connected to aging. We review how the mitochondrial network maintains proteomic integrity, how mitochondrial proteotoxic stress is communicated and resolved in the context of the entire cell, and how mitochondrial systems function in the context of organismal health and aging. A deeper understanding of how mitochondrial protein quality control mechanisms are coordinated across these distinct biological levels should help explain why these mechanisms fail with age and, ultimately, how routes to intervention might be attained.
Collapse
Affiliation(s)
- Erica A Moehle
- From the Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Koning Shen
- From the Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Andrew Dillin
- From the Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| |
Collapse
|
73
|
Vigié P, Cougouilles E, Bhatia-Kiššová I, Salin B, Blancard C, Camougrand N. Mitochondrial phosphatidylserine decarboxylase 1 (Psd1) is involved in nitrogen starvation-induced mitophagy in yeast. J Cell Sci 2018; 132:jcs.221655. [DOI: 10.1242/jcs.221655] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/26/2018] [Indexed: 12/28/2022] Open
Abstract
Mitophagy, the selective degradation of mitochondria by autophagy, is a central process essential to maintain cell homeostasis. It is implicated in the clearance of superfluous or damaged mitochondria and requires specific proteins and regulators to perform. In yeast, Atg32, an outer mitochondrial membrane protein, interacts with the ubiquitin-like Atg8 protein, promoting the recruitment of mitochondria to the phagophore and their sequestration within autophagosomes. Atg8 is anchored to the phagophore and autophagosome membranes thanks to a phosphatidylethanolamine tail. In yeast, several phosphatidylethanolamine synthesis pathways have been characterized, but their contribution to autophagy and mitophagy are unknown. Through different approaches, we show that Psd1, the mitochondrial phosphatidylserine decarboxylase, is involved only in mitophagy induction in nitrogen starvation, whereas Psd2, located in vacuole/Golgi apparatus/endosome membranes, is required preferentially for mitophagy induction in the stationary phase of growth but also to a lesser extent for nitrogen starvation-induced mitophagy. Our results suggest that Δpsd1 mitophagy defect in nitrogen starvation may be due to a failure of Atg8 recruitment to mitochondria.
Collapse
Affiliation(s)
- Pierre Vigié
- CNRS, UMR5095, 1 rue Camille Saint-Saëns, 33077 Bordeaux, France
- Université de Bordeaux, UMR5095, 1 rue Camille Saint-Saëns, 33077 Bordeaux, France
| | - Elodie Cougouilles
- CNRS, UMR5095, 1 rue Camille Saint-Saëns, 33077 Bordeaux, France
- Université de Bordeaux, UMR5095, 1 rue Camille Saint-Saëns, 33077 Bordeaux, France
| | - Ingrid Bhatia-Kiššová
- Comenius University, Faculty of Natural Sciences, Department of Biochemistry, Mlynská dolina CH1, 84215 Bratislava, Slovak Republic
| | - Bénédicte Salin
- CNRS, UMR5095, 1 rue Camille Saint-Saëns, 33077 Bordeaux, France
- Université de Bordeaux, UMR5095, 1 rue Camille Saint-Saëns, 33077 Bordeaux, France
| | - Corinne Blancard
- CNRS, UMR5095, 1 rue Camille Saint-Saëns, 33077 Bordeaux, France
- Université de Bordeaux, UMR5095, 1 rue Camille Saint-Saëns, 33077 Bordeaux, France
| | - Nadine Camougrand
- CNRS, UMR5095, 1 rue Camille Saint-Saëns, 33077 Bordeaux, France
- Université de Bordeaux, UMR5095, 1 rue Camille Saint-Saëns, 33077 Bordeaux, France
| |
Collapse
|