51
|
Busche M, Scarpin MR, Hnasko R, Brunkard JO. TOR coordinates nucleotide availability with ribosome biogenesis in plants. THE PLANT CELL 2021; 33:1615-1632. [PMID: 33793860 PMCID: PMC8254494 DOI: 10.1093/plcell/koab043] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 01/29/2021] [Indexed: 05/10/2023]
Abstract
TARGET OF RAPAMYCIN (TOR) is a conserved eukaryotic Ser/Thr protein kinase that coordinates growth and metabolism with nutrient availability. We conducted a medium-throughput functional genetic screen to discover essential genes that promote TOR activity in plants, and identified a critical regulatory enzyme, cytosolic phosphoribosyl pyrophosphate (PRPP) synthetase (PRS4). PRS4 synthesizes cytosolic PRPP, a key upstream metabolite in nucleotide synthesis and salvage pathways. We found that prs4 knockouts are embryo-lethal in Arabidopsis thaliana, and that silencing PRS4 expression in Nicotiana benthamiana causes pleiotropic developmental phenotypes, including dwarfism, aberrant leaf shape, and delayed flowering. Transcriptomic analysis revealed that ribosome biogenesis is among the most strongly repressed processes in prs4 knockdowns. Building on these results, we discovered that TOR activity is inhibited by chemical or genetic disruption of nucleotide biosynthesis, but that this effect can be reversed by supplying plants with nucleobases. Finally, we show that TOR transcriptionally promotes nucleotide biosynthesis to support the demands of ribosomal RNA synthesis. We propose that TOR coordinates ribosome biogenesis with nucleotide availability in plants to maintain metabolic homeostasis and support growth.
Collapse
Affiliation(s)
- Michael Busche
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Plant Gene Expression Center, USDA Agricultural Research Service, Albany, CA 94710, USA
| | - M Regina Scarpin
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Plant Gene Expression Center, USDA Agricultural Research Service, Albany, CA 94710, USA
| | - Robert Hnasko
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Pacific West Area, USDA Agricultural Research Service, Albany, CA 94710,USA
| | - Jacob O Brunkard
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Plant Gene Expression Center, USDA Agricultural Research Service, Albany, CA 94710, USA
| |
Collapse
|
52
|
Horner W, Brunkard JO. Cytokinins Stimulate Plasmodesmatal Transport in Leaves. FRONTIERS IN PLANT SCIENCE 2021; 12:674128. [PMID: 34135930 PMCID: PMC8201399 DOI: 10.3389/fpls.2021.674128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Plant cells are connected by plasmodesmata (PD), nanoscopic channels in cell walls that allow diverse cytosolic molecules to move between neighboring cells. PD transport is tightly coordinated with physiology and development, although the range of signaling pathways that influence PD transport has not been comprehensively defined. Several plant hormones, including salicylic acid (SA) and auxin, are known to regulate PD transport, but the effects of other hormones have not been established. In this study, we provide evidence that cytokinins promote PD transport in leaves. Using a green fluorescent protein (GFP) movement assay in the epidermis of Nicotiana benthamiana, we have shown that PD transport significantly increases when leaves are supplied with exogenous cytokinins at physiologically relevant concentrations or when a positive regulator of cytokinin responses, ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 5 (AHP5), is overexpressed. We then demonstrated that silencing cytokinin receptors, ARABIDOPSIS HISTIDINE KINASE 3 (AHK3) or AHK4 or overexpressing a negative regulator of cytokinin signaling, AAHP6, significantly decreases PD transport. These results are supported by transcriptomic analysis of mutants with increased PD transport (ise1-4), which show signs of enhanced cytokinin signaling. We concluded that cytokinins contribute to dynamic changes in PD transport in plants, which will have implications in several aspects of plant biology, including meristem patterning and development, regulation of the sink-to-source transition, and phytohormone crosstalk.
Collapse
Affiliation(s)
- Wilson Horner
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Plant Gene Expression Center, USDA Agricultural Research Service, Albany, CA, United States
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, WI, United States
| | - Jacob O. Brunkard
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Plant Gene Expression Center, USDA Agricultural Research Service, Albany, CA, United States
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, WI, United States
| |
Collapse
|
53
|
Pacheco JM, Canal MV, Pereyra CM, Welchen E, Martínez-Noël GMA, Estevez JM. The tip of the iceberg: emerging roles of TORC1, and its regulatory functions in plant cells. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4085-4101. [PMID: 33462577 DOI: 10.1093/jxb/eraa603] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Target of Rapamycin (TOR) is an evolutionarily conserved protein kinase that plays a central role in coordinating cell growth with light availability, the diurnal cycle, energy availability, and hormonal pathways. TOR Complex 1 (TORC1) controls cell proliferation, growth, metabolism, and defense in plants. Sugar availability is the main signal for activation of TOR in plants, as it also is in mammals and yeast. Specific regulators of the TOR kinase pathway in plants are inorganic compounds in the form of major nutrients in the soils, and light inputs via their impact on autotrophic metabolism. The lack of TOR is embryo-lethal in plants, whilst dysregulation of TOR signaling causes major alterations in growth and development. TOR exerts control as a regulator of protein translation via the action of proteins such as S6K, RPS6, and TAP46. Phytohormones are central players in the downstream systemic physiological TOR effects. TOR has recently been attributed to have roles in the control of DNA methylation, in the abundance of mRNA splicing variants, and in the variety of regulatory lncRNAs and miRNAs. In this review, we summarize recent discoveries in the plant TOR signaling pathway in the context of our current knowledge of mammalian and yeast cells, and highlight the most important gaps in our understanding of plants that need to be addressed in the future.
Collapse
Affiliation(s)
| | - María Victoria Canal
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas,, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Cintia M Pereyra
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET) and Fundación para Investigaciones Biológicas Aplicadas (FIBA), Vieytes, Mar Del Plata, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas,, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Giselle M A Martínez-Noël
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET) and Fundación para Investigaciones Biológicas Aplicadas (FIBA), Vieytes, Mar Del Plata, Argentina
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires CP, Argentina
- Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida (FCsV), Universidad Andres Bello, Santiago, Chile and Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|
54
|
Liu Y, Duan X, Zhao X, Ding W, Wang Y, Xiong Y. Diverse nitrogen signals activate convergent ROP2-TOR signaling in Arabidopsis. Dev Cell 2021; 56:1283-1295.e5. [PMID: 33831352 DOI: 10.1016/j.devcel.2021.03.022] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 01/24/2021] [Accepted: 03/15/2021] [Indexed: 02/08/2023]
Abstract
The evolutionarily conserved target-of-rapamycin (TOR) kinase coordinates cellular and organismal growth in all eukaryotes. Amino acids (AAs) are key upstream signals for mammalian TOR activation, but how nitrogen-related nutrients regulate TOR signaling in plants is poorly understood. Here, we discovered that, independent of nitrogen assimilation, nitrate and ammonium function as primary nitrogen signals to activate TOR in the Arabidopsis leaf primordium. We further identified that a total of 15 proteinogenic AAs are also able to activate TOR, and the first AAs generated from plant specific nitrogen assimilation (glutamine), sulfur assimilation (cysteine), and glycolate cycle (glycine), exhibit the highest potency. Interestingly, nitrate, ammonium, and glutamine all activate the small GTPase Rho-related protein from plants 2 (ROP2), and constitutively active ROP2 restores TOR activation under nitrogen-starvation conditions. Our findings suggest that specific evolutionary adaptations of the nitrogen-TOR signaling pathway occurred in plant lineages, and ROP2 can integrate diverse nitrogen and hormone signals for plant TOR activation.
Collapse
Affiliation(s)
- Yanlin Liu
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, P. R. China
| | - Xiaoli Duan
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, P. R. China
| | - Xiaodi Zhao
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, P. R. China
| | - Wenlong Ding
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, P. R. China
| | - Yaowei Wang
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, P. R. China
| | - Yan Xiong
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, P. R. China.
| |
Collapse
|
55
|
Fichtner F, Dissanayake IM, Lacombe B, Barbier F. Sugar and Nitrate Sensing: A Multi-Billion-Year Story. TRENDS IN PLANT SCIENCE 2021; 26:352-374. [PMID: 33281060 DOI: 10.1016/j.tplants.2020.11.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/23/2020] [Accepted: 11/04/2020] [Indexed: 05/03/2023]
Abstract
Sugars and nitrate play a major role in providing carbon and nitrogen in plants. Understanding how plants sense these nutrients is crucial, most notably for crop improvement. The mechanisms underlying sugar and nitrate sensing are complex and involve moonlighting proteins such as the nitrate transporter NRT1.1/NFP6.3 or the glycolytic enzyme HXK1. Major components of nutrient signaling, such as SnRK1, TOR, and HXK1, are relatively well conserved across eukaryotes, and the diversification of components such as the NRT1 family and the SWEET sugar transporters correlates with plant terrestrialization. In plants, Tre6P plays a hormone-like role in plant development. In addition, nutrient signaling has evolved to interact with the more recent hormone signaling, allowing fine-tuning of physiological and developmental responses.
Collapse
Affiliation(s)
- Franziska Fichtner
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | | | - Benoit Lacombe
- Biochimie et Physiologie Moléculaire des Plantes (BPMP), Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Francois Barbier
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
56
|
The TOR-EIN2 axis mediates nuclear signalling to modulate plant growth. Nature 2021; 591:288-292. [PMID: 33658715 DOI: 10.1038/s41586-021-03310-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/29/2021] [Indexed: 01/31/2023]
Abstract
The evolutionarily conserved target of rapamycin (TOR) kinase acts as a master regulator that coordinates cell proliferation and growth by integrating nutrient, energy, hormone and stress signals in all eukaryotes1,2. Research has focused mainly on TOR-regulated translation, but how TOR orchestrates the global transcriptional network remains unclear. Here we identify ethylene-insensitive protein 2 (EIN2), a central integrator3-5 that shuttles between the cytoplasm and the nucleus, as a direct substrate of TOR in Arabidopsis thaliana. Glucose-activated TOR kinase directly phosphorylates EIN2 to prevent its nuclear localization. Notably, the rapid global transcriptional reprogramming that is directed by glucose-TOR signalling is largely compromised in the ein2-5 mutant, and EIN2 negatively regulates the expression of a wide range of target genes of glucose-activated TOR that are involved in DNA replication, cell wall and lipid synthesis and various secondary metabolic pathways. Chemical, cellular and genetic analyses reveal that cell elongation and proliferation processes that are controlled by the glucose-TOR-EIN2 axis are decoupled from canonical ethylene-CTR1-EIN2 signalling, and mediated by different phosphorylation sites. Our findings reveal a molecular mechanism by which a central signalling hub is shared but differentially modulated by diverse signalling pathways using distinct phosphorylation codes that can be specified by upstream protein kinases.
Collapse
|
57
|
Saliba E, Primo C, Guarini N, André B. A plant plasma-membrane H +-ATPase promotes yeast TORC1 activation via its carboxy-terminal tail. Sci Rep 2021; 11:4788. [PMID: 33637787 PMCID: PMC7910539 DOI: 10.1038/s41598-021-83525-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 01/28/2021] [Indexed: 01/05/2023] Open
Abstract
The Target of Rapamycin Complex 1 (TORC1) involved in coordination of cell growth and metabolism is highly conserved among eukaryotes. Yet the signals and mechanisms controlling its activity differ among taxa, according to their biological specificities. A common feature of fungal and plant cells, distinguishing them from animal cells, is that their plasma membrane contains a highly abundant H+-ATPase which establishes an electrochemical H+ gradient driving active nutrient transport. We have previously reported that in yeast, nutrient-uptake-coupled H+ influx elicits transient TORC1 activation and that the plasma-membrane H+-ATPase Pma1 plays an important role in this activation, involving more than just establishment of the H+ gradient. We show here that the PMA2 H+-ATPase from the plant Nicotiana plumbaginifolia can substitute for Pma1 in yeast, to promote H+-elicited TORC1 activation. This H+-ATPase is highly similar to Pma1 but has a longer carboxy-terminal tail binding 14-3-3 proteins. We report that a C-terminally truncated PMA2, which remains fully active, fails to promote H+-elicited TORC1 activation. Activation is also impaired when binding of PMA2 to 14-3-3 s is hindered. Our results show that at least some plant plasma-membrane H+-ATPases share with yeast Pma1 the ability to promote TORC1 activation in yeast upon H+-coupled nutrient uptake.
Collapse
Affiliation(s)
- Elie Saliba
- Molecular Physiology of the Cell, Université Libre de Bruxelles (ULB), 6041, Biopark, Gosselies, Belgium
| | - Cecilia Primo
- Molecular Physiology of the Cell, Université Libre de Bruxelles (ULB), 6041, Biopark, Gosselies, Belgium
| | - Nadia Guarini
- Molecular Physiology of the Cell, Université Libre de Bruxelles (ULB), 6041, Biopark, Gosselies, Belgium
| | - Bruno André
- Molecular Physiology of the Cell, Université Libre de Bruxelles (ULB), 6041, Biopark, Gosselies, Belgium.
| |
Collapse
|
58
|
Ingargiola C, Turqueto Duarte G, Robaglia C, Leprince AS, Meyer C. The Plant Target of Rapamycin: A Conduc TOR of Nutrition and Metabolism in Photosynthetic Organisms. Genes (Basel) 2020; 11:genes11111285. [PMID: 33138108 PMCID: PMC7694126 DOI: 10.3390/genes11111285] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
Living organisms possess many mechanisms to sense nutrients and favorable conditions, which allow them to grow and develop. Photosynthetic organisms are very diverse, from green unicellular algae to multicellular flowering plants, but most of them are sessile and thus unable to escape from the biotic and abiotic stresses they experience. The Target of Rapamycin (TOR) signaling pathway is conserved in all eukaryotes and acts as a central regulatory hub between growth and extrinsic factors, such as nutrients or stress. However, relatively little is known about the regulations and roles of this pathway in plants and algae. Although some features of the TOR pathway seem to have been highly conserved throughout evolution, others clearly differ in plants, perhaps reflecting adaptations to different lifestyles and the rewiring of this primordial signaling module to adapt to specific requirements. Indeed, TOR is involved in plant responses to a vast array of signals including nutrients, hormones, light, stresses or pathogens. In this review, we will summarize recent studies that address the regulations of TOR by nutrients in photosynthetic organisms, and the roles of TOR in controlling important metabolic pathways, highlighting similarities and differences with the other eukaryotes.
Collapse
Affiliation(s)
- Camille Ingargiola
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (C.I.); (G.T.D.); (A.-S.L.)
| | - Gustavo Turqueto Duarte
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (C.I.); (G.T.D.); (A.-S.L.)
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Christophe Robaglia
- Laboratoire de Génétique et Biophysique des Plantes, Faculté des Sciences de Luminy, UMR 7265, CEA, CNRS, BIAM, Aix Marseille Université, 13009 Marseille, France;
| | - Anne-Sophie Leprince
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (C.I.); (G.T.D.); (A.-S.L.)
- Faculté des Sciences et d’Ingénierie, Sorbonne Université, UFR 927, 4 Place Jussieu, 75252 Paris, France
| | - Christian Meyer
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (C.I.); (G.T.D.); (A.-S.L.)
- Correspondence:
| |
Collapse
|
59
|
Scarpin MR, Leiboff S, Brunkard JO. Parallel global profiling of plant TOR dynamics reveals a conserved role for LARP1 in translation. eLife 2020; 9:e58795. [PMID: 33054972 PMCID: PMC7584452 DOI: 10.7554/elife.58795] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Target of rapamycin (TOR) is a protein kinase that coordinates eukaryotic metabolism. In mammals, TOR specifically promotes translation of ribosomal protein (RP) mRNAs when amino acids are available to support protein synthesis. The mechanisms controlling translation downstream from TOR remain contested, however, and are largely unexplored in plants. To define these mechanisms in plants, we globally profiled the plant TOR-regulated transcriptome, translatome, proteome, and phosphoproteome. We found that TOR regulates ribosome biogenesis in plants at multiple levels, but through mechanisms that do not directly depend on 5' oligopyrimidine tract motifs (5'TOPs) found in mammalian RP mRNAs. We then show that the TOR-LARP1-5'TOP signaling axis is conserved in plants and regulates expression of a core set of eukaryotic 5'TOP mRNAs, as well as new, plant-specific 5'TOP mRNAs. Our study illuminates ancestral roles of the TOR-LARP1-5'TOP metabolic regulatory network and provides evolutionary context for ongoing debates about the molecular function of LARP1.
Collapse
Affiliation(s)
- M Regina Scarpin
- Department of Plant and Microbial Biology, University of California at BerkeleyBerkeleyUnited States
- Plant Gene Expression Center, U.S. Department of Agriculture Agricultural Research ServiceAlbanyUnited States
| | - Samuel Leiboff
- Department of Plant and Microbial Biology, University of California at BerkeleyBerkeleyUnited States
- Plant Gene Expression Center, U.S. Department of Agriculture Agricultural Research ServiceAlbanyUnited States
- Department of Botany and Plant Pathology, Oregon State UniversityCorvallisUnited States
| | - Jacob O Brunkard
- Department of Plant and Microbial Biology, University of California at BerkeleyBerkeleyUnited States
- Plant Gene Expression Center, U.S. Department of Agriculture Agricultural Research ServiceAlbanyUnited States
- Laboratory of Genetics, University of Wisconsin—MadisonMadisonUnited States
| |
Collapse
|