51
|
Daley JM, Tomimatsu N, Hooks G, Wang W, Miller AS, Xue X, Nguyen KA, Kaur H, Williamson E, Mukherjee B, Hromas R, Burma S, Sung P. Specificity of end resection pathways for double-strand break regions containing ribonucleotides and base lesions. Nat Commun 2020; 11:3088. [PMID: 32555206 PMCID: PMC7303207 DOI: 10.1038/s41467-020-16903-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 05/29/2020] [Indexed: 12/19/2022] Open
Abstract
DNA double-strand break repair by homologous recombination begins with nucleolytic resection of the 5’ DNA strand at the break ends. Long-range resection is catalyzed by EXO1 and BLM-DNA2, which likely have to navigate through ribonucleotides and damaged bases. Here, we show that a short stretch of ribonucleotides at the 5’ terminus stimulates resection by EXO1. Ribonucleotides within a 5’ flap are resistant to cleavage by DNA2, and extended RNA:DNA hybrids inhibit both strand separation by BLM and resection by EXO1. Moreover, 8-oxo-guanine impedes EXO1 but enhances resection by BLM-DNA2, and an apurinic/apyrimidinic site stimulates resection by BLM-DNA2 and DNA strand unwinding by BLM. Accordingly, depletion of OGG1 or APE1 leads to greater dependence of DNA resection on DNA2. Importantly, RNase H2A deficiency impairs resection overall, which we attribute to the accumulation of long RNA:DNA hybrids at DNA ends. Our results help explain why eukaryotic cells possess multiple resection nucleases. DNA double-strand break repair by homologous recombination initiates with nucleolytic resection of the 5’ DNA strand at the break ends. Here, the authors reveal that the lesion context influences the action and efficiency of the long range resection factors EXO1 and BLM-DNA2.
Collapse
Affiliation(s)
- James M Daley
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, 06510, USA. .,Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
| | - Nozomi Tomimatsu
- Department of Neurosurgery, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Grace Hooks
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, 06510, USA.,Department of Biochemistry, Duke University, Durham, NC, 27710, USA
| | - Weibin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, 06510, USA.,Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Adam S Miller
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, 06510, USA.,Regeneron, Rensselaer, NY, 12144, USA
| | - Xiaoyu Xue
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, 06510, USA.,Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA
| | - Kevin A Nguyen
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, 06510, USA.,David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Hardeep Kaur
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Elizabeth Williamson
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Bipasha Mukherjee
- Department of Neurosurgery, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Robert Hromas
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Sandeep Burma
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, 78229, USA. .,Department of Neurosurgery, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, 06510, USA. .,Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
| |
Collapse
|
52
|
Ghodke PP, Guengerich FP. Impact of 1, N 6-ethenoadenosine, a damaged ribonucleotide in DNA, on translesion synthesis and repair. J Biol Chem 2020; 295:6092-6107. [PMID: 32213600 DOI: 10.1074/jbc.ra120.012829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/23/2020] [Indexed: 01/02/2023] Open
Abstract
Incorporation of ribonucleotides into DNA can severely diminish genome integrity. However, how ribonucleotides instigate DNA damage is poorly understood. In DNA, they can promote replication stress and genomic instability and have been implicated in several diseases. We report here the impact of the ribonucleotide rATP and of its naturally occurring damaged analog 1,N 6-ethenoadenosine (1,N 6-ϵrA) on translesion synthesis (TLS), mediated by human DNA polymerase η (hpol η), and on RNase H2-mediated incision. Mass spectral analysis revealed that 1,N 6-ϵrA in DNA generates extensive frameshifts during TLS, which can lead to genomic instability. Moreover, steady-state kinetic analysis of the TLS process indicated that deoxypurines (i.e. dATP and dGTP) are inserted predominantly opposite 1,N 6-ϵrA. We also show that hpol η acts as a reverse transcriptase in the presence of damaged ribonucleotide 1,N 6-ϵrA but has poor RNA primer extension activities. Steady-state kinetic analysis of reverse transcription and RNA primer extension showed that hpol η favors the addition of dATP and dGTP opposite 1,N 6-ϵrA. We also found that RNase H2 recognizes 1,N 6-ϵrA but has limited incision activity across from this lesion, which can lead to the persistence of this detrimental DNA adduct. We conclude that the damaged and unrepaired ribonucleotide 1,N 6-ϵrA in DNA exhibits mutagenic potential and can also alter the reading frame in an mRNA transcript because 1,N 6-ϵrA is incompletely incised by RNase H2.
Collapse
Affiliation(s)
- Pratibha P Ghodke
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37323-0146
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37323-0146.
| |
Collapse
|
53
|
Nava GM, Grasso L, Sertic S, Pellicioli A, Muzi Falconi M, Lazzaro F. One, No One, and One Hundred Thousand: The Many Forms of Ribonucleotides in DNA. Int J Mol Sci 2020; 21:E1706. [PMID: 32131532 PMCID: PMC7084774 DOI: 10.3390/ijms21051706] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/14/2022] Open
Abstract
In the last decade, it has become evident that RNA is frequently found in DNA. It is now well established that single embedded ribonucleoside monophosphates (rNMPs) are primarily introduced by DNA polymerases and that longer stretches of RNA can anneal to DNA, generating RNA:DNA hybrids. Among them, the most studied are R-loops, peculiar three-stranded nucleic acid structures formed upon the re-hybridization of a transcript to its template DNA. In addition, polyribonucleotide chains are synthesized to allow DNA replication priming, double-strand breaks repair, and may as well result from the direct incorporation of consecutive rNMPs by DNA polymerases. The bright side of RNA into DNA is that it contributes to regulating different physiological functions. The dark side, however, is that persistent RNA compromises genome integrity and genome stability. For these reasons, the characterization of all these structures has been under growing investigation. In this review, we discussed the origin of single and multiple ribonucleotides in the genome and in the DNA of organelles, focusing on situations where the aberrant processing of RNA:DNA hybrids may result in multiple rNMPs embedded in DNA. We concluded by providing an overview of the currently available strategies to study the presence of single and multiple ribonucleotides in DNA in vivo.
Collapse
Affiliation(s)
| | | | | | | | - Marco Muzi Falconi
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy; (G.M.N.); (L.G.); (S.S.); (A.P.)
| | - Federico Lazzaro
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy; (G.M.N.); (L.G.); (S.S.); (A.P.)
| |
Collapse
|
54
|
Regulatory R-loops as facilitators of gene expression and genome stability. Nat Rev Mol Cell Biol 2020; 21:167-178. [PMID: 32005969 DOI: 10.1038/s41580-019-0206-3] [Citation(s) in RCA: 317] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2019] [Indexed: 12/23/2022]
Abstract
R-loops are three-stranded structures that harbour an RNA-DNA hybrid and frequently form during transcription. R-loop misregulation is associated with DNA damage, transcription elongation defects, hyper-recombination and genome instability. In contrast to such 'unscheduled' R-loops, evidence is mounting that cells harness the presence of RNA-DNA hybrids in scheduled, 'regulatory' R-loops to promote DNA transactions, including transcription termination and other steps of gene regulation, telomere stability and DNA repair. R-loops formed by cellular RNAs can regulate histone post-translational modification and may be recognized by dedicated reader proteins. The two-faced nature of R-loops implies that their formation, location and timely removal must be tightly regulated. In this Perspective, we discuss the cellular processes that regulatory R-loops modulate, the regulation of R-loops and the potential differences that may exist between regulatory R-loops and unscheduled R-loops.
Collapse
|
55
|
Riccio AA, Schellenberg MJ, Williams RS. Molecular mechanisms of topoisomerase 2 DNA-protein crosslink resolution. Cell Mol Life Sci 2020; 77:81-91. [PMID: 31728578 PMCID: PMC6960353 DOI: 10.1007/s00018-019-03367-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/11/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022]
Abstract
The compaction of DNA and the continuous action of DNA transactions, including transcription and DNA replication, create complex DNA topologies that require Type IIA Topoisomerases, which resolve DNA topological strain and control genome dynamics. The human TOP2 enzymes catalyze their reactions via formation of a reversible covalent enzyme DNA-protein crosslink, the TOP2 cleavage complex (TOP2cc). Spurious interactions of TOP2 with DNA damage, environmental toxicants and chemotherapeutic "poisons" perturbs the TOP2 reaction cycle, leading to an accumulation of DNA-protein crosslinks, and ultimately, genomic instability and cell death. Emerging evidence shows that TOP2-DNA protein crosslink (DPC) repair entails multiple strand break repair activities, such as removal of the poisoned TOP2 protein and rejoining of the DNA ends through homologous recombination (HR) or non-homologous end joining (NHEJ). Herein, we discuss the molecular mechanisms of TOP2-DPC resolution, with specific emphasis on the recently uncovered ZATTZnf451-licensed TDP2-catalyzed TOP2-DPC reversal mechanism.
Collapse
Affiliation(s)
- Amanda A Riccio
- Department of Health and Human Services, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, NC, USA
| | - Matthew J Schellenberg
- Department of Health and Human Services, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, NC, USA
| | - R Scott Williams
- Department of Health and Human Services, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
56
|
Nishimura T, Baba M, Ogawa S, Kojima K, Takita T, Crouch RJ, Yasukawa K. Characterization of six recombinant human RNase H2 bearing Aicardi-Goutiéres syndrome causing mutations. J Biochem 2019; 166:537-545. [PMID: 31529068 DOI: 10.1093/jb/mvz073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/02/2019] [Indexed: 01/18/2023] Open
Abstract
Mammalian RNase H2 is a heterotrimeric enzyme consisting of one catalytic subunit (A) and two accessory subunits (B and C). RNase H2 is involved in the removal of a single ribonucleotide embedded in genomic DNA and removal of RNA of RNA/DNA hybrids. In humans, mutation of the RNase H2 gene causes a severe neuroinflammatory disorder Aicardi-Goutières syndrome (AGS). Here, we examined the activity and stability of six recombinant human RNase H2 variants bearing one AGS-causing mutation, A-G37S (Gly37 in the A subunit is replaced with Ser), A-N212I, A-R291H, B-A177T, B-V185G, or C-R69W. The activity of A-G37S was 0.3-1% of that of the wild-type RNase H2 (WT), while those of other five variants were 51-120%. In circular dichroism measurement, the melting temperatures of variants were 50-53°C, lower than that of WT (56°C). These results suggested that A-G37S had decreased activity and stability than WT, while other five variants had decreased stability but retained activity. In gel filtration chromatography of the purified enzyme preparation, WT migrated as a heterotrimer, while A-R291H eluted in two separate peaks containing either the heterotrimer or only the A subunit, suggesting that some AGS-causing mutations affect the heterotrimer-forming stability of RNase H2.
Collapse
Affiliation(s)
- Takuto Nishimura
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyoku, Kyoto 606-8502, Japan
| | - Misato Baba
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyoku, Kyoto 606-8502, Japan
| | - Saori Ogawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyoku, Kyoto 606-8502, Japan
| | - Kenji Kojima
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyoku, Kyoto 606-8502, Japan
| | - Teisuke Takita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyoku, Kyoto 606-8502, Japan
| | - Robert J Crouch
- Section on Formation of RNA, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyoku, Kyoto 606-8502, Japan
| |
Collapse
|
57
|
Wu CC, Lin JL, Yang-Yen HF, Yuan HS. A unique exonuclease ExoG cleaves between RNA and DNA in mitochondrial DNA replication. Nucleic Acids Res 2019; 47:5405-5419. [PMID: 30949702 PMCID: PMC6547421 DOI: 10.1093/nar/gkz241] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/13/2019] [Accepted: 03/25/2019] [Indexed: 01/01/2023] Open
Abstract
Replication of sufficient mitochondrial DNA (mtDNA) is essential for maintaining mitochondrial functions in mammalian cells. During mtDNA replication, RNA primers must be removed before the nascent circular DNA strands rejoin. This process involves mitochondrial RNase H1, which removes most of the RNA primers but leaves two ribonucleotides attached to the 5′ end of nascent DNA. A subsequent 5′-exonuclease is required to remove the residual ribonucleotides, however, it remains unknown if any mitochondrial 5′-exonuclease could remove two RNA nucleotides from a hybrid duplex DNA. Here, we report that human mitochondrial Exonuclease G (ExoG) may participate in this particular process by efficiently cleaving at RNA–DNA junctions to remove the 5′-end RNA dinucleotide in an RNA/DNA hybrid duplex. Crystal structures of human ExoG bound respectively with DNA, RNA/DNA hybrid and RNA–DNA chimeric duplexes uncover the underlying structural mechanism of how ExoG specifically recognizes and cleaves at RNA–DNA junctions of a hybrid duplex with an A-form conformation. This study hence establishes the molecular basis of ExoG functioning as a unique 5′-exonuclease to mediate the flap-independent RNA primer removal process during mtDNA replication to maintain mitochondrial genome integrity.
Collapse
Affiliation(s)
- Chyuan-Chuan Wu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Jason L J Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Hsin-Fang Yang-Yen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Hanna S Yuan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC
- Graduate Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan 10048, ROC
- To whom correspondence should be addressed. Tel: +886 2 27884151;
| |
Collapse
|
58
|
Rangadurai A, Zhou H, Merriman DK, Meiser N, Liu B, Shi H, Szymanski ES, Al-Hashimi HM. Why are Hoogsteen base pairs energetically disfavored in A-RNA compared to B-DNA? Nucleic Acids Res 2019; 46:11099-11114. [PMID: 30285154 PMCID: PMC6237737 DOI: 10.1093/nar/gky885] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 10/02/2018] [Indexed: 12/15/2022] Open
Abstract
A(syn)-U/T and G(syn)-C+ Hoogsteen (HG) base pairs (bps) are energetically more disfavored relative to Watson–Crick (WC) bps in A-RNA as compared to B-DNA by >1 kcal/mol for reasons that are not fully understood. Here, we used NMR spectroscopy, optical melting experiments, molecular dynamics simulations and modified nucleotides to identify factors that contribute to this destabilization of HG bps in A-RNA. Removing the 2′-hydroxyl at single purine nucleotides in A-RNA duplexes did not stabilize HG bps relative to WC. In contrast, loosening the A-form geometry using a bulge in A-RNA reduced the energy cost of forming HG bps at the flanking sites to B-DNA levels. A structural and thermodynamic analysis of purine-purine HG mismatches reveals that compared to B-DNA, the A-form geometry disfavors syn purines by 1.5–4 kcal/mol due to sugar-backbone rearrangements needed to sterically accommodate the syn base. Based on MD simulations, an additional penalty of 3–4 kcal/mol applies for purine-pyrimidine HG bps due to the higher energetic cost associated with moving the bases to form hydrogen bonds in A-RNA versus B-DNA. These results provide insights into a fundamental difference between A-RNA and B-DNA duplexes with important implications for how they respond to damage and post-transcriptional modifications.
Collapse
Affiliation(s)
- Atul Rangadurai
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Huiqing Zhou
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | | | - Nathalie Meiser
- Goethe University, Institute for Organic Chemistry and Chemical Biology, Frankfurt am Main, Germany
| | - Bei Liu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Honglue Shi
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Eric S Szymanski
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA.,Department of Chemistry, Duke University, Durham, NC, USA
| |
Collapse
|
59
|
Zhao J, Guo Z, Wang Q, Si T, Pei S, Qu H, Shang L, Yang Y, Wang L. HPV infection associated DNA damage correlated with cervical precancerous lesions and cancer in the highest area of cervical cancer mortality, Longnan, China. Cancer Manag Res 2019; 11:7197-7210. [PMID: 31534369 PMCID: PMC6681565 DOI: 10.2147/cmar.s201415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/27/2019] [Indexed: 12/26/2022] Open
Abstract
Objectives This study was to assess whether human papillomavirus (HPV) resulting in genetic instability is one reason for the high incidence and mortality of cervical cancer in Longnan. Methods Between 2012 and 2016, a total of 346 samples from Longnan were collected and divided into four groups: cervicitis group (n=57), cervical intraepithelial neoplasia I group (CIN I, n=63), CIN II/III group (n=79) and invasive squamous cell carcinoma group (SCC, n=147). HPV E6/E7 mRNA was detected by Quantivirus® HPV E6/E7 RNA 3.0 assay (bDNA). The markers of DNA damage response (DDR) – ataxia telangiectasia mutated (ATM) pSer1981, H2AX pSer139 (γH2AX), Chk2 pThr68 and P53 – were analyzed by immunohistochemistry. Results The activation of ATM, γH2AX, Chk2 and P53 was increased with increasing severity of cervical lesion. A significant difference of ATM expression in simple infection was also shown accompanied by the cervical lesion. The expression of γH2AX between HPV16+ and HPV16- specimens, γH2AX and P53 between HPV58+ and HPV58- groups had statistical significance. The expression and copy number of HPV E6/7 mRNA increases with the cervical lesion severity. A significant difference was shown for P53 expression between HPV E6/7 mRNA+ and mRNA- specimens. A close correlation with CHK2 expression for HPV E6/7 mRNA+ and HPV16 E6/7 mRNA+ specimens and γH2AX and CHK2 expression for SCC specimens was shown between low and high viral load groups. Conclusions DDR, HPV genotypes and HPV E6/E7 oncogene expression correlated with the level of dysplasia of cervical lesions. HPV infection resulted in genetic instability may be one reason for the high incidence and mortality in Longnan.
Collapse
Affiliation(s)
- Jin Zhao
- Department of Medical Function, Medical College of Northwest Minzu University, Lanzhou 730030, People's Republic of China
| | - Zhong Guo
- Department of Medical Function, Medical College of Northwest Minzu University, Lanzhou 730030, People's Republic of China
| | - Qiang Wang
- Department of Pathology, No. 1 Hospital of Longnan City, Longnan 746000, People's Republic of China
| | - Tianbin Si
- Department of Gynecology and Oncology, Gansu Provincial Cancer Hospital, Lanzhou 730050, People's Republic of China
| | - Shuyan Pei
- Department of Medical Function, Medical College of Northwest Minzu University, Lanzhou 730030, People's Republic of China
| | - Hongmei Qu
- Department of Medical Function, Medical College of Northwest Minzu University, Lanzhou 730030, People's Republic of China
| | - Lina Shang
- Department of Medical Function, Medical College of Northwest Minzu University, Lanzhou 730030, People's Republic of China
| | - Yuqing Yang
- Department of Medical Function, Medical College of Northwest Minzu University, Lanzhou 730030, People's Republic of China
| | - Lili Wang
- Department of Medical Function, Medical College of Northwest Minzu University, Lanzhou 730030, People's Republic of China
| |
Collapse
|
60
|
Abstract
Recent studies have shown that genomic instability in tumor cells leads to activation of inflammatory signaling through the cGAS/STING pathway. In this review, we describe multiple ways by which genomic instability leads to cGAS/STING-mediated inflammatory signaling, as well as the consequences for tumor development and the tumor microenvironment. Also, we elaborate on how tumor cells have apparently evolved to escape the immune surveillance mechanisms that are triggered by cGAS/STING signaling. Finally, we describe how cGAS/STING-mediated inflammatory signaling can be therapeutically targeted to improve therapy responses.
Collapse
Affiliation(s)
- Francien Talens
- a Department of Medical Oncology, University Medical Center Groningen, University of Groningen , Groningen , the Netherlands
| | - Marcel A T M Van Vugt
- a Department of Medical Oncology, University Medical Center Groningen, University of Groningen , Groningen , the Netherlands
| |
Collapse
|
61
|
Ren M, Cheng Y, Duan Q, Zhou C. Transesterification Reaction and the Repair of Embedded Ribonucleotides in DNA Are Suppressed upon the Assembly of DNA into Nucleosome Core Particles †. Chem Res Toxicol 2019; 32:926-934. [PMID: 30990021 DOI: 10.1021/acs.chemrestox.9b00059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ribonucleotides can be incorporated into DNA through many different cellular processes, and abundant amounts of ribonucleotides are detected in genomic DNA. Embedded ribonucleotides lead to genomic instability through either spontaneous ribonucleotide cleavage via internal transesterification or by inducing mutagenesis, recombination, and chromosome rearrangements. Ribonucleotides misincorporated in genomic DNA can be removed by the ribonucleotide excision repair (RER) pathway in which RNase HII initiates the repair by cleaving the 5'-phosphate of the ribonucleotide. Herein, based on in vitro reconstituted nucleosome core particles (NCPs) containing a single ribonucleotide at different positions, we studied the kinetics of ribonucleotide cleavage via the internal transesterification reaction and repair of the ribonucleotides by RNase HII in NCPs. Our results show that ribonucleotide cleavage via the internal transesterification in NCPs is suppressed compared to that in free DNA. DNA bending and structural rigidity account for the suppressed ribonucleotide cleavage in NCPs. Ribonucleotide repair by RNase HII in NCPs exhibits a strong correlation between the translational and rotational positions of the ribonucleotides. An embedded ribonucleotide located at the entry site while facing outward in NCP is repaired as efficiently as that in free DNA. However, the repair of those located in the central part of NCPs and facing inward are inhibited by up to 273-fold relative to those in free dsDNA. The difference in repair efficiency appears to arise from their different accessibility to repair enzymes in NCPs. This study reveals that a ribonucleotide misincorporated in DNA assembled into NCPs is protected against cleavage. Hence, the spontaneous cleavage of the misincorporated ribonucleotides under physiological conditions is not an essential threat to the stability of chromatin DNA. Instead, their decreased repair efficiency in NCPs may result in numerous and persistent ribonucleotides in genomic DNA, which could exert other deleterious effects on DNA such as mutagenesis and recombination.
Collapse
Affiliation(s)
- Mengtian Ren
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Yiran Cheng
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Qian Duan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry , Nankai University , Tianjin 300071 , China
| |
Collapse
|
62
|
Njuma OJ, Su Y, Guengerich FP. The abundant DNA adduct N 7-methyl deoxyguanosine contributes to miscoding during replication by human DNA polymerase η. J Biol Chem 2019; 294:10253-10265. [PMID: 31101656 DOI: 10.1074/jbc.ra119.008986] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/16/2019] [Indexed: 12/14/2022] Open
Abstract
Aside from abasic sites and ribonucleotides, the DNA adduct N 7-methyl deoxyguanosine (N7 -CH3 dG) is one of the most abundant lesions in mammalian DNA. Because N7 -CH3 dG is unstable, leading to deglycosylation and ring-opening, its miscoding potential is not well-understood. Here, we employed a 2'-fluoro isostere approach to synthesize an oligonucleotide containing an analog of this lesion (N7 -CH3 2'-F dG) and examined its miscoding potential with four Y-family translesion synthesis DNA polymerases (pols): human pol (hpol) η, hpol κ, and hpol ι and Dpo4 from the archaeal thermophile Sulfolobus solfataricus We found that hpol η and Dpo4 can bypass the N7 -CH3 2'-F dG adduct, albeit with some stalling, but hpol κ is strongly blocked at this lesion site, whereas hpol ι showed no distinction with the lesion and the control templates. hpol η yielded the highest level of misincorporation opposite the adduct by inserting dATP or dTTP. Moreover, hpol η did not extend well past an N 7-CH3 2'-F dG:dT mispair. MS-based sequence analysis confirmed that hpol η catalyzes mainly error-free incorporation of dC, with misincorporation of dA and dG in 5-10% of products. We conclude that N 7-CH3 2'-F dG and, by inference, N 7-CH3 dG have miscoding and mutagenic potential. The level of misincorporation arising from this abundant adduct can be considered as potentially mutagenic as a highly miscoding but rare lesion.
Collapse
Affiliation(s)
- Olive J Njuma
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Yan Su
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - F Peter Guengerich
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| |
Collapse
|
63
|
Gardner AF, Jackson KM, Boyle MM, Buss JA, Potapov V, Gehring AM, Zatopek KM, Corrêa IR, Ong JL, Jack WE. Therminator DNA Polymerase: Modified Nucleotides and Unnatural Substrates. Front Mol Biosci 2019; 6:28. [PMID: 31069234 PMCID: PMC6491775 DOI: 10.3389/fmolb.2019.00028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/04/2019] [Indexed: 11/13/2022] Open
Abstract
A variant of 9°N DNA polymerase [Genbank ID (AAA88769.1)] with three mutations (D141A, E143A, A485L) and commercialized under the name "Therminator DNA polymerase" has the ability to incorporate a variety of modified nucleotide classes. This Review focuses on how Therminator DNA Polymerase has enabled new technologies in synthetic biology and DNA sequencing. In addition, we discuss mechanisms for increased modified nucleotide incorporation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ivan R Corrêa
- New England Biolabs, Inc., Ipswich, MA, United States
| | | | | |
Collapse
|
64
|
Tsukiashi M, Baba M, Kojima K, Himeda K, Takita T, Yasukawa K. Construction and characterization of ribonuclease H2 knockout NIH3T3 cells. J Biochem 2019; 165:249-256. [PMID: 30481312 DOI: 10.1093/jb/mvy101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 11/13/2018] [Indexed: 11/13/2022] Open
Abstract
Ribonuclease H (RNase H) specifically hydrolyzes the 5'-phosphodiester bonds of the RNA of RNA/DNA hybrid. Both types 1 and 2 RNases H act on the RNA strand of the hybrid, while only type 2 acts on the single ribonucleotide embedded in DNA duplex. In this study, to explore the role of mammalian type 2 RNase H (RNase H2) in cells, we constructed the RNase H2 knockout NIH3T3 cells (KO cells) by CRISPR/Cas9 system. KO cells hydrolyzed RNA strands in RNA/DNA hybrid, but not single ribonucleotides in DNA duplex, while wild-type NIH3T3 cells (WT cells) hydrolyzed both. Genomic DNA in the KO cells was more heavily hydrolyzed than in the WT cells by the alkaline or RNase H2 treatment, suggesting that the KO cells contained more ribonucleotides in genomic DNA than the WT cells. The growth rate of the KO cells was 60% of that of the WT cells. Expression of interferon-stimulated genes (ISGs) in the KO cells was not markedly elevated compared with the WT cells. These results suggest that in NIH3T3 cells, RNase H2 is crucial for suppressing the accumulation of ribonucleotides in genomic DNA but not for the expression of ISGs.
Collapse
Affiliation(s)
- Motoki Tsukiashi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Misato Baba
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kenji Kojima
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kohei Himeda
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Teisuke Takita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
65
|
Randall JR, Nye TM, Wozniak KJ, Simmons LA. RNase HIII Is Important for Okazaki Fragment Processing in Bacillus subtilis. J Bacteriol 2019; 201:e00686-18. [PMID: 30670546 PMCID: PMC6416905 DOI: 10.1128/jb.00686-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/18/2019] [Indexed: 01/15/2023] Open
Abstract
RNA-DNA hybrids are common in chromosomal DNA. Persistent RNA-DNA hybrids result in replication fork stress, DNA breaks, and neurological disorders in humans. During replication, Okazaki fragment synthesis relies on frequent RNA primer placement, providing one of the most prominent forms of covalent RNA-DNA strands in vivo The mechanism of Okazaki fragment maturation, which involves RNA removal and subsequent DNA replacement, in bacteria lacking RNase HI remains unclear. In this work, we reconstituted repair of a linear model Okazaki fragment in vitro using purified recombinant enzymes from Bacillus subtilis We showed that RNase HII and HIII are capable of incision on Okazaki fragments in vitro and that both enzymes show mild stimulation by single-stranded DNA binding protein (SSB). We also showed that RNase HIII and DNA polymerase I provide the primary pathway for Okazaki fragment maturation in vitro Furthermore, we found that YpcP is a 5' to 3' nuclease that can act on a wide variety of RNA- and DNA-containing substrates and exhibits preference for degrading RNA in model Okazaki fragments. Together, our data showed that RNase HIII and DNA polymerase I provide the primary pathway for Okazaki fragment maturation, whereas YpcP also contributes to the removal of RNA from an Okazaki fragment in vitroIMPORTANCE All cells are required to resolve the different types of RNA-DNA hybrids that form in vivo When RNA-DNA hybrids persist, cells experience an increase in mutation rate and problems with DNA replication. Okazaki fragment synthesis on the lagging strand requires an RNA primer to begin synthesis of each fragment. The mechanism of RNA removal from Okazaki fragments remains unknown in bacteria that lack RNase HI. We examined Okazaki fragment processing in vitro and found that RNase HIII in conjunction with DNA polymerase I represent the most efficient repair pathway. We also assessed the contribution of YpcP and found that YpcP is a 5' to 3' exonuclease that prefers RNA substrates with activity on Okazaki and flap substrates in vitro.
Collapse
Affiliation(s)
- Justin R Randall
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Taylor M Nye
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Katherine J Wozniak
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lyle A Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
66
|
Su Y, Ghodke PP, Egli M, Li L, Wang Y, Guengerich FP. Human DNA polymerase η has reverse transcriptase activity in cellular environments. J Biol Chem 2019; 294:6073-6081. [PMID: 30842261 DOI: 10.1074/jbc.ra119.007925] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/04/2019] [Indexed: 12/24/2022] Open
Abstract
Classical DNA and RNA polymerase (pol) enzymes have defined roles with their respective substrates, but several pols have been found to have multiple functions. We reported previously that purified human DNA pol η (hpol η) can incorporate both deoxyribonucleoside triphosphates (dNTPs) and ribonucleoside triphosphates (rNTPs) and can use both DNA and RNA as substrates. X-ray crystal structures revealed that two pol η residues, Phe-18 and Tyr-92, behave as steric gates to influence sugar selectivity. However, the physiological relevance of these phenomena has not been established. Here, we show that purified hpol η adds rNTPs to DNA primers at physiological rNTP concentrations and in the presence of competing dNTPs. When two rATPs were inserted opposite a cyclobutane pyrimidine dimer, the substrate was less efficiently cleaved by human RNase H2. Human XP-V fibroblast extracts, devoid of hpol η, could not add rNTPs to a DNA primer, but the expression of transfected hpol η in the cells restored this ability. XP-V cell extracts did not add dNTPs to DNA primers hybridized to RNA, but could when hpol η was expressed in the cells. HEK293T cell extracts could add dNTPs to DNA primers hybridized to RNA, but lost this ability if hpol η was deleted. Interestingly, a similar phenomenon was not observed when other translesion synthesis (TLS) DNA polymerases-hpol ι, κ, or ζ-were individually deleted. These results suggest that hpol η is one of the major reverse transcriptases involved in physiological processes in human cells.
Collapse
Affiliation(s)
- Yan Su
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Pratibha P Ghodke
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Martin Egli
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Lin Li
- Department of Chemistry, University of California, Riverside, Riverside, California 92521
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, Riverside, California 92521
| | - F Peter Guengerich
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146.
| |
Collapse
|
67
|
Apn2 resolves blocked 3' ends and suppresses Top1-induced mutagenesis at genomic rNMP sites. Nat Struct Mol Biol 2019; 26:155-163. [PMID: 30778235 PMCID: PMC6515903 DOI: 10.1038/s41594-019-0186-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/04/2019] [Indexed: 11/25/2022]
Abstract
Ribonucleotides (rNMPs) mis-incorporated during DNA replication are removed by RNase H2 dependent excision repair or by Topoisomerase I – catalyzed cleavage. Top1 cleavage of rNMPs produces 3’ ends harboring terminal adducts, such as 2’, 3’ cyclic phosphate or Top1 cleavage complex (Top1cc), and leads to frequent mutagenesis and DNA damage checkpoint induction. We surveyed a range of candidate enzymes from Saccharomyces cerevisiae for potential roles in Top1 dependent genomic rNMP removal. Genetic and biochemical analyses reveal that Apn2 resolves phosphotyrosine-DNA conjugates, terminal 2’, 3’ cyclic phosphates and their hydrolyzed products. APN2 also suppresses 2-bp slippage mutagenesis in RNH201-deficient cells. Our results define additional activities of Apn2 in resolving a wide range of 3’- end blocks and identify a role of Apn2 in maintaining genome integrity during rNMP repair.
Collapse
|
68
|
Sassa A, Yasui M, Honma M. Current perspectives on mechanisms of ribonucleotide incorporation and processing in mammalian DNA. Genes Environ 2019; 41:3. [PMID: 30700998 PMCID: PMC6346524 DOI: 10.1186/s41021-019-0118-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/08/2019] [Indexed: 01/09/2023] Open
Abstract
Ribonucleotides, which are RNA precursors, are often incorporated into DNA during replication. Although embedded ribonucleotides in the genome are efficiently removed by canonical ribonucleotide excision repair (RER), inactivation of RER causes genomic ribonucleotide accumulation, leading to various abnormalities in cells. Mutation of genes encoding factors involved in RER is associated with the neuroinflammatory autoimmune disorder Aicardi–Goutières syndrome. Over the last decade, the biological impact of ribonucleotides in the genome has attracted much attention. In the present review, we particularly focus on recent studies that have elucidated possible mechanisms of ribonucleotide incorporation and repair and their significance in mammals.
Collapse
Affiliation(s)
- Akira Sassa
- 1Department of Biology, Graduate School of Science, Chiba University, Chiba, 263-8522 Japan
| | - Manabu Yasui
- 2Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501 Japan
| | - Masamitsu Honma
- 2Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501 Japan
| |
Collapse
|
69
|
Cronan GE, Kouzminova EA, Kuzminov A. Near-continuously synthesized leading strands in Escherichia coli are broken by ribonucleotide excision. Proc Natl Acad Sci U S A 2019; 116:1251-1260. [PMID: 30617079 PMCID: PMC6347710 DOI: 10.1073/pnas.1814512116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In vitro, purified replisomes drive model replication forks to synthesize continuous leading strands, even without ligase, supporting the semidiscontinuous model of DNA replication. However, nascent replication intermediates isolated from ligase-deficient Escherichia coli comprise only short (on average 1.2-kb) Okazaki fragments. It was long suspected that cells replicate their chromosomal DNA by the semidiscontinuous mode observed in vitro but that, in vivo, the nascent leading strand was artifactually fragmented postsynthesis by excision repair. Here, using high-resolution separation of pulse-labeled replication intermediates coupled with strand-specific hybridization, we show that excision-proficient E. coli generates leading-strand intermediates >10-fold longer than lagging-strand Okazaki fragments. Inactivation of DNA-repair activities, including ribonucleotide excision, further increased nascent leading-strand size to ∼80 kb, while lagging-strand Okazaki fragments remained unaffected. We conclude that in vivo, repriming occurs ∼70× less frequently on the leading versus lagging strands, and that DNA replication in E. coli is effectively semidiscontinuous.
Collapse
Affiliation(s)
- Glen E Cronan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Elena A Kouzminova
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
70
|
Döring J, Hurek T. Dual coding potential of a 2',5'-branched ribonucleotide in DNA. RNA (NEW YORK, N.Y.) 2019; 25:105-120. [PMID: 30361268 PMCID: PMC6298571 DOI: 10.1261/rna.068486.118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/15/2018] [Indexed: 06/08/2023]
Abstract
Branchpoints in RNA templates are highly mutagenic, but it is not known yet whether this also applies to branchpoints in DNA templates. Here, we report how nucleic acid polymerases replicate a 2',5'-branched DNA (bDNA) molecule. We constructed long-chained bDNA templates containing a branch guanosine and T7 promoters at both arms by splinted ligation. Quantitative real-time PCR analysis was used to investigate whether a branchpoint blocks DNA synthesis from the two arms in the same manner. We find that the blocking effect of a branchpoint is arm-specific. DNA synthesis from the 2'-arm is more than 20,000-fold decreased, whereas from the 3'-arm only 15-fold. Our sequence analysis of full-length nucleic acid generated by Taq DNA polymerase, Moloney murine leukemia virus reverse transcriptase, and T7 RNA polymerase from the 2'-arm of bDNA shows that the branched guanine has a dual coding potential and can base-pair with cytosine and guanine. We find that branchpoint templating is influenced by the type of the surrounding nucleic acid and is probably modulated by polymerase and RNase H active sites. We show that the branchpoint bypass by the polymerases from the 3'-arm of bDNA is predominantly error-free, indicating that bDNA is not as highly mutagenic as 2',5'-branched RNA.
Collapse
Affiliation(s)
- Jessica Döring
- Department of Microbe-Plant Interactions, CBIB (Center for Biomolecular Interactions Bremen), University of Bremen, D-28334 Bremen, Germany
| | - Thomas Hurek
- Department of Microbe-Plant Interactions, CBIB (Center for Biomolecular Interactions Bremen), University of Bremen, D-28334 Bremen, Germany
| |
Collapse
|
71
|
The etiology of uracil residues in the Saccharomyces cerevisiae genomic DNA. Curr Genet 2018; 65:393-399. [PMID: 30328489 PMCID: PMC6420880 DOI: 10.1007/s00294-018-0895-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/11/2018] [Accepted: 10/13/2018] [Indexed: 11/29/2022]
Abstract
Non-canonical residue in DNA is a major and conserved source of genome instability. The appearance of uracil residues in DNA accompanies a significant mutagenic consequence and is regulated at multiple levels, from the concentration of available dUTP in the nucleotide pool to the excision repair for removal from DNA. Recently, an interesting phenomenon of transcription-associated elevation in uracil-derived mutations was described in Saccharomyces cerevisiae genome. While trying to understand the variability in mutagenesis, we uncovered that the frequency of uracil incorporation into DNA can vary depending on the transcription rate and that the non-replicative, repair-associated DNA synthesis underlies the higher uracil density of the actively transcribed genomic loci. This novel mechanism brings together the chemical vulnerability of DNA under transcription and the uracil-associated mutagenesis, and has the potential to apply to other non-canonical residues of mutagenic importance.
Collapse
|
72
|
Tokarenko A, Lišková B, Smoleń S, Táborská N, Tichý M, Gurská S, Perlíková P, Frydrych I, Tloušt'ová E, Znojek P, Mertlíková-Kaiserová H, Poštová Slavětínská L, Pohl R, Klepetářová B, Khalid NUA, Wenren Y, Laposa RR, Džubák P, Hajdúch M, Hocek M. Synthesis and Cytotoxic and Antiviral Profiling of Pyrrolo- and Furo-Fused 7-Deazapurine Ribonucleosides. J Med Chem 2018; 61:9347-9359. [PMID: 30281308 DOI: 10.1021/acs.jmedchem.8b01258] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Three series of isomeric pyrrolo- and furo-fused 7-deazapurine ribonucleosides were synthesized and screened for cytostatic and antiviral activity. The synthesis was based on heterocyclizations of hetaryl-azidopyrimidines to form the tricyclic heterocyclic bases, followed by glycosylation and final derivatizations through cross-coupling reactions or nucleophilic substitutions. The pyrrolo[2',3':4,5]pyrrolo[2,3- d]pyrimidine and furo[2',3':4,5]pyrrolo[2,3- d]pyrimidine ribonucleosides were found to be potent cytostatics, whereas the isomeric pyrrolo[3',2',4,5]pyrrolo[2,3- d]pyrimidine nucleosides were inactive. The most active were the methyl, methoxy, and methylsulfanyl derivatives exerting submicromolar cytostatic effects and good selectivity toward cancer cells. We have shown that the nucleosides are activated by intracellular phosphorylation and the nucleotides get incorporated to both RNA and DNA, where they cause DNA damage. They represent a new type of promising candidates for preclinical development toward antitumor agents.
Collapse
Affiliation(s)
- Anna Tokarenko
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic.,Department of Organic Chemistry, Faculty of Science , Charles University in Prague , Hlavova 8 , CZ-12843 Prague 2 , Czech Republic
| | - Barbora Lišková
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine , Palacky University and University Hospital in Olomouc , Hněvotínská 5 , CZ-775 15 Olomouc , Czech Republic
| | - Sabina Smoleń
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic
| | - Natálie Táborská
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine , Palacky University and University Hospital in Olomouc , Hněvotínská 5 , CZ-775 15 Olomouc , Czech Republic
| | - Michal Tichý
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic
| | - Soňa Gurská
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine , Palacky University and University Hospital in Olomouc , Hněvotínská 5 , CZ-775 15 Olomouc , Czech Republic
| | - Pavla Perlíková
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic
| | - Ivo Frydrych
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine , Palacky University and University Hospital in Olomouc , Hněvotínská 5 , CZ-775 15 Olomouc , Czech Republic
| | - Eva Tloušt'ová
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic
| | - Pawel Znojek
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine , Palacky University and University Hospital in Olomouc , Hněvotínská 5 , CZ-775 15 Olomouc , Czech Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic
| | - Blanka Klepetářová
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic
| | - Noor-Ul-Ain Khalid
- Department of Pharmacology and Toxicology , University of Toronto , 1 King's College Circle, Room 4213 , Toronto , Ontario M5S 1A8 , Canada
| | - Yiqian Wenren
- Department of Pharmacology and Toxicology , University of Toronto , 1 King's College Circle, Room 4213 , Toronto , Ontario M5S 1A8 , Canada
| | - Rebecca R Laposa
- Department of Pharmacology and Toxicology , University of Toronto , 1 King's College Circle, Room 4213 , Toronto , Ontario M5S 1A8 , Canada
| | - Petr Džubák
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine , Palacky University and University Hospital in Olomouc , Hněvotínská 5 , CZ-775 15 Olomouc , Czech Republic.,Cancer Research Czech Republic , Hněvotínská 5 , CZ-775 15 Olomouc , Czech Republic
| | - Marián Hajdúch
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine , Palacky University and University Hospital in Olomouc , Hněvotínská 5 , CZ-775 15 Olomouc , Czech Republic.,Cancer Research Czech Republic , Hněvotínská 5 , CZ-775 15 Olomouc , Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic.,Department of Organic Chemistry, Faculty of Science , Charles University in Prague , Hlavova 8 , CZ-12843 Prague 2 , Czech Republic
| |
Collapse
|
73
|
Al-Behadili A, Uhler JP, Berglund AK, Peter B, Doimo M, Reyes A, Wanrooij S, Zeviani M, Falkenberg M. A two-nuclease pathway involving RNase H1 is required for primer removal at human mitochondrial OriL. Nucleic Acids Res 2018; 46:9471-9483. [PMID: 30102370 PMCID: PMC6182146 DOI: 10.1093/nar/gky708] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/21/2018] [Accepted: 07/24/2018] [Indexed: 11/12/2022] Open
Abstract
The role of Ribonuclease H1 (RNase H1) during primer removal and ligation at the mitochondrial origin of light-strand DNA synthesis (OriL) is a key, yet poorly understood, step in mitochondrial DNA maintenance. Here, we reconstitute the replication cycle of L-strand synthesis in vitro using recombinant mitochondrial proteins and model OriL substrates. The process begins with initiation of DNA replication at OriL and ends with primer removal and ligation. We find that RNase H1 partially removes the primer, leaving behind the last one to three ribonucleotides. These 5'-end ribonucleotides disturb ligation, a conclusion which is supported by analysis of RNase H1-deficient patient cells. A second nuclease is therefore required to remove the last ribonucleotides and we demonstrate that Flap endonuclease 1 (FEN1) can execute this function in vitro. Removal of RNA primers at OriL thus depends on a two-nuclease model, which in addition to RNase H1 requires FEN1 or a FEN1-like activity. These findings define the role of RNase H1 at OriL and help to explain the pathogenic consequences of disease causing mutations in RNase H1.
Collapse
Affiliation(s)
- Ali Al-Behadili
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, Sweden
| | - Jay P Uhler
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, Sweden
| | - Anna-Karin Berglund
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, Sweden
| | - Bradley Peter
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, Sweden
| | - Mara Doimo
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Aurelio Reyes
- MRC-Mitochondrial Biology Unit, University of Cambridge, MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Sjoerd Wanrooij
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Massimo Zeviani
- MRC-Mitochondrial Biology Unit, University of Cambridge, MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, Sweden
| |
Collapse
|
74
|
Zhou ZX, Williams JS, Kunkel TA. Studying Ribonucleotide Incorporation: Strand-specific Detection of Ribonucleotides in the Yeast Genome and Measuring Ribonucleotide-induced Mutagenesis. J Vis Exp 2018. [PMID: 30102287 DOI: 10.3791/58020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The presence of ribonucleotides in nuclear DNA has been shown to be a source of genomic instability. The extent of ribonucleotide incorporation can be assessed by alkaline hydrolysis and gel electrophoresis as RNA is highly susceptible to hydrolysis in alkaline conditions. This, in combination with Southern blot analysis can be used to determine the location and strand into which the ribonucleotides have been incorporated. However, this procedure is only semi-quantitative and may not be sensitive enough to detect small changes in ribonucleotide content, although strand-specific Southern blot probing improves the sensitivity. As a measure of one of the most striking biological consequences of ribonucleotides in DNA, spontaneous mutagenesis can be analyzed using a forward mutation assay. Using appropriate reporter genes, rare mutations that results in the loss of function can be selected and overall and specific mutation rates can be measured by combining data from fluctuation experiments with DNA sequencing of the reporter gene. The fluctuation assay is applicable to examine a wide variety of mutagenic processes in specific genetic background or growth conditions.
Collapse
Affiliation(s)
- Zhi-Xiong Zhou
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS;
| | - Jessica S Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS
| |
Collapse
|
75
|
Im J, Sen S, Lindsay S, Zhang P. Recognition Tunneling of Canonical and Modified RNA Nucleotides for Their Identification with the Aid of Machine Learning. ACS NANO 2018; 12:7067-7075. [PMID: 29932668 DOI: 10.1021/acsnano.8b02819] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In the present study, we demonstrate a tunneling nanogap technique to identify individual RNA nucleotides, which can be used as a mechanism to read the nucleobases for direct sequencing of RNA in a solid-state nanopore. The tunneling nanogap is composed of two electrodes separated by a distance of <3 nm and functionalized with a recognition molecule. When a chemical entity is captured in the gap, it generates electron tunneling currents, a process we call recognition tunneling (RT). Using RT nanogaps created in a scanning tunneling microscope (STM), we acquired the electron tunneling signals for the canonical and two modified RNA nucleotides. To call the individual RNA nucleotides from the RT data, we adopted a machine learning algorithm, support vector machine (SVM), for the data analysis. Through the SVM, we were able to identify the individual RNA nucleotides and distinguish them from their DNA counterparts with reasonably high accuracy. Since each RNA nucleoside contains a hydroxyl group at the 2'-position of its sugar ring in an RNA strand, it allows for the formation of a tunneling junction at a larger nanogap compared to the DNA nucleoside in a DNA strand, which lacks the 2' hydroxyl group. It also proves advantageous for the manufacture of RT devices. This study is a proof-of-principle demonstration for the development of an RT nanopore device for directly sequencing single RNA molecules, including those bearing modifications.
Collapse
|
76
|
Kojima K, Baba M, Tsukiashi M, Nishimura T, Yasukawa K. RNA/DNA structures recognized by RNase H2. Brief Funct Genomics 2018; 18:169-173. [DOI: 10.1093/bfgp/ely024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Ribonuclease H (RNase H) [EC 3.1.26.4] is an enzyme that specifically degrades RNA from RNA/DNA hybrids. Since its discovery in 1969, the enzyme has been extensively studied for its catalytic mechanism and physiological role. RNase H has been classified into two major families, Type 1 and Type 2. Type 1 enzymes are designated RNase HI in prokaryotes and RNase H1 in eukaryotes, while Type 2 enzymes are designated RNase HII in prokaryotes and RNase H2 in eukaryotes. Type 2 enzymes are able to cleave the 5′-phosphodiester bond of one ribonucleotide embedded in a DNA double strand. Recent studies have shown that RNase H2 is involved in excision of a single ribonucleotide embedded in genomic DNA and removal of an R-loop formed in cells. It is also involved in double-strand break of DNA and its repair. In this review, we aim to outline the structures recognized by RNase H2.
Collapse
Affiliation(s)
- Kenji Kojima
- Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Misato Baba
- Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
77
|
Vaisman A, Woodgate R. Ribonucleotide discrimination by translesion synthesis DNA polymerases. Crit Rev Biochem Mol Biol 2018; 53:382-402. [PMID: 29972306 DOI: 10.1080/10409238.2018.1483889] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The well-being of all living organisms relies on the accurate duplication of their genomes. This is usually achieved by highly elaborate replicase complexes which ensure that this task is accomplished timely and efficiently. However, cells often must resort to the help of various additional "specialized" DNA polymerases that gain access to genomic DNA when replication fork progression is hindered. One such specialized polymerase family consists of the so-called "translesion synthesis" (TLS) polymerases; enzymes that have evolved to replicate damaged DNA. To fulfill their main cellular mission, TLS polymerases often must sacrifice precision when selecting nucleotide substrates. Low base-substitution fidelity is a well-documented inherent property of these enzymes. However, incorrect nucleotide substrates are not only those which do not comply with Watson-Crick base complementarity, but also those whose sugar moiety is incorrect. Does relaxed base-selectivity automatically mean that the TLS polymerases are unable to efficiently discriminate between ribonucleoside triphosphates and deoxyribonucleoside triphosphates that differ by only a single atom? Which strategies do TLS polymerases employ to select suitable nucleotide substrates? In this review, we will collate and summarize data accumulated over the past decade from biochemical and structural studies, which aim to answer these questions.
Collapse
Affiliation(s)
- Alexandra Vaisman
- a Laboratory of Genomic Integrity , National Institute of Child Health and Human Development, National Institutes of Health , Bethesda , MD , USA
| | - Roger Woodgate
- a Laboratory of Genomic Integrity , National Institute of Child Health and Human Development, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
78
|
Zhao H, Zhu M, Limbo O, Russell P. RNase H eliminates R-loops that disrupt DNA replication but is nonessential for efficient DSB repair. EMBO Rep 2018; 19:embr.201745335. [PMID: 29622660 DOI: 10.15252/embr.201745335] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/02/2018] [Accepted: 03/09/2018] [Indexed: 12/12/2022] Open
Abstract
In Saccharomyces cerevisiae, genome stability depends on RNases H1 and H2, which remove ribonucleotides from DNA and eliminate RNA-DNA hybrids (R-loops). In Schizosaccharomyces pombe, RNase H enzymes were reported to process RNA-DNA hybrids produced at a double-strand break (DSB) generated by I-PpoI meganuclease. However, it is unclear if RNase H is generally required for efficient DSB repair in fission yeast, or whether it has other genome protection roles. Here, we show that S. pombe rnh1∆ rnh201∆ cells, which lack the RNase H enzymes, accumulate R-loops and activate DNA damage checkpoints. Their viability requires critical DSB repair proteins and Mus81, which resolves DNA junctions formed during repair of broken replication forks. "Dirty" DSBs generated by ionizing radiation, as well as a "clean" DSB at a broken replication fork, are efficiently repaired in the absence of RNase H. RNA-DNA hybrids are not detected at a reparable DSB formed by fork collapse. We conclude that unprocessed R-loops collapse replication forks in rnh1∆ rnh201∆ cells, but RNase H is not generally required for efficient DSB repair.
Collapse
Affiliation(s)
- Hongchang Zhao
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Min Zhu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Oliver Limbo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Paul Russell
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
79
|
Kumar VA. Evolution of specific 3'-5'-linkages in RNA in pre-biotic soup: a new hypothesis. Org Biomol Chem 2018; 14:10123-10133. [PMID: 27714238 DOI: 10.1039/c6ob01796g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This article reviews the different possibilities towards progression of the formation of DNA/RNA in the chemical world, before life, in enzyme-free conditions. The advent of deoxyribo- and ribopentose-sugars, nucleosides, nucleotides and oligonucleotides in the prebiotic soup is briefly discussed. Further, the formation of early single stranded oligomers, base-pairing possibilities and information transfer based on the stability parameters of the derived duplexes is reviewed. Each theory has its own merits and demerits which we have elaborated upon. Lastly, using clues from this literature, a possible explanation for the specific 3'-5'-linkages in RNA is proposed.
Collapse
Affiliation(s)
- Vaijayanti A Kumar
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune, 411008, India.
| |
Collapse
|
80
|
Malfatti MC, Balachander S, Antoniali G, Koh KD, Saint-Pierre C, Gasparutto D, Chon H, Crouch RJ, Storici F, Tell G. Abasic and oxidized ribonucleotides embedded in DNA are processed by human APE1 and not by RNase H2. Nucleic Acids Res 2017; 45:11193-11212. [PMID: 28977421 PMCID: PMC5737539 DOI: 10.1093/nar/gkx723] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 08/11/2017] [Indexed: 12/13/2022] Open
Abstract
Ribonucleoside 5′-monophosphates (rNMPs) are the most common non-standard nucleotides found in DNA of eukaryotic cells, with over 100 million rNMPs transiently incorporated in the mammalian genome per cell cycle. Human ribonuclease (RNase) H2 is the principal enzyme able to cleave rNMPs in DNA. Whether RNase H2 may process abasic or oxidized rNMPs incorporated in DNA is unknown. The base excision repair (BER) pathway is mainly responsible for repairing oxidized and abasic sites into DNA. Here we show that human RNase H2 is unable to process an abasic rNMP (rAP site) or a ribose 8oxoG (r8oxoG) site embedded in DNA. On the contrary, we found that recombinant purified human apurinic/apyrimidinic endonuclease-1 (APE1) and APE1 from human cell extracts efficiently process an rAP site in DNA and have weak endoribonuclease and 3′-exonuclease activities on r8oxoG substrate. Using biochemical assays, our results provide evidence of a human enzyme able to recognize and process abasic and oxidized ribonucleotides embedded in DNA.
Collapse
Affiliation(s)
- Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine, Italy
| | - Sathya Balachander
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine, Italy
| | - Kyung Duk Koh
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,University of California, San Francisco, UCSF, School of Medicine, San Francisco, CA, USA
| | - Christine Saint-Pierre
- Chimie Reconnaissance & Etude Assemblages Biologiques, Université Grenoble Alpes, SPrAM UMR5819 CEA CNRS UGA, INAC/CEA, Grenoble, France
| | - Didier Gasparutto
- Chimie Reconnaissance & Etude Assemblages Biologiques, Université Grenoble Alpes, SPrAM UMR5819 CEA CNRS UGA, INAC/CEA, Grenoble, France
| | - Hyongi Chon
- Developmental Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Robert J Crouch
- Developmental Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Francesca Storici
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
81
|
Baba M, Kojima K, Nakase R, Imai S, Yamasaki T, Takita T, Crouch RJ, Yasukawa K. Effects of neutral salts and pH on the activity and stability of human RNase H2. J Biochem 2017; 162:211-219. [PMID: 28402412 DOI: 10.1093/jb/mvx021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 02/13/2017] [Indexed: 11/14/2022] Open
Abstract
Ribonuclease H (RNase H) specifically degrades the RNA of RNA/DNA hybrid. Recent study has shown that a single ribonucleotide is embedded in DNA double strand at every few thousand base pairs in human genome, and human RNase H2 is involved in its removal. Here, we examined the effects of neutral salts and pH on the activity and stability of human RNase H2. NaCl, KCl, RbCl and NaBr increased the activity to 170-390% at 10-60 mM, while LiCl, LiBr and CsCl inhibited it, suggesting that species of cation, but not anion, is responsible for the effect on activity. NaCl and KCl increased the stability by decreasing the first-order rate constant of the inactivation to 50-60% at 60-80 mM. The activity at 25-35 °C exhibited a narrow bell-shaped pH-dependence with the acidic and alkaline pKe (pKe1 and pKe2) values of 7.3 - 7.6 and 8.1 - 8.8, respectively. Enthalpy changes (ΔH°) of deprotonation were 5 ± 21 kJ mol-1 for pKe1 and 68 ± 25 kJ mol-1 for pKe2. These results suggest that the ionizable groups responsible for pKe1 may be two out of Asp34, Glu35 and Asp141 of DEDD motif, and that for pKe2 may be Lys69 of DSK motif.
Collapse
Affiliation(s)
- Misato Baba
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kenji Kojima
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Rihoko Nakase
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shota Imai
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tomomi Yamasaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Teisuke Takita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Robert J Crouch
- Section on Formation of RNA, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
82
|
Agudo R, Calvo PA, Martínez-Jiménez MI, Blanco L. Engineering human PrimPol into an efficient RNA-dependent-DNA primase/polymerase. Nucleic Acids Res 2017; 45:9046-9058. [PMID: 28911121 PMCID: PMC5587808 DOI: 10.1093/nar/gkx633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/12/2017] [Indexed: 02/01/2023] Open
Abstract
We have developed a straightforward fluorometric assay to measure primase-polymerase activity of human PrimPol (HsPrimPol). The sensitivity of this procedure uncovered a novel RNA-dependent DNA priming-polymerization activity (RdDP) of this enzyme. In an attempt to enhance HsPrimPol RdDP activity, we constructed a smart mutant library guided by prior sequence-function analysis, and tested this library in an adapted screening platform of our fluorometric assay. After screening less than 500 variants, we found a specific HsPrimPol mutant, Y89R, which displays 10-fold higher RdDP activity than the wild-type enzyme. The improvement of RdDP activity in the Y89R variant was due mainly to an increased in the stabilization of the preternary complex (protein:template:incoming nucleotide), a specific step preceding dimer formation. Finally, in support of the biotechnological potential of PrimPol as a DNA primer maker during reverse transcription, mutant Y89R HsPrimPol rendered up to 17-fold more DNA than with random hexamer primers.
Collapse
Affiliation(s)
- Rubén Agudo
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Cantoblanco, E-28049 Madrid, Spain
- To whom correspondence should be addressed. Tel: +34 91 196 46 85; Fax: +34 91 196 44 20; . Correspondence may also be addressed to Rubén Agudo. Tel: +34 91 196 46 86; Fax: +34 91 196 44 20;
| | - Patricia A. Calvo
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Cantoblanco, E-28049 Madrid, Spain
| | | | - Luis Blanco
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Cantoblanco, E-28049 Madrid, Spain
- To whom correspondence should be addressed. Tel: +34 91 196 46 85; Fax: +34 91 196 44 20; . Correspondence may also be addressed to Rubén Agudo. Tel: +34 91 196 46 86; Fax: +34 91 196 44 20;
| |
Collapse
|
83
|
Markkanen E. Not breathing is not an option: How to deal with oxidative DNA damage. DNA Repair (Amst) 2017; 59:82-105. [PMID: 28963982 DOI: 10.1016/j.dnarep.2017.09.007] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 02/07/2023]
Abstract
Oxidative DNA damage constitutes a major threat to genetic integrity, and has thus been implicated in the pathogenesis of a wide variety of diseases, including cancer and neurodegeneration. 7,8-dihydro-8oxo-deoxyGuanine (8-oxo-G) is one of the best characterised oxidative DNA lesions, and it can give rise to point mutations due to its miscoding potential that instructs most DNA polymerases (Pols) to preferentially insert Adenine (A) opposite 8-oxo-G instead of the correct Cytosine (C). If uncorrected, A:8-oxo-G mispairs can give rise to C:G→A:T transversion mutations. Cells have evolved a variety of pathways to mitigate the mutational potential of 8-oxo-G that include i) mechanisms to avoid incorporation of oxidized nucleotides into DNA through nucleotide pool sanitisation enzymes (by MTH1, MTH2, MTH3 and NUDT5), ii) base excision repair (BER) of 8-oxo-G in DNA (involving MUTYH, OGG1, Pol λ, and other components of the BER machinery), and iii) faithful bypass of 8-oxo-G lesions during replication (using a switch between replicative Pols and Pol λ). In the following, the fate of 8-oxo-G in mammalian cells is reviewed in detail. The differential origins of 8-oxo-G in DNA and its consequences for genetic stability will be covered. This will be followed by a thorough discussion of the different mechanisms in place to cope with 8-oxo-G with an emphasis on Pol λ-mediated correct bypass of 8-oxo-G during MUTYH-initiated BER as well as replication across 8-oxo-G. Furthermore, the multitude of mechanisms in place to regulate key proteins involved in 8-oxo-G repair will be reviewed. Novel functions of 8-oxo-G as an epigenetic-like regulator and insights into the repair of 8-oxo-G within the cellular context will be touched upon. Finally, a discussion will outline the relevance of 8-oxo-G and the proteins involved in dealing with 8-oxo-G to human diseases with a special emphasis on cancer.
Collapse
Affiliation(s)
- Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, Winterthurerstr. 260, 8057 Zürich, Switzerland.
| |
Collapse
|
84
|
Sloan R, Huang SYN, Pommier Y, Jinks-Robertson S. Effects of camptothecin or TOP1 overexpression on genetic stability in Saccharomyces cerevisiae. DNA Repair (Amst) 2017; 59:69-75. [PMID: 28961461 DOI: 10.1016/j.dnarep.2017.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 10/18/2022]
Abstract
Topoisomerase I (Top1) removes DNA torsional stress by nicking and resealing one strand of DNA, and is essential in higher eukaryotes. The enzyme is frequently overproduced in tumors and is the sole target of the chemotherapeutic drug camptothecin (CPT) and its clinical derivatives. CPT stabilizes the covalent Top1-DNA cleavage intermediate, which leads to toxic double-strand breaks (DSBs) when encountered by a replication fork. In the current study, we examined genetic instability associated with CPT treatment or with Top1 overexpression in the yeast Saccharomyces cerevisiae. Two types of instability were monitored: Top1-dependent deletions in haploid strains, which do not require processing into a DSB, and instability at the repetitive ribosomal DNA (rDNA) locus in diploid strains, which reflects DSB formation. Three 2-bp deletion hotspots were examined and mutations at each were elevated either when a wild-type strain was treated with CPT or when TOP1 was overexpressed, with the mutation frequency correlating with the level of TOP1 overexpression. Under both conditions, deletions at novel positions were enriched. rDNA stability was examined by measuring loss-of-heterozygosity and as was observed previously upon CPT treatment of a wild-type strain, Top1 overexpression destabilized rDNA. We conclude that too much, as well as too little of Top1 is detrimental to eukaryotic genomes, and that CPT has destabilizing effects that extend beyond those associated with DSB formation.
Collapse
Affiliation(s)
- Roketa Sloan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, United States
| | - Shar-Yin Naomi Huang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
85
|
Kouzminova EA, Kadyrov FF, Kuzminov A. RNase HII Saves rnhA Mutant Escherichia coli from R-Loop-Associated Chromosomal Fragmentation. J Mol Biol 2017; 429:2873-2894. [PMID: 28821455 DOI: 10.1016/j.jmb.2017.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 01/02/2023]
Abstract
The rnhAB mutant Escherichia coli, deficient in two RNase H enzymes that remove both R-loops and incorporated ribonucleotides (rNs) from DNA, grow slowly, suggesting accumulation of rN-containing DNA lesions (R-lesions). We report that the rnhAB mutants have reduced viability, form filaments with abnormal nucleoids, induce SOS, and fragment their chromosome, revealing replication and/or segregation stress. R-loops are known to interfere with replication forks, and sensitivity of the double rnhAB mutants to translation inhibition points to R-loops as precursors for R-lesions. However, the strict specificity of bacterial RNase HII for RNA-DNA junctions indicates that R-lesions have rNs integrated into DNA. Indeed, instead of relieving problems of rnhAB mutants, transient inhibition of replication from oriC kills them, suggesting that oriC-initiated replication removes R-loops instead of compounding them to R-lesions. Yet, replication from an R-loop-initiating plasmid origin kills the double rnhAB mutant, revealing generation of R-lesions by R-loop-primed DNA synthesis. These R-lesions could be R-tracts, contiguous runs of ≥4 RNA nucleotides within DNA strand and the only common substrate between the two bacterial RNase H enzymes. However, a plasmid relaxation test failed to detect R-tracts in DNA of the rnhAB mutants, although it readily detected R-patches (runs of 1-3 rNs). Instead, we detected R-gaps, single-strand gaps containing rNs, in the chromosomal DNA of the rnhAB mutant. Therefore, we propose that RNase H-deficient mutants convert some R-loops into R-tracts, which progress into R-gaps and then to double-strand breaks-explaining why R-tracts do not accumulate in RNase H-deficient cells, while double-strand breaks do.
Collapse
Affiliation(s)
- Elena A Kouzminova
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Farid F Kadyrov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
86
|
Antoniali G, Malfatti MC, Tell G. Unveiling the non-repair face of the Base Excision Repair pathway in RNA processing: A missing link between DNA repair and gene expression? DNA Repair (Amst) 2017. [DOI: 10.1016/j.dnarep.2017.06.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
87
|
Babu VMP, Itsko M, Baxter JC, Schaaper RM, Sutton MD. Insufficient levels of the nrdAB-encoded ribonucleotide reductase underlie the severe growth defect of the Δhda E. coli strain. Mol Microbiol 2017; 104:377-399. [PMID: 28130843 DOI: 10.1111/mmi.13632] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2017] [Indexed: 11/28/2022]
Abstract
The ATP-bound form of the Escherichia coli DnaA replication initiator protein remodels the chromosomal origin of replication, oriC, to load the replicative helicase. The primary mechanism for regulating the activity of DnaA involves the Hda and β clamp proteins, which act together to dramatically stimulate the intrinsic DNA-dependent ATPase activity of DnaA via a process termed Regulatory Inactivation of DnaA. In addition to hyperinitiation, strains lacking hda function also exhibit cold sensitive growth at 30°C. Strains impaired for the other regulators of initiation (i.e., ΔseqA or ΔdatA) fail to exhibit cold sensitivity. The goal of this study was to gain insight into why loss of hda function impedes growth. We used a genetic approach to isolate 9 suppressors of Δhda cold sensitivity, and characterized the mechanistic basis by which these suppressors alleviated Δhda cold sensitivity. Taken together, our results provide strong support for the view that the fundamental defect associated with Δhda is diminished levels of DNA precursors, particularly dGTP and dATP. We discuss possible mechanisms by which the suppressors identified here may regulate dNTP pool size, as well as similarities in phenotypes between the Δhda strain and hda+ strains exposed to the ribonucleotide reductase inhibitor hydroxyurea.
Collapse
Affiliation(s)
- Vignesh M P Babu
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Mark Itsko
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jamie C Baxter
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Roel M Schaaper
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Mark D Sutton
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
88
|
Abstract
This review focuses on the biogenesis and composition of the eukaryotic DNA replication fork, with an emphasis on the enzymes that synthesize DNA and repair discontinuities on the lagging strand of the replication fork. Physical and genetic methodologies aimed at understanding these processes are discussed. The preponderance of evidence supports a model in which DNA polymerase ε (Pol ε) carries out the bulk of leading strand DNA synthesis at an undisturbed replication fork. DNA polymerases α and δ carry out the initiation of Okazaki fragment synthesis and its elongation and maturation, respectively. This review also discusses alternative proposals, including cellular processes during which alternative forks may be utilized, and new biochemical studies with purified proteins that are aimed at reconstituting leading and lagging strand DNA synthesis separately and as an integrated replication fork.
Collapse
Affiliation(s)
- Peter M J Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110;
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709;
| |
Collapse
|
89
|
Removal of ribonucleotides by p53 protein incorporated during DNA synthesis by HIV-1 reverse transcriptase. AIDS 2017; 31:343-353. [PMID: 28081035 DOI: 10.1097/qad.0000000000001339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE(S) HIV-1 reverse transcriptase frequently incorporates ribonucleotides into the proviral DNA in macrophages, but not in lymphocytes. The enzyme exerts an efficient ribonucleotide-terminated primer extension capacity. Furthermore, ribonucleotide-editing repair is attenuated in macrophages. Tumor suppressor p53 protein, displaying an intrinsic 3'→5' exonuclease activity, was found to be involved in efficient proofreading of base-base mismatches produced during DNA synthesis. As the presence of proofreading activity is cardinal for the DNA synthesis accuracy, it was of interest to assess whether p53 can serve as a trans-acting proofreader for HIV-1 reverse transcriptase during ribonucleotide incorporation. DESIGN We investigated the potential involvement of cytoplasmic p53 in error correction during insertion of ribonucleotides into DNA by recombinant HIV-1 reverse transcriptase in a p53-proficient and deficient background. METHODS Primer extension reactions were carried out to elucidate the incorporation and removal of ribonucleotides. RESULTS The biochemical studies suggest that p53 is involved in a ribonucleotide damage-associated repair mechanism through its capacity to remove preformed 3'-terminal ribonucleotides, to decrease ribonucleotide incorporation and to prevent the 3'-ribo-terminated primer extension during ongoing DNA synthesis by HIV-1 reverse transcriptase. A positive correlation exists between the presence of endogenous p53 and decrease in stable incorporation of ribonucleotides into DNA with p53-harboring lysates of HCT116 cells. p53, by preferential removal of purine over pyrimidine ribonucleotides, may affect the ribonucleotide mutation spectra produced by HIV-1 reverse transcriptase. CONCLUSION The data implies that p53 can excise incorrect sugar in addition to base mispairs, thereby expanding the role of p53 in the repair of nucleic acids replication errors.
Collapse
|
90
|
Guilliam TA, Doherty AJ. PrimPol-Prime Time to Reprime. Genes (Basel) 2017; 8:genes8010020. [PMID: 28067825 PMCID: PMC5295015 DOI: 10.3390/genes8010020] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/09/2016] [Accepted: 12/16/2016] [Indexed: 01/16/2023] Open
Abstract
The complex molecular machines responsible for genome replication encounter many obstacles during their progression along DNA. Tolerance of these obstructions is critical for efficient and timely genome duplication. In recent years, primase-polymerase (PrimPol) has emerged as a new player involved in maintaining eukaryotic replication fork progression. This versatile replicative enzyme, a member of the archaeo-eukaryotic primase (AEP) superfamily, has the capacity to perform a range of template-dependent and independent synthesis activities. Here, we discuss the emerging roles of PrimPol as a leading strand repriming enzyme and describe the mechanisms responsible for recruiting and regulating the enzyme during this process. This review provides an overview and update of the current PrimPol literature, as well as highlighting unanswered questions and potential future avenues of investigation.
Collapse
Affiliation(s)
- Thomas A Guilliam
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK.
| | - Aidan J Doherty
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK.
| |
Collapse
|
91
|
Allam WR, Ashour ME, Waly AA, El-Khamisy S. Role of Protein Linked DNA Breaks in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:41-58. [PMID: 28840551 DOI: 10.1007/978-3-319-60733-7_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Topoisomerases are a group of specialized enzymes that function to maintain DNA topology by introducing transient DNA breaks during transcription and replication. As a result of abortive topoisomerases activity, topoisomerases catalytic intermediates may be trapped on the DNA forming topoisomerase cleavage complexes (Topcc). Topoisomerases trapping on the DNA is the mode of action of several anticancer drugs, it lead to formation of protein linked DAN breaks (PDBs). PDBs are now considered as one of the most dangerous forms of endogenous DNA damage and a major threat to genomic stability. The repair of PDBs involves both the sensing and repair pathways. Unsuccessful repair of PDBs leads to different signs of genomic instabilities such as chromosomal rearrangements and cancer predisposition. In this chapter we will summarize the role of topoisomerases induced PDBs, identification and signaling, repair, role in transcription. We will also discuss the role of PDBs in cancer with a special focus on prostate cancer.
Collapse
Affiliation(s)
- Walaa R Allam
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.
| | - Mohamed E Ashour
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Amr A Waly
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Sherif El-Khamisy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt. .,Krebs Institute and Sheffield Institute for Nucleic Acids, Department of Molecular Biology and Biotechnology, Firth Court, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
92
|
Huang SYN, Williams JS, Arana ME, Kunkel TA, Pommier Y. Topoisomerase I-mediated cleavage at unrepaired ribonucleotides generates DNA double-strand breaks. EMBO J 2016; 36:361-373. [PMID: 27932446 DOI: 10.15252/embj.201592426] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/28/2016] [Accepted: 11/04/2016] [Indexed: 01/02/2023] Open
Abstract
Ribonuclease activity of topoisomerase I (Top1) causes DNA nicks bearing 2',3'-cyclic phosphates at ribonucleotide sites. Here, we provide genetic and biochemical evidence that DNA double-strand breaks (DSBs) can be directly generated by Top1 at sites of genomic ribonucleotides. We show that RNase H2-deficient yeast cells displayed elevated frequency of Rad52 foci, inactivation of RNase H2 and RAD52 led to synthetic lethality, and combined loss of RNase H2 and RAD51 induced slow growth and replication stress. Importantly, these phenotypes were rescued upon additional deletion of TOP1, implicating homologous recombination for the repair of Top1-induced damage at ribonuclelotide sites. We demonstrate biochemically that irreversible DSBs are generated by subsequent Top1 cleavage on the opposite strand from the Top1-induced DNA nicks at ribonucleotide sites. Analysis of Top1-linked DNA from pull-down experiments revealed that Top1 is covalently linked to the end of DNA in RNase H2-deficient yeast cells, supporting this model. Taken together, these results define Top1 as a source of DSBs and genome instability when ribonucleotides incorporated by the replicative polymerases are not removed by RNase H2.
Collapse
Affiliation(s)
- Shar-Yin N Huang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jessica S Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Mercedes E Arana
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
93
|
Gavette JV, Stoop M, Hud NV, Krishnamurthy R. RNA-DNA Chimeras in the Context of an RNA World Transition to an RNA/DNA World. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607919] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jesse V. Gavette
- Department of Chemistry; The Scripps Research Institute; 10550 N. Torrey Pines Rd. La Jolla CA 92037 USA
- NSF-NASA Center for Chemical Evolution; Atlanta GA 30332 USA
| | - Matthias Stoop
- Department of Chemistry; The Scripps Research Institute; 10550 N. Torrey Pines Rd. La Jolla CA 92037 USA
- NSF-NASA Center for Chemical Evolution; Atlanta GA 30332 USA
| | - Nicholas V. Hud
- School of Chemistry and Biochemistry; Georgia Institute of Technology; Atlanta GA 30332 USA
- NSF-NASA Center for Chemical Evolution; Atlanta GA 30332 USA
| | - Ramanarayanan Krishnamurthy
- Department of Chemistry; The Scripps Research Institute; 10550 N. Torrey Pines Rd. La Jolla CA 92037 USA
- NSF-NASA Center for Chemical Evolution; Atlanta GA 30332 USA
| |
Collapse
|
94
|
Gavette JV, Stoop M, Hud NV, Krishnamurthy R. RNA-DNA Chimeras in the Context of an RNA World Transition to an RNA/DNA World. Angew Chem Int Ed Engl 2016; 55:13204-13209. [DOI: 10.1002/anie.201607919] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Jesse V. Gavette
- Department of Chemistry; The Scripps Research Institute; 10550 N. Torrey Pines Rd. La Jolla CA 92037 USA
- NSF-NASA Center for Chemical Evolution; Atlanta GA 30332 USA
| | - Matthias Stoop
- Department of Chemistry; The Scripps Research Institute; 10550 N. Torrey Pines Rd. La Jolla CA 92037 USA
- NSF-NASA Center for Chemical Evolution; Atlanta GA 30332 USA
| | - Nicholas V. Hud
- School of Chemistry and Biochemistry; Georgia Institute of Technology; Atlanta GA 30332 USA
- NSF-NASA Center for Chemical Evolution; Atlanta GA 30332 USA
| | - Ramanarayanan Krishnamurthy
- Department of Chemistry; The Scripps Research Institute; 10550 N. Torrey Pines Rd. La Jolla CA 92037 USA
- NSF-NASA Center for Chemical Evolution; Atlanta GA 30332 USA
| |
Collapse
|
95
|
Zhou H, Kimsey IJ, Nikolova EN, Sathyamoorthy B, Grazioli G, McSally J, Bai T, Wunderlich CH, Kreutz C, Andricioaei I, Al-Hashimi HM. m(1)A and m(1)G disrupt A-RNA structure through the intrinsic instability of Hoogsteen base pairs. Nat Struct Mol Biol 2016; 23:803-10. [PMID: 27478929 PMCID: PMC5016226 DOI: 10.1038/nsmb.3270] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/05/2016] [Indexed: 12/13/2022]
Abstract
The B-DNA double helix can dynamically accommodate G-C and A-T base pairs in either Watson-Crick or Hoogsteen configurations. Here, we show that G-C(+) (in which + indicates protonation) and A-U Hoogsteen base pairs are strongly disfavored in A-RNA. As a result,N(1)-methyladenosine and N(1)-methylguanosine, which occur in DNA as a form of alkylation damage and in RNA as post-transcriptional modifications, have dramatically different consequences. Whereas they create G-C(+) and A-T Hoogsteen base pairs in duplex DNA, thereby maintaining the structural integrity of the double helix, they block base-pairing and induce local duplex melting in RNA. These observations provide a mechanism for disrupting RNA structure through post-transcriptional modifications. The different propensities to form Hoogsteen base pairs in B-DNA and A-RNA may help cells meet the opposing requirements of maintaining genome stability, on the one hand, and of dynamically modulating the structure of the epitranscriptome, on the other.
Collapse
Affiliation(s)
- Huiqing Zhou
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina USA
| | - Isaac J. Kimsey
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina USA
| | - Evgenia N. Nikolova
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California USA
| | | | - Gianmarc Grazioli
- Department of Chemistry, University of California Irvine, Irvine, California USA
| | - James McSally
- Department of Chemistry, University of California Irvine, Irvine, California USA
| | - Tianyu Bai
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina USA
| | | | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck Austria
| | - Ioan Andricioaei
- Department of Chemistry, University of California Irvine, Irvine, California USA
| | - Hashim M. Al-Hashimi
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina USA
- Department of Chemistry, Duke University, Durham, North Carolina USA
| |
Collapse
|
96
|
Williams JS, Lujan SA, Kunkel TA. Processing ribonucleotides incorporated during eukaryotic DNA replication. Nat Rev Mol Cell Biol 2016; 17:350-63. [PMID: 27093943 PMCID: PMC5445644 DOI: 10.1038/nrm.2016.37] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The information encoded in DNA is influenced by the presence of non-canonical nucleotides, the most frequent of which are ribonucleotides. In this Review, we discuss recent discoveries about ribonucleotide incorporation into DNA during replication by the three major eukaryotic replicases, DNA polymerases α, δ and ε. The presence of ribonucleotides in DNA causes short deletion mutations and may result in the generation of single- and double-strand DNA breaks, leading to genome instability. We describe how these ribonucleotides are removed from DNA through ribonucleotide excision repair and by topoisomerase I. We discuss the biological consequences and the physiological roles of ribonucleotides in DNA, and consider how deficiencies in their removal from DNA may be important in the aetiology of disease.
Collapse
Affiliation(s)
- Jessica S. Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, United States
| | - Scott A. Lujan
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, United States
| | - Thomas A. Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, United States
| |
Collapse
|
97
|
Deshmukh AL, Kumar C, Singh DK, Maurya P, Banerjee D. Dynamics of replication proteins during lagging strand synthesis: A crossroads for genomic instability and cancer. DNA Repair (Amst) 2016; 42:72-81. [DOI: 10.1016/j.dnarep.2016.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/22/2016] [Accepted: 04/22/2016] [Indexed: 01/18/2023]
|
98
|
Cho JE, Huang SYN, Burgers PM, Shuman S, Pommier Y, Jinks-Robertson S. Parallel analysis of ribonucleotide-dependent deletions produced by yeast Top1 in vitro and in vivo. Nucleic Acids Res 2016; 44:7714-21. [PMID: 27257064 PMCID: PMC5027487 DOI: 10.1093/nar/gkw495] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/23/2016] [Indexed: 12/27/2022] Open
Abstract
Ribonucleotides are the most abundant non-canonical component of yeast genomic DNA and their persistence is associated with a distinctive mutation signature characterized by deletion of a single repeat unit from a short tandem repeat. These deletion events are dependent on DNA topoisomerase I (Top1) and are initiated by Top1 incision at the relevant ribonucleotide 3′-phosphodiester. A requirement for the re-ligation activity of Top1 led us to propose a sequential cleavage model for Top1-dependent mutagenesis at ribonucleotides. Here, we test key features of this model via parallel in vitro and in vivo analyses. We find that the distance between two Top1 cleavage sites determines the deletion size and that this distance is inversely related to the deletion frequency. Following the creation of a gap by two Top1 cleavage events, the tandem repeat provides complementarity that promotes realignment to a nick and subsequent Top1-mediated ligation. Complementarity downstream of the gap promotes deletion formation more effectively than does complementarity upstream of the gap, consistent with constraints to realignment of the strand to which Top1 is covalently bound. Our data fortify sequential Top1 cleavage as the mechanism for ribonucleotide-dependent deletions and provide new insight into the component steps of this process.
Collapse
Affiliation(s)
- Jang-Eun Cho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Shar-Yin N Huang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
99
|
Cerritelli SM, Crouch RJ. The Balancing Act of Ribonucleotides in DNA. Trends Biochem Sci 2016; 41:434-445. [PMID: 26996833 DOI: 10.1016/j.tibs.2016.02.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/01/2016] [Accepted: 02/09/2016] [Indexed: 11/28/2022]
Abstract
The abundance of ribonucleotides in DNA remained undetected until recently because they are efficiently removed by the ribonucleotide excision repair (RER) pathway, a process similar to Okazaki fragment (OF) processing after incision by Ribonuclease H2 (RNase H2). All DNA polymerases incorporate ribonucleotides during DNA synthesis. How many, when, and why they are incorporated has been the focus of intense work during recent years by many labs. In this review, we discuss recent advances in ribonucleotide incorporation by eukaryotic DNA polymerases that suggest an evolutionarily conserved role for ribonucleotides in DNA. We also review the data that indicate that removal of ribonucleotides has an important role in maintaining genome stability.
Collapse
Affiliation(s)
- Susana M Cerritelli
- Section on Formation of RNA, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Robert J Crouch
- Section on Formation of RNA, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
100
|
Perlíková P, Rylová G, Nauš P, Elbert T, Tloušťová E, Bourderioux A, Slavětínská LP, Motyka K, Doležal D, Znojek P, Nová A, Harvanová M, Džubák P, Šiller M, Hlaváč J, Hajdúch M, Hocek M. 7-(2-Thienyl)-7-Deazaadenosine (AB61), a New Potent Nucleoside Cytostatic with a Complex Mode of Action. Mol Cancer Ther 2016; 15:922-37. [DOI: 10.1158/1535-7163.mct-14-0933] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/02/2016] [Indexed: 11/16/2022]
|