51
|
The Expression and Related Clinical Significance of SIRT3 in Non-Small-Cell Lung Cancer. DISEASE MARKERS 2017; 2017:8241953. [PMID: 28947845 PMCID: PMC5602652 DOI: 10.1155/2017/8241953] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/27/2017] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To examine the relationship between the Sirtuin-3 (SIRT3) expression and the clinical indicators/prognosis of patients with non-small-cell lung cancer (NSCLC). METHODS The mRNA level of SIRT3 was detected by real-time PCR, while the protein level was detected by Western blot and immunohistochemical staining. SPSS 16.0 software was used for statistical analysis. RESULTS The expression of SIRT3 was significantly higher in NSCLC tissue than in adjacent tissue. The SIRT3 level was correlated significantly with lymph node metastasis and clinical stage of NSCLC patients. Moreover, univariate analysis showed that the expression of SIRT3, tumor size, lymph node metastasis, degree of differentiation, and clinical stage were correlated with the prognosis of NSCLC patients. Multivariate analysis demonstrated that lymph node metastasis, the tumor size, and SIRT3 expression were independent prognostic factors for NSCLC patients. CONCLUSIONS SIRT3 is associated with the development and progression of NSCLC. The SIRT3 expression can be used as an independent prognostic factor for NSCLC patients and help identify prognosis of NSCLC. Therefore, SIRT3 has the potential to become a new factor for prognosis prediction and personalized treatment of NSCLC.
Collapse
|
52
|
Re-programming tumour cell metabolism to treat cancer: no lone target for lonidamine. Biochem J 2017; 473:1503-6. [PMID: 27234586 PMCID: PMC4888454 DOI: 10.1042/bcj20160068] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 02/19/2016] [Indexed: 01/07/2023]
Abstract
Tumour cell metabolism is very different from normal cell metabolism; cancer cells re-programme the metabolic pathways that occur in normal cells in such a manner that it optimizes their proliferation, growth and survival. Although this metabolic re-programming obviously operates to the advantage of the tumour, it also offers unique opportunities for effective cancer therapy. Molecules that target the tumour cell-specific metabolic pathways have potential as novel anti-cancer drugs. Lonidamine belongs to this group of molecules and is already in use in some countries for cancer treatment. It has been known for a long time that lonidamine interferes with energy production in tumour cells by inhibiting hexokinase II (HKII), a glycolytic enzyme. However, subsequent studies have uncovered additional pharmacological targets for the drug, which include the electron transport chain and the mitochondrial permeability transition pore, thus expanding the pharmacological effects of the drug on tumour cell metabolism. A study by Nancolas et al. in a recent issue of the Biochemical Journal identifies two additional new targets for lonidamine: the pyruvate transporter in the mitochondria and the H+-coupled monocarboxylate transporters in the plasma membrane (PM). It is thus becoming increasingly apparent that the anti-cancer effects of lonidamine do not occur through a single target; the drug works at multiple sites. Irrespective of the molecular targets, what lonidamine does in the end is to undo what the tumour cells have done in terms of re-programming cellular metabolism and mitochondrial function.
Collapse
|
53
|
Griffith C, Dayoub AS, Jaranatne T, Alatrash N, Mohamedi A, Abayan K, Breitbach ZS, Armstrong DW, MacDonnell FM. Cellular and cell-free studies of catalytic DNA cleavage by ruthenium polypyridyl complexes containing redox-active intercalating ligands. Chem Sci 2017; 8:3726-3740. [PMID: 28553531 PMCID: PMC5428021 DOI: 10.1039/c6sc04094b] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/08/2017] [Indexed: 01/21/2023] Open
Abstract
The ruthenium(ii) polypyridyl complexes (RPCs), [(phen)2Ru(tatpp)]2+ (32+ ) and [(phen)2Ru(tatpp)Ru(phen)2]4+ (44+ ) are shown to cleave DNA in cell-free studies in the presence of a mild reducing agent, i.e. glutathione (GSH), in a manner that is enhanced upon lowering the [O2]. Reactive oxygen species (ROS) are involved in the cleavage process as hydroxy radical scavengers attenuate the cleavage activity. Cleavage experiments in the presence of superoxide dismutase (SOD) and catalase reveal a central role for H2O2 as the immediate precursor for hydroxy radicals. A mechanism is proposed which explains the inverse [O2] dependence and ROS data and involves redox cycling between three DNA-bound redox isomers of 32+ or 44+ . Cultured non-small cell lung cancer cells (H358) are sensitive to 32+ and 44+ with IC50 values of 13 and 15 μM, respectively, and xenograft H358 tumors in nude mice show substantial (∼80%) regression relative to untreated tumors when the mice are treated with enantiopure versions of 32+ and 44+ (Yadav et al. Mol Cancer Res, 2013, 12, 643). Fluorescence microscopy of H358 cells treated with 15 μM 44+ reveals enhanced intracellular ROS production in as little as 2 h post treatment. Detection of phosphorylated ATM via immunofluorescence within 2 h of treatment with 44+ reveals initiation of the DNA damage repair machinery due to the ROS insult and DNA double strand breaks (DSBs) in the nuclei of H358 cells and is confirmed using the γH2AX assay. The cell data for 32+ is less clear but DNA damage occurs. Notably, cells treated with [Ru(diphenylphen)3]2+ (IC50 1.7 μM) show no extra ROS production and no DNA damage by either the pATM or γH2AX even after 22 h. The enhanced DNA cleavage under low [O2] (4 μM) seen in cell-free cleavage assays of 32+ and 44+ is only partially reflected in the cytotoxicity of 32+ and 44+ in H358, HCC2998, HOP-62 and Hs766t under hypoxia (1.1% O2) relative to normoxia (18% O2). Cells treated with RPC 32+ show up to a two-fold enhancement in the IC50 under hypoxia whereas cells treated with RPC 44+ gave the same IC50 whether under hypoxia or normoxia.
Collapse
Affiliation(s)
- Cynthia Griffith
- Department of Chemistry and Biochemistry , University of Texas at Arlington , Arlington , TX 76019 , USA .
| | - Adam S Dayoub
- Department of Chemistry and Biochemistry , University of Texas at Arlington , Arlington , TX 76019 , USA .
| | - Thamara Jaranatne
- Department of Chemistry and Biochemistry , University of Texas at Arlington , Arlington , TX 76019 , USA .
| | - Nagham Alatrash
- Department of Chemistry and Biochemistry , University of Texas at Arlington , Arlington , TX 76019 , USA .
| | - Ali Mohamedi
- Department of Chemistry and Biochemistry , University of Texas at Arlington , Arlington , TX 76019 , USA .
| | - Kenneth Abayan
- Department of Chemistry and Biochemistry , University of Texas at Arlington , Arlington , TX 76019 , USA .
| | - Zachary S Breitbach
- Department of Chemistry and Biochemistry , University of Texas at Arlington , Arlington , TX 76019 , USA .
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry , University of Texas at Arlington , Arlington , TX 76019 , USA .
| | - Frederick M MacDonnell
- Department of Chemistry and Biochemistry , University of Texas at Arlington , Arlington , TX 76019 , USA .
| |
Collapse
|
54
|
Liu Z, Ren B, Wang Y, Zou C, Qiao Q, Diao Z, Mi Y, Zhu D, Liu X. Sesamol Induces Human Hepatocellular Carcinoma Cells Apoptosis by Impairing Mitochondrial Function and Suppressing Autophagy. Sci Rep 2017; 7:45728. [PMID: 28374807 PMCID: PMC5379556 DOI: 10.1038/srep45728] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 03/03/2017] [Indexed: 12/19/2022] Open
Abstract
Sesamol, a nutritional phenolic antioxidant compound enriched in sesame seeds, has been shown to have potential anticancer activities. This study aims at characterizing the antitumor efficacy of sesamol and unveiling the importance of mitochondria in sesamol-induced effects using a human hepatocellular carcinoma cell line, HepG2 cells. Results of this study showed that sesamol treatment suppressed colony formation, elicited S phase arrest during cell cycle progression, and induced both intrinsic and extrinsic apoptotic pathway in vitro with a dose-dependent manner. Furthermore, sesamol treatment elicited mitochondrial dysfunction by inducing a loss of mitochondrial membrane potential. Impaired mitochondria and accumulated H2O2 production resulted in disturbance of redox-sensitive signaling including Akt and MAPKs pathways. Mitochondrial biogenesis was inhibited as suggested by the decline in expression of mitochondrial complex I subunit ND1, and the upstream AMPK/PGC1α signals. Importantly, sesamol inhibited mitophagy and autophagy through impeding the PI3K Class III/Belin-1 pathway. Autophagy stimulator rapamycin reversed sesamol-induced apoptosis and mitochondrial respiration disorders. Moreover, it was also shown that sesamol has potent anti-hepatoma activity in a xenograft nude mice model. These data suggest that mitochondria play an essential role in sesamol-induced HepG2 cells death, and further research targeting mitochondria will provide more chemotherapeutic opportunities.
Collapse
Affiliation(s)
- Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bo Ren
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yihui Wang
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Chen Zou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qinglian Qiao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhijun Diao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yashi Mi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Di Zhu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
55
|
Tsybul'ko E, Krementsova A, Symonenko A, Rybina O, Roshina N, Pasyukova E. The Mitochondria-Targeted Plastoquinone-Derivative SkQ1 Promotes Health and Increases Drosophila melanogaster Longevity in Various Environments. J Gerontol A Biol Sci Med Sci 2017; 72:499-508. [PMID: 27166099 DOI: 10.1093/gerona/glw084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 04/19/2016] [Indexed: 01/03/2023] Open
Abstract
Mitochondria play an important role in aging. Strongly reduced function of the mitochondria shortens life span, whereas moderate reduction prolongs life span, with reactive oxygen species production being the major factor contributing to life span changes. Previously, picomolar concentrations of the mitochondria-targeted antioxidant SkQ1 were shown to increase the life span of Drosophila by approximately 10%. In this article, we demonstrate that SkQ1 elevates locomotion, which is often considered a marker of health and age. We also show that mating frequency and fecundity may be slightly increased in SkQ1-treated flies. These results indicate that SkQ1 not only prolongs life span but also improves health and vigor. An important property of any potential therapeutic is the stability of its effects in an uncontrolled and changing environment as well as on individuals with various genetic constitutions. In this article, we present data on SkQ1 effects on Drosophila longevity in extreme environments (low temperatures and starvation) and on individuals with severe genetic alterations in the mitochondrial systems responsible for production and detoxification of reactive oxygen species. We hypothesize that in vivo SkQ1 is capable of alleviating the probable negative effects of increased mitochondrial reactive oxygen species production on longevity but is not effective when reactive oxygen species production is already reduced by other means.
Collapse
Affiliation(s)
| | - Anna Krementsova
- Institute of Molecular Genetics of RAS, Moscow, Russia.,Emmanuel Institute of Biochemical Physics of RAS, Moscow, Russia
| | | | - Olga Rybina
- Institute of Molecular Genetics of RAS, Moscow, Russia.,Federal State-Financed Educational Institution of Higher Professional Education, Moscow State Pedagogical University, Institute of Biology and Chemistry, Russia
| | | | | |
Collapse
|
56
|
Navrátilová J, Karasová M, Kohutková Lánová M, Jiráková L, Budková Z, Pacherník J, Šmarda J, Beneš P. Selective elimination of neuroblastoma cells by synergistic effect of Akt kinase inhibitor and tetrathiomolybdate. J Cell Mol Med 2017; 21:1859-1869. [PMID: 28244639 PMCID: PMC5571524 DOI: 10.1111/jcmm.13106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/25/2016] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma is the most common extracranial solid tumour of infancy. Pathological activation of glucose consumption, glycolysis and glycolysis‐activating Akt kinase occur frequently in neuroblastoma cells, and these changes correlate with poor prognosis of patients. Therefore, several inhibitors of glucose utilization and the Akt kinase activity are in preclinical trials as potential anti‐cancer drugs. However, metabolic plasticity of cancer cells might undermine efficacy of this approach. In this work, we identified oxidative phosphorylation as compensatory mechanism preserving viability of neuroblastoma cells with inhibited glucose uptake/Akt kinase. It was oxidative phosphorylation that maintained intracellular level of ATP and proliferative capacity of these cells. The oxidative phosphorylation inhibitors (rotenone, tetrathiomolybdate) synergized with inhibitor of the Akt kinase/glucose uptake in down‐regulation of both viability of neuroblastoma cells and clonogenic potential of cells forming neuroblastoma spheroids. Interestingly, tetrathiomolybdate acted as highly specific inhibitor of oxygen consumption and activator of lactate production in neuroblastoma cells, but not in normal fibroblasts and neuronal cells. Moreover, the reducing effect of tetrathiomolybdate on cell viability and the level of ATP in the cells with inhibited Akt kinase/glucose uptake was also selective for neuroblastoma cells. Therefore, efficient elimination of neuroblastoma cells requires inhibition of both glucose uptake/Akt kinase and oxidative phosphorylation activities. The use of tetrathiomolybdate as a mitochondrial inhibitor contributes to selectivity of this combined treatment, preferentially targeting neuroblastoma cells.
Collapse
Affiliation(s)
- Jarmila Navrátilová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.,Center for Biological and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Martina Karasová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martina Kohutková Lánová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ludmila Jiráková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zuzana Budková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jiří Pacherník
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Šmarda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Beneš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.,Center for Biological and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
57
|
de Lima AB, Barbosa CDS, Gonçalves AMMN, Santos FVD, Viana GHR, Varotti FDP, Silva LM. New 3-alkylpyridine marine alkaloid analogues as promising antitumor agents against the CD44+/high/CD24−/lowsubset of triple-negative breast cancer cell line. Chem Biol Drug Des 2017; 90:5-11. [DOI: 10.1111/cbdd.12923] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/28/2016] [Accepted: 12/13/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Aline Brito de Lima
- Serviço de Biologia Celular; Fundação Ezequiel Dias; Belo Horizonte MG Brazil
| | - Camila de Souza Barbosa
- Núcleo de Pesquisa em Química Biológica (NQBio); Universidade Federal de São João del Rei; Divinópolis MG Brazil
| | | | - Fabio Vieira dos Santos
- Núcleo de Pesquisa em Química Biológica (NQBio); Universidade Federal de São João del Rei; Divinópolis MG Brazil
| | | | - Fernando de Pilla Varotti
- Núcleo de Pesquisa em Química Biológica (NQBio); Universidade Federal de São João del Rei; Divinópolis MG Brazil
| | - Luciana Maria Silva
- Serviço de Biologia Celular; Fundação Ezequiel Dias; Belo Horizonte MG Brazil
| |
Collapse
|
58
|
Maldonado EN. VDAC-Tubulin, an Anti-Warburg Pro-Oxidant Switch. Front Oncol 2017; 7:4. [PMID: 28168164 PMCID: PMC5256068 DOI: 10.3389/fonc.2017.00004] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/05/2017] [Indexed: 12/11/2022] Open
Abstract
Aerobic enhanced glycolysis characterizes the Warburg phenotype. In cancer cells, suppression of mitochondrial metabolism contributes to maintain a low ATP/ADP ratio that favors glycolysis. We propose that the voltage-dependent anion channel (VDAC) located in the mitochondrial outer membrane is a metabolic link between glycolysis and oxidative phosphorylation in the Warburg phenotype. Most metabolites including respiratory substrates, ADP, and Pi enter mitochondria only through VDAC. Oxidation of respiratory substrates in the Krebs cycle generates NADH that enters the electron transport chain (ETC) to generate a proton motive force utilized to generate ATP and to maintain mitochondrial membrane potential (ΔΨ). The ETC is also the major source of mitochondrial reactive oxygen species (ROS) formation. Dimeric α-β tubulin decreases conductance of VDAC inserted in lipid bilayers, and high free tubulin in cancer cells by closing VDAC, limits the ingress of respiratory substrates and ATP decreasing mitochondrial ΔΨ. VDAC opening regulated by free tubulin operates as a “master key” that “seal–unseal” mitochondria to modulate mitochondrial metabolism, ROS formation, and the intracellular flow of energy. Erastin, a small molecule that binds to VDAC and kills cancer cells, and erastin-like compounds antagonize the inhibitory effect of tubulin on VDAC. Blockage of the VDAC–tubulin switch increases mitochondrial metabolism leading to decreased glycolysis and oxidative stress that promotes mitochondrial dysfunction, bioenergetic failure, and cell death. In summary, VDAC opening-dependent cell death follows a “metabolic double-hit model” characterized by oxidative stress and reversion of the pro-proliferative Warburg phenotype.
Collapse
Affiliation(s)
- Eduardo N Maldonado
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA; Center for Cell Death, Injury and Regeneration, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
59
|
Han MH, Lee DS, Jeong JW, Hong SH, Choi IW, Cha HJ, Kim S, Kim HS, Park C, Kim GY, Moon SK, Kim WJ, Hyun Choi Y. Fucoidan Induces ROS-Dependent Apoptosis in 5637 Human Bladder Cancer Cells by Downregulating Telomerase Activity via Inactivation of the PI3K/Akt Signaling Pathway. Drug Dev Res 2016; 78:37-48. [PMID: 27654302 DOI: 10.1002/ddr.21367] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 08/25/2016] [Indexed: 12/31/2022]
Abstract
Preclinical Research Fucoidan, a sulfated polysaccharide, is a compound found in various species of seaweed that has anti-viral, anti-bacterial, anti-oxidant, anti-inflammatory, and immunomodulatory activities; however, the underlying relationship between apoptosis and anti-telomerase activity has not been investigated. Here, we report that fucoidan-induced apoptosis in 5637 human bladder cancer cells was associated with an increase in the Bax/Bcl-2 ratio, the dissipation of the mitochondrial membrane potential (MMP, Δψm), and cytosolic release of cytochrome c from the mitochondria. Under the same experimental conditions, fucoidan-treatment decreased hTERT (human telomerase reverse transcriptase) expression and the transcription factors, c-myc and Sp1. This was accompanied by decreased telomerase activity. Fucoidan-treatment also suppressed activation of the PI3K/Akt signaling pathway. Inhibition of PI3K/Akt signaling enhanced fucoidan-induced apoptosis and anti-telomerase activity. Meanwhile, fucoidan treatment increased the generation of intracellular ROS, whereas the over-elimination of ROS by N-acetylcysteine, an anti-oxidant, attenuated fucoidan-induced apoptosis, inhibition of hTERT, c-myc, and Sp1 expression, and reversed fucoidan-induced inactivation of the PI3K/Akt signaling pathway. Collectively, these data indicate that the induction of apoptosis and the inhibition of telomerase activity by fucoidan are mediated via ROS-dependent inactivation of the PI3K/Akt pathway. Drug Dev Res 78 : 37-48, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Min Ho Han
- Natural Products Research Team, Marine Biodiversity Institute of Korea, Seocheon, 325-902, Republic of Korea
| | - Dae-Sung Lee
- Natural Products Research Team, Marine Biodiversity Institute of Korea, Seocheon, 325-902, Republic of Korea
| | - Jin-Woo Jeong
- Anti-Aging Research Center & Blue-Bio Industry RIC, Dongeui University, Busan, 614-714, Republic of Korea
| | - Su-Hyun Hong
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan, 614-052, Republic of Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan, 608-756, Republic of Korea
| | - Hee-Jae Cha
- Departments of Parasitology and Genetics, College of Medicine, Kosin University, Busan, 602-702, Republic of Korea
| | - Suhkmann Kim
- Department of Chemistry, College of Natural Sciences, Pusan National University, Busan, 609-735, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 609-735, Republic of Korea
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences and Human Ecology, Dongeui University, Busan, 614-714, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju, 690-756, Republic of Korea
| | - Sung-Kwon Moon
- School of Food Science and Technology, Chung-Ang University, Ansung, 456-756, Republic of Korea
| | - Wun-Jae Kim
- Department of Urology, College of Medicine and Institute for Tumor Research, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Yung Hyun Choi
- Natural Products Research Team, Marine Biodiversity Institute of Korea, Seocheon, 325-902, Republic of Korea.,Anti-Aging Research Center & Blue-Bio Industry RIC, Dongeui University, Busan, 614-714, Republic of Korea.,Department of Biochemistry, Dongeui University College of Korean Medicine, Busan, 614-052, Republic of Korea
| |
Collapse
|
60
|
Studies on Photocleavage, DNA Binding, Cytotoxicity, and Docking Studies of Ruthenium(II) Mixed Ligand Complexes. J Fluoresc 2016; 26:2119-2132. [DOI: 10.1007/s10895-016-1908-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/15/2016] [Indexed: 01/13/2023]
|
61
|
Interaction of Age at Diagnosis with Transcriptional Profiling in Papillary Thyroid Cancer. World J Surg 2016; 40:2922-2929. [DOI: 10.1007/s00268-016-3625-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
62
|
Fujisawa K, Terai S, Takami T, Yamamoto N, Yamasaki T, Matsumoto T, Yamaguchi K, Owada Y, Nishina H, Noma T, Sakaida I. Modulation of anti-cancer drug sensitivity through the regulation of mitochondrial activity by adenylate kinase 4. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:48. [PMID: 26980435 PMCID: PMC4793738 DOI: 10.1186/s13046-016-0322-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/08/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND Adenylate kinase is a key enzyme in the high-energy phosphoryl transfer reaction in living cells. An isoform of this enzyme, adenylate kinase 4 (AK4), is localized in the mitochondrial matrix and is believed to be involved in stress, drug resistance, malignant transformation in cancer, and ATP regulation. However, the molecular basis for the AK4 functions remained to be determined. METHODS HeLa cells were transiently transfected with an AK4 small interfering RNA (siRNA), an AK4 short hairpin RNA (shRNA) plasmid, a control shRNA plasmid, an AK4 expression vector, and a control expression vector to examine the effect of the AK4 expression on cell proliferation, sensitivity to anti-cancer drug, metabolome, gene expression, and mitochondrial activity. RESULTS AK4 knockdown cells treated with short hairpin RNA increased ATP production and showed greater sensitivity to hypoxia and anti-cancer drug, cis-diamminedichloro-platinum (II) (CDDP). Subcutaneous grafting AK4 knockdown cells into nude mice revealed that the grafted cells exhibited both slower proliferation and reduced the tumor sizes in response to CDDP. AK4 knockdown cell showed a increased oxygen consumption rate with FCCP treatment, while AK4 overexpression lowered it. Metabolome analysis showed the increased levels of the tricarboxylic acid cycle intermediates, fumarate and malate in AK4 knockdown cells, while AK4 overexpression lowered them. Electron microscopy detected the increased mitochondrial numbers in AK4 knockdown cells. Microarray analysis detected the increased gene expression of two key enzymes in TCA cycle, succinate dehydrogenase A (SDHA) and oxoglutarate dehydrogenease L (OGDHL), which are components of SDH complex and OGDH complex, supporting the metabolomic results. CONCLUSIONS We found that AK4 was involved in hypoxia tolerance, resistance to anti-tumor drug, and the regulation of mitochondrial activity. These findings provide a new potential target for efficient anticancer therapies by controlling AK4 expression.
Collapse
Affiliation(s)
- Koichi Fujisawa
- Center for Regenerative Medicine, School of Medicine, Yamaguchi University, Ube, Japan.,Department of Gastroenterology and Hepatology, School of Medicine, Yamaguchi University, Ube, Japan
| | - Shuji Terai
- Department of Gastroenterology and Hepatology, School of Medicine, Yamaguchi University, Ube, Japan. .,Division of Gastroenterology and Hepatology, School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachidori, Chuo-Ku, Niigata, 951-8510, Japan.
| | - Taro Takami
- Department of Gastroenterology and Hepatology, School of Medicine, Yamaguchi University, Ube, Japan
| | - Naoki Yamamoto
- Department of Gastroenterology and Hepatology, School of Medicine, Yamaguchi University, Ube, Japan
| | - Takahiro Yamasaki
- Department of Gastroenterology and Hepatology, School of Medicine, Yamaguchi University, Ube, Japan.,Department of Oncology and Laboratory Medicine, School of Medicine, Yamaguchi University, Ube, Japan
| | - Toshihiko Matsumoto
- Department of Gastroenterology and Hepatology, School of Medicine, Yamaguchi University, Ube, Japan.,Department of Oncology and Laboratory Medicine, School of Medicine, Yamaguchi University, Ube, Japan
| | - Kazuhito Yamaguchi
- Department of Organ Anatomy, School of Medicine, Yamaguchi University, Ube, Japan
| | - Yuji Owada
- Department of Organ Anatomy, School of Medicine, Yamaguchi University, Ube, Japan
| | - Hiroshi Nishina
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Takafumi Noma
- Department of Molecular Biology, Institute of Biomedical Sciences, Tokushima University School, Tokushima, Japan
| | - Isao Sakaida
- Center for Regenerative Medicine, School of Medicine, Yamaguchi University, Ube, Japan.,Department of Gastroenterology and Hepatology, School of Medicine, Yamaguchi University, Ube, Japan
| |
Collapse
|
63
|
Galgamuwa R, Hardy K, Dahlstrom JE, Blackburn AC, Wium E, Rooke M, Cappello JY, Tummala P, Patel HR, Chuah A, Tian L, McMorrow L, Board PG, Theodoratos A. Dichloroacetate Prevents Cisplatin-Induced Nephrotoxicity without Compromising Cisplatin Anticancer Properties. J Am Soc Nephrol 2016; 27:3331-3344. [PMID: 26961349 DOI: 10.1681/asn.2015070827] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 01/27/2016] [Indexed: 01/01/2023] Open
Abstract
Cisplatin is an effective anticancer drug; however, cisplatin use often leads to nephrotoxicity, which limits its clinical effectiveness. In this study, we determined the effect of dichloroacetate, a novel anticancer agent, in a mouse model of cisplatin-induced AKI. Pretreatment with dichloroacetate significantly attenuated the cisplatin-induced increase in BUN and serum creatinine levels, renal tubular apoptosis, and oxidative stress. Additionally, pretreatment with dichloroacetate accelerated tubular regeneration after cisplatin-induced renal damage. Whole transcriptome sequencing revealed that dichloroacetate prevented mitochondrial dysfunction and preserved the energy-generating capacity of the kidneys by preventing the cisplatin-induced downregulation of fatty acid and glucose oxidation, and of genes involved in the Krebs cycle and oxidative phosphorylation. Notably, dichloroacetate did not interfere with the anticancer activity of cisplatin in vivo. These data provide strong evidence that dichloroacetate preserves renal function when used in conjunction with cisplatin.
Collapse
Affiliation(s)
| | - Kristine Hardy
- Faculty of Education, Science, Technology and Mathematics, University of Canberra, Australian Capital Territory, Australia
| | - Jane E Dahlstrom
- ACT Pathology and ANU Medical School, The Canberra Hospital, Australian Capital Territory, Australia
| | | | - Elize Wium
- Departments of Cancer Biology and Therapeutics and
| | | | | | | | | | - Aaron Chuah
- Genome Discovery Unit, John Curtin School of Medical Research, Australian National University, Australian Capital Territory, Australia
| | - Luyang Tian
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; and
| | - Linda McMorrow
- Archaeogeochemistry and Marine Biogeochemistry Groups, Research School of Earth Sciences, Australian National University, Australian Capital Territory, Australia
| | | | | |
Collapse
|
64
|
Petanidis S, Kioseoglou E, Domvri K, Zarogoulidis P, Carthy JM, Anestakis D, Moustakas A, Salifoglou A. In vitro and ex vivo vanadium antitumor activity in (TGF-β)-induced EMT. Synergistic activity with carboplatin and correlation with tumor metastasis in cancer patients. Int J Biochem Cell Biol 2016; 74:121-34. [PMID: 26916505 DOI: 10.1016/j.biocel.2016.02.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 02/10/2016] [Accepted: 02/20/2016] [Indexed: 02/06/2023]
Abstract
Epithelial to mesenchymal transition (EMT) plays a key role in tumor progression and metastasis as a crucial event for cancer cells to trigger the metastatic niche. Transforming growth factor-β (TGF-β) has been shown to play an important role as an EMT inducer in various stages of carcinogenesis. Previous reports had shown that antitumor vanadium inhibits the metastatic potential of tumor cells by reducing MMP-2 expression and inducing ROS-dependent apoptosis. However, the role of vanadium in (TGF-β)-induced EMT remains unclear. In the present study, we report for the first time on the inhibitory effects of vanadium on (TGF-β)-mediated EMT followed by down-regulation of ex vivo cancer stem cell markers. The results demonstrate blockage of (TGF-β)-mediated EMT by vanadium and reduction in the mitochondrial potential of tumor cells linked to EMT and cancer metabolism. Furthermore, combination of vanadium and carboplatin (a) resulted in synergistic antitumor activity in ex vivo cell cultures, and (b) prompted G0/G1 cell cycle arrest and sensitization of tumor cells to carboplatin-induced apoptosis. Overall, the findings highlight the multifaceted antitumor action of vanadium and its synergistic antitumor efficacy with current chemotherapy drugs, knowledge that could be valuable for targeting cancer cell metabolism and cancer stem cell-mediated metastasis in aggressive chemoresistant tumors.
Collapse
Affiliation(s)
- Savvas Petanidis
- Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Efrosini Kioseoglou
- Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Kalliopi Domvri
- Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece.
| | - Paul Zarogoulidis
- Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece.
| | - Jon M Carthy
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala SE-75124, Sweden.
| | - Doxakis Anestakis
- Laboratory of Forensic Medicine and Toxicology, Medical School, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; Laboratory of General Biology, Medical School, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Aristidis Moustakas
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala SE-75124, Sweden; Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala SE-75123, Sweden.
| | - Athanasios Salifoglou
- Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
65
|
Zeng L, Chen Y, Liu J, Huang H, Guan R, Ji L, Chao H. Ruthenium(II) Complexes with 2-Phenylimidazo[4,5-f][1,10]phenanthroline Derivatives that Strongly Combat Cisplatin-Resistant Tumor Cells. Sci Rep 2016; 6:19449. [PMID: 26763798 PMCID: PMC4725915 DOI: 10.1038/srep19449] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/14/2015] [Indexed: 02/06/2023] Open
Abstract
Cisplatin was the first metal-based therapeutic agent approved for the treatment of human cancers, but its clinical activity is greatly limited by tumor drug resistance. This work utilized the parent complex [Ru(phen)2(PIP)](2+) (1) to develop three Ru(II) complexes (2-4) with different positional modifications. These compounds exhibited similar or superior cytotoxicities compared to cisplatin in HeLa, A549 and multidrug-resistant (A549R) tumor cell lines. Complex 4, the most potent member of the series, was highly active against A549R cancer cells (IC50 = 0.8 μM). This complex exhibited 178-fold better activity than cisplatin (IC50 = 142.5 μM) in A549R cells. 3D multicellular A549R tumor spheroids were also used to confirm the high proliferative and cytotoxic activity of complex 4. Complex 4 had the greatest cellular uptake and had a tendency to accumulate in the mitochondria of A549R cells. Further mechanistic studies showed that complex 4 induced A549R cell apoptosis via inhibition of thioredoxin reductase (TrxR), elevated intracellular ROS levels, mitochondrial dysfunction and cell cycle arrest, making it an outstanding candidate for overcoming cisplatin resistance.
Collapse
Affiliation(s)
- Leli Zeng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jiangping Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Huaiyi Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ruilin Guan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
66
|
|
67
|
Trapella C, Voltan R, Melloni E, Tisato V, Celeghini C, Bianco S, Fantinati A, Salvadori S, Guerrini R, Secchiero P, Zauli G. Design, Synthesis, and Biological Characterization of Novel Mitochondria Targeted Dichloroacetate-Loaded Compounds with Antileukemic Activity. J Med Chem 2015; 59:147-56. [DOI: 10.1021/acs.jmedchem.5b01165] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Claudio Trapella
- Department
of Chemical and Pharmaceutical Sciences and LTTA Centre, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Rebecca Voltan
- Department
of Morphology, Surgery, Experimental Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Elisabetta Melloni
- Department
of Morphology, Surgery, Experimental Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Veronica Tisato
- Department
of Morphology, Surgery, Experimental Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Claudio Celeghini
- Department
of Life Sciences, University of Trieste, 34128 Trieste, Italy
| | - Sara Bianco
- Department
of Chemical and Pharmaceutical Sciences and LTTA Centre, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Anna Fantinati
- Department
of Chemical and Pharmaceutical Sciences and LTTA Centre, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Severo Salvadori
- Department
of Chemical and Pharmaceutical Sciences and LTTA Centre, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Remo Guerrini
- Department
of Chemical and Pharmaceutical Sciences and LTTA Centre, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Paola Secchiero
- Department
of Morphology, Surgery, Experimental Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgio Zauli
- Institute for
Maternal and Child Health, IRCCS “Burlo Garofolo”, Via dell’Istria 65/1, 34137 Trieste, Italy
| |
Collapse
|
68
|
Li LD, Sun HF, Liu XX, Gao SP, Jiang HL, Hu X, Jin W. Down-Regulation of NDUFB9 Promotes Breast Cancer Cell Proliferation, Metastasis by Mediating Mitochondrial Metabolism. PLoS One 2015; 10:e0144441. [PMID: 26641458 PMCID: PMC4671602 DOI: 10.1371/journal.pone.0144441] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/18/2015] [Indexed: 01/08/2023] Open
Abstract
Despite advances in basic and clinical research, metastasis remains the leading cause of death in breast cancer patients. Genetic abnormalities in mitochondria, including mutations affecting complex I and oxidative phosphorylation, are found in breast cancers and might facilitate metastasis. Genes encoding complex I components have significant breast cancer prognostic value. In this study, we used quantitative proteomic analyses to compare a highly metastatic cancer cell line and a parental breast cancer cell line; and observed that NDUFB9, an accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (complex I), was down-regulated in highly metastatic breast cancer cells. Furthermore, we demonstrated that loss of NDUFB9 promotes MDA-MB-231 cells proliferation, migration, and invasion because of elevated levels of mtROS, disturbance of the NAD+/NADH balance, and depletion of mtDNA. We also showed that, the Akt/mTOR/p70S6K signaling pathway and EMT might be involved in this mechanism. Thus, our findings contribute novel data to support the hypothesis that misregulation of mitochondrial complex I NADH dehydrogenase activity can profoundly enhance the aggressiveness of human breast cancer cells, suggesting that complex I deficiency is a potential and important biomarker for further basic research or clinical application.
Collapse
Affiliation(s)
- Liang-Dong Li
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200030, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200030, China
| | - He-Fen Sun
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200030, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200030, China
| | - Xue-Xiao Liu
- Department of Radiotherapy, Lishui Central Hospital, Zhejiang, 323000, China
| | - Shui-Ping Gao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200030, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200030, China
| | - Hong-Lin Jiang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200030, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200030, China
| | - Xin Hu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200030, China
| | - Wei Jin
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200030, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200030, China
| |
Collapse
|
69
|
Liu L, Wang D, Wang J, Wang S. The Nitric Oxide Prodrug JS-K Induces Ca(2+)-Mediated Apoptosis in Human Hepatocellular Carcinoma HepG2 Cells. J Biochem Mol Toxicol 2015; 30:192-9. [PMID: 26616367 DOI: 10.1002/jbt.21778] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/19/2015] [Accepted: 10/23/2015] [Indexed: 01/28/2023]
Abstract
Hepatocellular carcinoma is one of the most common and deadly forms of human malignancies. JS-K, O(2)-(2, 4-dinitrophenyl) 1-[(4-ethoxycarbonyl) piperazin-1-yl] diazen-1-ium-1, 2-diolate, has the ability to induce apoptosis of tumor cell lines. In the present study, JS-K inhibited the proliferation of HepG2 cells in a time- and concentration-dependent manner and significantly induced apoptosis. JS-K enhanced the ratio of Bax-to-Bcl-2, released of cytochrome c (Cyt c) from mitochondria and the activated caspase-9/3. JS-K caused an increasing cytosolic Ca(2+) and the loss of mitochondrial membrane potential. Carboxy-PTIO (a NO scavenger) and BAPTA-AM (an intracellular Ca(2+) chelator) significantly blocked an increasing cytosolic Ca(2+) in JS-K-induced HepG2 cells apoptosis, especially Carboxy-PTIO. Meanwhile, Carboxy-PTIO and BAPTA-AM treatment both attenuate JS-K-induced apoptosis through upregulation of Bcl-2, downregulation of Bax, reduction of Cyt c release from mitochondria to cytoplasm and inactivation of caspase-9/3. In summary, JS-K induced HepG2 cells apoptosis via Ca(2+)/caspase-3-mediated mitochondrial pathway.
Collapse
Affiliation(s)
- Ling Liu
- Department of Pharmacy, Medical College, Henan University of Science and Technology, Luoyang, 471003, People's Republic of China.
| | - Dongmei Wang
- Department of Pathogen Biology, Medical College, Henan University of Science and Technology, Luoyang, 471003, People's Republic of China
| | - Jiangang Wang
- Department of Pharmacy, Medical College, Henan University of Science and Technology, Luoyang, 471003, People's Republic of China
| | - Shuying Wang
- Department of Pharmacy, Medical College, Henan University of Science and Technology, Luoyang, 471003, People's Republic of China
| |
Collapse
|
70
|
MicroRNA-345 induces apoptosis in pancreatic cancer cells through potentiation of caspase-dependent and -independent pathways. Br J Cancer 2015; 113:660-8. [PMID: 26247574 PMCID: PMC4647684 DOI: 10.1038/bjc.2015.252] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/10/2015] [Accepted: 06/13/2015] [Indexed: 12/17/2022] Open
Abstract
Background: Previously, miR-345 was identified as one of the most significantly downregulated microRNAs in pancreatic cancer (PC); however, its functional significance remained unexplored. Methods: miR-345 was overexpressed in PC cells by stable transfection, and its effect on growth, apoptosis and mitochondrial-membrane potential was examined by WST-1, Hoechst-33342/Annexin-V, and JC-1 staining, respectively. Gene expression was examined by quantitative reverse-transcription-PCR and/or immunoblotting, and subcellular fractions prepared and caspase-3/7 activity determined by commercially available kits. miR-345 target validation was performed by mutational analysis and luciferase-reporter assay. Results: miR-345 is significantly downregulated in PC tissues and cell lines relative to normal pancreatic cells, and its expression decreases gradually in PC progression model cell lines. Forced expression of miR-345 results in reduced growth of PC cells because of the induction of apoptosis, accompanied by a loss in mitochondrial membrane potential, cytochrome-c release, caspases-3/7 activation, and PARP-1 cleavage, as well as mitochondrial-to-nuclear translocation of apoptosis-inducing factor. These effects could be reversed by the treatment of miR-345-overexpressing PC cells with anti-miR-345 oligonucleotides. BCL2 was characterised as a novel target of miR-345 and its forced-expression abrogated the effects of miR-345 in PC cells. Conclusions: miR-345 downregulation confers apoptosis resistance to PC cells, and its restoration could be exploited for therapeutic benefit.
Collapse
|