51
|
Fang Y, Wang S, Han S, Zhao Y, Yu C, Liu H, Li N. Targeted protein degrader development for cancer: advances, challenges, and opportunities. Trends Pharmacol Sci 2023; 44:303-317. [PMID: 37059054 DOI: 10.1016/j.tips.2023.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 04/16/2023]
Abstract
Anticancer-targeted therapies inhibit various kinases implicated in cancer and have been used in clinical settings for decades. However, many cancer-related targets are proteins without catalytic activity and are difficult to target using traditional occupancy-driven inhibitors. Targeted protein degradation (TPD) is an emerging therapeutic modality that has expanded the druggable proteome for cancer treatment. With the entry of new-generation immunomodulatory drugs (IMiDs), selective estrogen receptor degraders (SERDs), and proteolysis-targeting chimera (PROTAC) drugs into clinical trials, the field of TPD has seen explosive growth in the past 10 years. Several challenges remain that need to be tackled to increase successful clinical translation of TPD drugs. We present an overview of the global landscape of clinical trials of TPD drugs over the past decade and summarize the clinical profiles of new-generation TPD drugs. In addition, we highlight the challenges and opportunities for the development of effective TPD drugs for future successful clinical translation.
Collapse
Affiliation(s)
- Yuan Fang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuhang Wang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Songzhe Han
- Department of Chemistry, BeiGene (Beijing) Co. Ltd, Beijing 100020, China
| | - Yizhou Zhao
- Department of Chemistry, BeiGene (Beijing) Co. Ltd, Beijing 100020, China
| | - Cunjing Yu
- Translational Discovery, Research, and Medicine, BeiGene (Beijing) Co. Ltd, Beijing 100020, China
| | - Huaqing Liu
- Department of Chemistry, BeiGene (Beijing) Co. Ltd, Beijing 100020, China
| | - Ning Li
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
52
|
Lin JY, Liu HJ, Wu Y, Jin JM, Zhou YD, Zhang H, Nagle DG, Chen HZ, Zhang WD, Luan X. Targeted Protein Degradation Technology and Nanomedicine: Powerful Allies against Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207778. [PMID: 36693784 DOI: 10.1002/smll.202207778] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/08/2023] [Indexed: 05/04/2023]
Abstract
Targeted protein degradation (TPD) is an emerging therapeutic strategy with the potential of targeting undruggable pathogenic proteins. After the first proof-of-concept proteolysis-targeting chimeric (PROTAC) molecule was reported, the TPD field has entered a new era. In addition to PROTAC, numerous novel TPD strategies have emerged to expand the degradation landscape. However, their physicochemical properties and uncontrolled off-target side effects have limited their therapeutic efficacy, raising concerns regarding TPD delivery system. The combination of TPD and nanotechnology offers great promise in improving safety and therapeutic efficacy. This review provides an overview of novel TPD technologies, discusses their clinical applications, and highlights the trends and perspectives in TPD nanomedicine.
Collapse
Affiliation(s)
- Jia-Yi Lin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hai-Jun Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ye Wu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jin-Mei Jin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yu-Dong Zhou
- Department of Chemistry and Biochemistry, College of Liberal Arts, University of Mississippi, University-1848, Boston, MA, 38677, USA
| | - Hong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dale G Nagle
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University-1848, Boston, MA, 38677, USA
| | - Hong-Zhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei-Dong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
53
|
Xie S, Zhan F, Zhu J, Sun Y, Zhu H, Liu J, Chen J, Zhu Z, Yang DH, Chen ZS, Yao H, Xu J, Xu S. Discovery of Norbornene as a Novel Hydrophobic Tag Applied in Protein Degradation. Angew Chem Int Ed Engl 2023; 62:e202217246. [PMID: 36670545 DOI: 10.1002/anie.202217246] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Hydrophobic tagging (HyT) is a potential therapeutic strategy for targeted protein degradation (TPD). Norbornene was discovered as an unprecedented hydrophobic tag in this study and was used to degrade the anaplastic lymphoma kinase (ALK) fusion protein by linking it to ALK inhibitors. The most promising degrader, Hyt-9, potently reduced ALK levels through Hsp70 and the ubiquitin-proteasome system (UPS) in vitro without compensatory upregulation of ALK. Furthermore, Hyt-9 exhibited a significant tumor-inhibiting effect in vivo with moderate oral bioavailability. More importantly, norbornene can also be used to degrade the intractable enhancer of zeste homolog 2 (EZH2) when tagged with the EZH2 inhibitor tazemetostat. Thus, the discovery of novel hydrophobic norbornene tags shows promise for the future development of TPD technology.
Collapse
Affiliation(s)
- Shaowen Xie
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Feiyan Zhan
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Jingjie Zhu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Yuan Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Huajian Zhu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Jie Liu
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Jian Chen
- Department of Hepatobiliary Surgery, The First People's Hospital of Kunshan, Suzhou, Jiangsu, 215300, China
| | - Zheying Zhu
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, The University of Nottingham, University Park, NG7 2RD, UK
| | - Dong-Hua Yang
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Hong Yao
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Jinyi Xu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Shengtao Xu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.,Department of Hepatobiliary Surgery, The First People's Hospital of Kunshan, Suzhou, Jiangsu, 215300, China
| |
Collapse
|
54
|
Maity P, Chatterjee J, Patil KT, Arora S, Katiyar MK, Kumar M, Samarbakhsh A, Joshi G, Bhutani P, Chugh M, Gavande NS, Kumar R. Targeting the Epidermal Growth Factor Receptor with Molecular Degraders: State-of-the-Art and Future Opportunities. J Med Chem 2023; 66:3135-3172. [PMID: 36812395 DOI: 10.1021/acs.jmedchem.2c01242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Epidermal growth factor receptor (EGFR) is an oncogenic drug target and plays a critical role in several cellular functions including cancer cell growth, survival, proliferation, differentiation, and motility. Several small-molecule tyrosine kinase inhibitors (TKIs) and monoclonal antibodies (mAbs) have been approved for targeting intracellular and extracellular domains of EGFR, respectively. However, cancer heterogeneity, mutations in the catalytic domain of EGFR, and persistent drug resistance limited their use. Different novel modalities are gaining a position in the limelight of anti-EGFR therapeutics to overcome such limitations. The current perspective reflects upon newer modalities, importantly the molecular degraders such as PROTACs, LYTACs, AUTECs, and ATTECs, etc., beginning with a snapshot of traditional and existing anti-EGFR therapies including small molecule inhibitors, mAbs, and antibody drug conjugates (ADCs). Further, a special emphasis has been made on the design, synthesis, successful applications, state-of-the-art, and emerging future opportunities of each discussed modality.
Collapse
Affiliation(s)
- Pritam Maity
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Joydeep Chatterjee
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Kiran T Patil
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Sahil Arora
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Madhurendra K Katiyar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Manvendra Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Amirreza Samarbakhsh
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States
| | - Gaurav Joshi
- Department of Pharmaceutical Science, Hemvati Nandan Bahuguna Garhwal (A Central) University, Srinagar 246174, Dist. Garhwal (Uttarakhand), India
| | | | - Manoj Chugh
- In Vitro Diagnostics, Transasia BioMedical Pvt. Ltd. 400072 Mumbai, India
| | - Navnath S Gavande
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, United States
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| |
Collapse
|
55
|
Current Status of Oligonucleotide-Based Protein Degraders. Pharmaceutics 2023; 15:pharmaceutics15030765. [PMID: 36986626 PMCID: PMC10055846 DOI: 10.3390/pharmaceutics15030765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Transcription factors (TFs) and RNA-binding proteins (RBPs) have long been considered undruggable, mainly because they lack ligand-binding sites and are equipped with flat and narrow protein surfaces. Protein-specific oligonucleotides have been harnessed to target these proteins with some satisfactory preclinical results. The emerging proteolysis-targeting chimera (PROTAC) technology is no exception, utilizing protein-specific oligonucleotides as warheads to target TFs and RBPs. In addition, proteolysis by proteases is another type of protein degradation. In this review article, we discuss the current status of oligonucleotide-based protein degraders that are dependent either on the ubiquitin–proteasome system or a protease, providing a reference for the future development of degraders.
Collapse
|
56
|
Abstract
Proteolysis-targeting chimeras (PROTACs) have shown great therapeutic potential by degrading various disease-causing proteins, particularly those related to tumors. Therefore, the introduction of PROTACs has ushered in a new chapter of antitumor drug development, marked by significant advances over recent years. Herein, we describe recent developments in PROTAC technology, focusing on design strategy, development workflow, and future outlooks. We also discuss potential opportunities and challenges for PROTAC research.
Collapse
Affiliation(s)
- Minglei Li
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117 Shandong, P. R. China
| | - Ying Zhi
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117 Shandong, P. R. China
| | - Bo Liu
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117 Shandong, P. R. China
| | - Qingqiang Yao
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117 Shandong, P. R. China
| |
Collapse
|
57
|
O'Brien Laramy MN, Luthra S, Brown MF, Bartlett DW. Delivering on the promise of protein degraders. Nat Rev Drug Discov 2023; 22:410-427. [PMID: 36810917 DOI: 10.1038/s41573-023-00652-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2023] [Indexed: 02/23/2023]
Abstract
Over the past 3 years, the first bivalent protein degraders intentionally designed for targeted protein degradation (TPD) have advanced to clinical trials, with an initial focus on established targets. Most of these clinical candidates are designed for oral administration, and many discovery efforts appear to be similarly focused. As we look towards the future, we propose that an oral-centric discovery paradigm will overly constrain the chemical designs that are considered and limit the potential to drug novel targets. In this Perspective, we summarize the current state of the bivalent degrader modality and propose three categories of degrader designs, based on their likely route of administration and requirement for drug delivery technologies. We then describe a vision for how parenteral drug delivery, implemented early in research and supported by pharmacokinetic-pharmacodynamic modelling, can enable exploration of a broader drug design space, expand the scope of accessible targets and deliver on the promise of protein degraders as a therapeutic modality.
Collapse
Affiliation(s)
| | - Suman Luthra
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., Boston, MA, USA
| | - Matthew F Brown
- Discovery Sciences, Worldwide Research, Development, and Medical, Pfizer Inc., Groton, CT, USA
| | - Derek W Bartlett
- Pharmacokinetics, Dynamics, & Metabolism, Worldwide Research, Development, and Medical, Pfizer Inc., San Diego, CA, USA
| |
Collapse
|
58
|
Wang YW, Lan L, Wang M, Zhang JY, Gao YH, Shi L, Sun LP. PROTACS: A technology with a gold rush-like atmosphere. Eur J Med Chem 2023; 247:115037. [PMID: 36566716 DOI: 10.1016/j.ejmech.2022.115037] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/03/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Abnormally expressed or malfunctioning proteins may affect or even damage cells, leading to the onset of diseases. Proteolysis targeting chimera (PROTAC) technology has been proven to be a fresh therapeutic strategy, superior to conventional small molecule inhibitors for the treatment of diseases caused by pathogenic proteins. Unlike conventional small molecule inhibitors that are occupancy-driven, PROTACs are heterobifunctional small molecules with catalytic properties. They combine with E3 ligases and target proteins to form a ternary complex, rendering the target protein ubiquitous and subsequently degraded by the proteasome. This paper focuses first on significant events in the development of PROTAC technology from 2001 to 2022, followed by a brief overview of various PROTACs categorized by target proteins. In addition, the applications of PROTACs in the treatment of diseases and fundamental biology are also under discussion.
Collapse
Affiliation(s)
- Yu-Wei Wang
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Li Lan
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Min Wang
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Jin-Yang Zhang
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yu-Hui Gao
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Lei Shi
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Li-Ping Sun
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
59
|
Rishfi M, Krols S, Martens F, Bekaert SL, Sanders E, Eggermont A, De Vloed F, Goulding JR, Risseeuw M, Molenaar J, De Wilde B, Van Calenbergh S, Durinck K. Targeted AURKA degradation: Towards new therapeutic agents for neuroblastoma. Eur J Med Chem 2023; 247:115033. [PMID: 36549117 DOI: 10.1016/j.ejmech.2022.115033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Aurora kinase A (AURKA) is a well-established target in neuroblastoma (NB) due to both its catalytic functions during mitosis and its kinase-independent functions, including stabilization of the key oncoprotein MYCN. We present a structure-activity relationship (SAR) study of MK-5108-derived PROTACs against AURKA by exploring different linker lengths and exit vectors on the thalidomide moiety. PROTAC SK2188 induces the most potent AURKA degradation (DC50,24h 3.9 nM, Dmax,24h 89%) and shows an excellent binding and degradation selectivity profile. Treatment of NGP neuroblastoma cells with SK2188 induced concomitant MYCN degradation, high replication stress/DNA damage levels and apoptosis. Moreover, SK2188 significantly outperforms the parent inhibitor MK-5108 in a cell proliferation screen and patient-derived organoids. Furthermore, altering the attachment point of the PEG linker to the 5-position of thalidomide allowed us to identify a potent AURKA degrader with a linker as short as 2 PEG units. With this, our SAR-study provides interesting lead structures for further optimization and validation of AURKA degradation as a potential therapeutic strategy in neuroblastoma.
Collapse
Affiliation(s)
- Muhammad Rishfi
- Department of Biomolecular Medicine, Faculty of Medicine & Health Sciences, Ghent University, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Simon Krols
- Laboratory for medicinal chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Fien Martens
- Department of Biomolecular Medicine, Faculty of Medicine & Health Sciences, Ghent University, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sarah-Lee Bekaert
- Department of Biomolecular Medicine, Faculty of Medicine & Health Sciences, Ghent University, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Ellen Sanders
- Department of Biomolecular Medicine, Faculty of Medicine & Health Sciences, Ghent University, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Aline Eggermont
- Department of Biomolecular Medicine, Faculty of Medicine & Health Sciences, Ghent University, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Fanny De Vloed
- Department of Biomolecular Medicine, Faculty of Medicine & Health Sciences, Ghent University, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Joshua Robert Goulding
- Department of Biomolecular Medicine, Faculty of Medicine & Health Sciences, Ghent University, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Martijn Risseeuw
- Laboratory for medicinal chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jan Molenaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Bram De Wilde
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Internal Medicine and Pediatrics, Faculty of Medicine & Health Sciences, Ghent University, Belgium
| | - Serge Van Calenbergh
- Laboratory for medicinal chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Kaat Durinck
- Department of Biomolecular Medicine, Faculty of Medicine & Health Sciences, Ghent University, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
60
|
Haid RTU, Reichel A. A Mechanistic Pharmacodynamic Modeling Framework for the Assessment and Optimization of Proteolysis Targeting Chimeras (PROTACs). Pharmaceutics 2023; 15:pharmaceutics15010195. [PMID: 36678824 PMCID: PMC9865105 DOI: 10.3390/pharmaceutics15010195] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023] Open
Abstract
The field of targeted protein degradation is growing exponentially. Yet, there is an unmet need for pharmacokinetic/pharmacodynamic models that provide mechanistic insights, while also being practically useful in a drug discovery setting. Therefore, we have developed a comprehensive modeling framework which can be applied to experimental data from routine projects to: (1) assess PROTACs based on accurate degradation metrics, (2) guide compound optimization of the most critical parameters, and (3) link degradation to downstream pharmacodynamic effects. The presented framework contains a number of first-time features: (1) a mechanistic model to fit the hook effect in the PROTAC concentration-degradation profile, (2) quantification of the role of target occupancy in the PROTAC mechanism of action and (3) deconvolution of the effects of target degradation and target inhibition by PROTACs on the overall pharmacodynamic response. To illustrate applicability and to build confidence, we have employed these three models to analyze exemplary data on various compounds from different projects and targets. The presented framework allows researchers to tailor their experimental work and to arrive at a better understanding of their results, ultimately leading to more successful PROTAC discovery. While the focus here lies on in vitro pharmacology experiments, key implications for in vivo studies are also discussed.
Collapse
Affiliation(s)
- Robin Thomas Ulrich Haid
- DMPK Modeling and Simulation, Drug Metabolism and Pharmacokinetics, Preclinical Development, Bayer AG, Müllerstraße 178, 13353 Berlin, Germany
- Biopharmacy, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Andreas Reichel
- DMPK Modeling and Simulation, Drug Metabolism and Pharmacokinetics, Preclinical Development, Bayer AG, Müllerstraße 178, 13353 Berlin, Germany
- Correspondence:
| |
Collapse
|
61
|
Discovery of novel exceptionally potent and orally active c-MET PROTACs for the treatment of tumors with MET alterations. Acta Pharm Sin B 2023. [DOI: 10.1016/j.apsb.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
62
|
Tunjic TM, Weber N, Brunsteiner M. Computer aided drug design in the development of proteolysis targeting chimeras. Comput Struct Biotechnol J 2023; 21:2058-2067. [PMID: 36968015 PMCID: PMC10030821 DOI: 10.1016/j.csbj.2023.02.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
Proteolysis targeting chimeras represent a class of drug molecules with a number of attractive properties, most notably a potential to work for targets that, so far, have been in-accessible for conventional small molecule inhibitors. Due to their different mechanism of action, and physico-chemical properties, many of the methods that have been designed and applied for computer aided design of traditional small molecule drugs are not applicable for proteolysis targeting chimeras. Here we review recent developments in this field focusing on three aspects: de-novo linker-design, estimation of absorption for beyond-rule-of-5 compounds, and the generation and ranking of ternary complex structures. In spite of this field still being young, we find that a good number of models and algorithms are available, with the potential to assist the design of such compounds in-silico, and accelerate applied pharmaceutical research.
Collapse
|
63
|
Liu Z, Hu M, Yang Y, Du C, Zhou H, Liu C, Chen Y, Fan L, Ma H, Gong Y, Xie Y. An overview of PROTACs: a promising drug discovery paradigm. MOLECULAR BIOMEDICINE 2022; 3:46. [PMID: 36536188 PMCID: PMC9763089 DOI: 10.1186/s43556-022-00112-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Proteolysis targeting chimeras (PROTACs) technology has emerged as a novel therapeutic paradigm in recent years. PROTACs are heterobifunctional molecules that degrade target proteins by hijacking the ubiquitin-proteasome system. Currently, about 20-25% of all protein targets are being studied, and most works focus on their enzymatic functions. Unlike small molecules, PROTACs inhibit the whole biological function of the target protein by binding to the target protein and inducing subsequent proteasomal degradation. PROTACs compensate for limitations that transcription factors, nuclear proteins, and other scaffolding proteins are difficult to handle with traditional small-molecule inhibitors. Currently, PROTACs have successfully degraded diverse proteins, such as BTK, BRD4, AR, ER, STAT3, IRAK4, tau, etc. And ARV-110 and ARV-471 exhibited excellent efficacy in clinical II trials. However, what targets are appropriate for PROTAC technology to achieve better benefits than small-molecule inhibitors are not fully understood. And how to rationally design an efficient PROTACs and optimize it to be orally effective poses big challenges for researchers. In this review, we summarize the features of PROTAC technology, analyze the detail of general principles for designing efficient PROTACs, and discuss the typical application of PROTACs targeting different protein categories. In addition, we also introduce the progress of relevant clinical trial results of representative PROTACs and assess the challenges and limitations that PROTACs may face. Collectively, our studies provide references for further application of PROTACs.
Collapse
Affiliation(s)
- Zi Liu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, Department of Laboratory Medicine, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 China
| | - Mingxing Hu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, Department of Laboratory Medicine, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 China
| | - Yu Yang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, Department of Laboratory Medicine, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 China
| | - Chenghao Du
- grid.42505.360000 0001 2156 6853Department of Biological Sciences, USC Dana and David Dornsife College of Letters, Arts and Sciences, Los Angeles, 90089 USA
| | - Haoxuan Zhou
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, Department of Laboratory Medicine, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 China
| | - Chengyali Liu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, Department of Laboratory Medicine, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 China
| | - Yuanwei Chen
- Hinova Pharmaceuticals Inc., Chengdu, 610041 China
| | - Lei Fan
- Hinova Pharmaceuticals Inc., Chengdu, 610041 China
| | - Hongqun Ma
- Hinova Pharmaceuticals Inc., Chengdu, 610041 China
| | - Youling Gong
- grid.13291.380000 0001 0807 1581Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Yongmei Xie
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, Department of Laboratory Medicine, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 China
| |
Collapse
|
64
|
Koroleva OA, Dutikova YV, Trubnikov AV, Zenov FA, Manasova EV, Shtil AA, Kurkin AV. PROTAC: targeted drug strategy. Principles and limitations. Russ Chem Bull 2022; 71:2310-2334. [PMID: 36569659 PMCID: PMC9762658 DOI: 10.1007/s11172-022-3659-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 12/23/2022]
Abstract
The PROTAC (PROteolysis TArgeting Chimera) technology is a method of targeting intracellular proteins previously considered undruggable. This technology utilizes the ubiquitin-proteasome system in cells to specifically degrade target proteins, thereby offering significant advantages over conventional small-molecule inhibitors of the enzymatic function. Preclinical and preliminary clinical trials of PROTAC-based compounds (degraders) are presented. The review considers the general principles of the design of degraders. Advances and challenges of the PROTAC technology are discussed.
Collapse
Affiliation(s)
- O. A. Koroleva
- Department of Chemistry, Lomonosov Moscow State University, Build. 3, 1 Leninskie Gory, 119991 Moscow, Russian Federation
| | - Yu. V. Dutikova
- Patent & Law Firm “A. Zalesov and Partners”, Build. 9, 2 ul. Marshala Rybalko, 123060 Moscow, Russian Federation
| | - A. V. Trubnikov
- Department of Chemistry, Lomonosov Moscow State University, Build. 3, 1 Leninskie Gory, 119991 Moscow, Russian Federation
| | - F. A. Zenov
- Department of Chemistry, Lomonosov Moscow State University, Build. 3, 1 Leninskie Gory, 119991 Moscow, Russian Federation
| | - E. V. Manasova
- Department of Chemistry, Lomonosov Moscow State University, Build. 3, 1 Leninskie Gory, 119991 Moscow, Russian Federation
| | - A. A. Shtil
- Department of Chemistry, Lomonosov Moscow State University, Build. 3, 1 Leninskie Gory, 119991 Moscow, Russian Federation
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Build. 15, 24 Kashirskoe shosse, 115478 Moscow, Russian Federation
| | - A. V. Kurkin
- Department of Chemistry, Lomonosov Moscow State University, Build. 3, 1 Leninskie Gory, 119991 Moscow, Russian Federation
| |
Collapse
|
65
|
Liu M, Martyn AP, Quinn RJ. Natural product-based PROteolysis TArgeting Chimeras (PROTACs). Nat Prod Rep 2022; 39:2292-2307. [PMID: 36196977 DOI: 10.1039/d2np00038e] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: upto 2022Natural products have an embedded recognition of protein surfaces. They possess this property as they are produced by biosynthetic enzymes and are substrates for one or more enzymes in the biosynthetic pathway. The inherent advantages, compared to synthetic compound libraries, is this ligand-protein binding which is, in many cases, a function of the 3-dimensional properties. Protein degradation is a recent novel therapeutic approach with several compounds now in the clinic. This review highlights the potential of PROteolysis TArgeting Chimeras (PROTACs) in the area of natural products. The approach will complement existing approaches such as the direct use of a bioactive natural product or its analogues, pharmacophore development and drug-antibody conjugates. The chemical synthesis and challenges of using natural product-based PROTACs are summarised. The review also highlights methods to detect the ternary complexes necessary for PROTAC mechanism of action.
Collapse
Affiliation(s)
- Miaomiao Liu
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia.
| | - Alexander P Martyn
- Cancer and Ageing Research Program (CARP), Centre for Genomics and Personalised Health (CGPH), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia.
| |
Collapse
|
66
|
Lou K, Wassarman DR, Yang T, Paung Y, Zhang Z, O’Loughlin TA, Moore MK, Egan RK, Greninger P, Benes CH, Seeliger MA, Taunton J, Gilbert LA, Shokat KM. IFITM proteins assist cellular uptake of diverse linked chemotypes. Science 2022; 378:1097-1104. [PMID: 36480603 PMCID: PMC9924227 DOI: 10.1126/science.abl5829] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The search for cell-permeable drugs has conventionally focused on low-molecular weight (MW), nonpolar, rigid chemical structures. However, emerging therapeutic strategies break traditional drug design rules by employing flexibly linked chemical entities composed of more than one ligand. Using complementary genome-scale chemical-genetic approaches we identified an endogenous chemical uptake pathway involving interferon-induced transmembrane proteins (IFITMs) that modulates the cell permeability of a prototypical biopic inhibitor of MTOR (RapaLink-1, MW: 1784 g/mol). We devised additional linked inhibitors targeting BCR-ABL1 (DasatiLink-1, MW: 1518 g/mol) and EIF4A1 (BisRoc-1, MW: 1466 g/mol), uptake of which was facilitated by IFITMs. We also found that IFITMs moderately assisted some proteolysis-targeting chimeras and examined the physicochemical requirements for involvement of this uptake pathway.
Collapse
Affiliation(s)
- Kevin Lou
- Department of Cellular and Molecular Pharmacology,
University of California, San Francisco, San Francisco, CA 94158, United
States
- Howard Hughes Medical Institute, University of California,
San Francisco, San Francisco, CA 94158, United States
| | - Douglas R. Wassarman
- Department of Cellular and Molecular Pharmacology,
University of California, San Francisco, San Francisco, CA 94158, United
States
- Howard Hughes Medical Institute, University of California,
San Francisco, San Francisco, CA 94158, United States
| | - Tangpo Yang
- Department of Cellular and Molecular Pharmacology,
University of California, San Francisco, San Francisco, CA 94158, United
States
| | - YiTing Paung
- Department of Pharmacological Sciences, Stony Brook
University, Stony Brook, New York 11794-8651, United States
| | - Ziyang Zhang
- Department of Cellular and Molecular Pharmacology,
University of California, San Francisco, San Francisco, CA 94158, United
States
- Howard Hughes Medical Institute, University of California,
San Francisco, San Francisco, CA 94158, United States
- Department of Chemistry, University of California,
Berkeley, Berkeley, 94720, CA, United States
| | - Thomas A. O’Loughlin
- Helen Diller Family Comprehensive Cancer Center, University
of California, San Francisco, San Francisco, CA 94158, United States
- Department of Urology, University of California, San
Francisco, San Francisco, CA 94158, United States
| | - Megan K. Moore
- Department of Cellular and Molecular Pharmacology,
University of California, San Francisco, San Francisco, CA 94158, United
States
- Howard Hughes Medical Institute, University of California,
San Francisco, San Francisco, CA 94158, United States
| | - Regina K. Egan
- Center for Cancer Research, Massachusetts General Hospital
Cancer Center, Charlestown, MA 02129, United States
| | - Patricia Greninger
- Center for Cancer Research, Massachusetts General Hospital
Cancer Center, Charlestown, MA 02129, United States
| | - Cyril H. Benes
- Center for Cancer Research, Massachusetts General Hospital
Cancer Center, Charlestown, MA 02129, United States
- Department of Medicine, Harvard Medical School, Boston, MA
02115, United States
| | - Markus A. Seeliger
- Department of Pharmacological Sciences, Stony Brook
University, Stony Brook, New York 11794-8651, United States
| | - Jack Taunton
- Department of Cellular and Molecular Pharmacology,
University of California, San Francisco, San Francisco, CA 94158, United
States
| | - Luke A. Gilbert
- Helen Diller Family Comprehensive Cancer Center, University
of California, San Francisco, San Francisco, CA 94158, United States
- Department of Urology, University of California, San
Francisco, San Francisco, CA 94158, United States
- Innovative Genomics Institute, University of California,
San Francisco, San Francisco, CA 94158, United States
- Arc Institute, Palo Alto, CA, 94304, United States
| | - Kevan M. Shokat
- Department of Cellular and Molecular Pharmacology,
University of California, San Francisco, San Francisco, CA 94158, United
States
- Howard Hughes Medical Institute, University of California,
San Francisco, San Francisco, CA 94158, United States
- Department of Chemistry, University of California,
Berkeley, Berkeley, 94720, CA, United States
| |
Collapse
|
67
|
Pu C, Wang S, Liu L, Feng Z, Zhang H, Gong Q, Sun Y, Guo Y, Li R. Current strategies for improving limitations of proteolysis targeting chimeras. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
68
|
Poongavanam V, Atilaw Y, Siegel S, Giese A, Lehmann L, Meibom D, Erdelyi M, Kihlberg J. Linker-Dependent Folding Rationalizes PROTAC Cell Permeability. J Med Chem 2022; 65:13029-13040. [PMID: 36170570 PMCID: PMC9574858 DOI: 10.1021/acs.jmedchem.2c00877] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteolysis-targeting chimeras (PROTACs) must be cell permeable to reach their target proteins. This is challenging as the bivalent structure of PROTACs puts them in chemical space at, or beyond, the outer limits of oral druggable space. We used NMR spectroscopy and molecular dynamics (MD) simulations independently to gain insights into the origin of the differences in cell permeability displayed by three flexible cereblon PROTACs having closely related structures. Both methods revealed that the propensity of the PROTACs to adopt folded conformations with a low solvent-accessible 3D polar surface area in an apolar environment is correlated to high cell permeability. The chemical nature and the flexibility of the linker were essential for the PROTACs to populate folded conformations stabilized by intramolecular hydrogen bonds, π-π interactions, and van der Waals interactions. We conclude that MD simulations may be used for the prospective ranking of cell permeability in the design of cereblon PROTACs.
Collapse
Affiliation(s)
| | - Yoseph Atilaw
- Department of Chemistry─BMC, Uppsala University, Box 576, 75123 Uppsala, Sweden
| | - Stephan Siegel
- Drug Discovery Sciences, Bayer AG, 13342 Berlin, Germany
| | - Anja Giese
- Drug Discovery Sciences, Bayer AG, 13342 Berlin, Germany
| | - Lutz Lehmann
- Drug Discovery Sciences, Bayer AG, 42113 Wuppertal, Germany
| | - Daniel Meibom
- Drug Discovery Sciences, Bayer AG, 42113 Wuppertal, Germany
| | - Mate Erdelyi
- Department of Chemistry─BMC, Uppsala University, Box 576, 75123 Uppsala, Sweden
| | - Jan Kihlberg
- Department of Chemistry─BMC, Uppsala University, Box 576, 75123 Uppsala, Sweden
| |
Collapse
|
69
|
Zhao C, Dekker FJ. Novel Design Strategies to Enhance the Efficiency of Proteolysis Targeting Chimeras. ACS Pharmacol Transl Sci 2022; 5:710-723. [PMID: 36110375 PMCID: PMC9469497 DOI: 10.1021/acsptsci.2c00089] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 11/30/2022]
Abstract
Despite the success of drug discovery over the past decades, many potential drug targets still remain intractable for small molecule modulation. The development of proteolysis targeting chimeras (PROTACs) that trigger degradation of the target proteins provides a conceptually novel approach to address drug targets that remained previously elusive. Currently, the main challenge of PROTAC development is the identification of efficient, tissue- and cell-selective PROTAC molecules with good drug-likeness and favorable safety profiles. This review focuses on strategies to enhance the effectiveness and selectivity of PROTACs. We provide a comprehensive summary of recently reported PROTAC design strategies and discuss the advantages and disadvantages of these strategies. Future perspectives for PROTAC design will also be discussed.
Collapse
Affiliation(s)
- Chunlong Zhao
- Department of Chemical and
Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Frank J. Dekker
- Department of Chemical and
Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| |
Collapse
|
70
|
Hu J, Jarusiewicz J, Du G, Nishiguchi G, Yoshimura S, Panetta JC, Li Z, Min J, Yang L, Chepyala D, Actis M, Reyes N, Smart B, Pui CH, Teachey DT, Rankovic Z, Yang JJ. Preclinical evaluation of proteolytic targeting of LCK as a therapeutic approach in T cell acute lymphoblastic leukemia. Sci Transl Med 2022; 14:eabo5228. [PMID: 36001679 PMCID: PMC9730446 DOI: 10.1126/scitranslmed.abo5228] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy, and there is an unmet need for targeted therapies, especially for patients with relapsed disease. We have recently identified pre-T cell receptor and lymphocyte-specific protein tyrosine kinase (LCK) signaling as a common therapeutic vulnerability in T-ALL. LCK inhibitor dasatinib showed efficacy against T-ALL in preclinical studies and in patients with T-ALL; however, this is transient in most cases. Leveraging the proteolysis targeting chimera (PROTAC) approach, we developed a series of LCK degraders using dasatinib as an LCK ligand and phenyl-glutarimide as a cereblon-directing moiety. Our lead compound SJ11646 exhibited marked efficiency in cereblon-mediated LCK degradation in T-ALL cells. Relative to dasatinib, SJ11646 showed up to three orders of magnitude higher cytotoxicity in LCK-activated T-ALL cell lines and primary leukemia samples in vitro, with drastically prolonged suppression of LCK signaling. In vivo pharmacokinetic and pharmacodynamic profiling indicated a 630% increase in the duration of LCK suppression by SJ11646 over dasatinib in patient-derived xenograft models of T-ALL, which translated into its extended leukemia-free survival over dasatinib in vivo. Last, SJ11646 retained a high binding affinity to 51 human kinases, particularly ABL1, KIT, and DDR1, all of which are known drug targets in other cancers. Together, our dasatinib-based phenyl-glutarimide PROTACs are promising therapeutic agents in T-ALL and valuable tools for developing degradation-based therapeutics for other cancers.
Collapse
Affiliation(s)
- Jianzhong Hu
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Jamie Jarusiewicz
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital; Memphis, TN, 38105, USA
| | - Guoqing Du
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Gisele Nishiguchi
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital; Memphis, TN, 38105, USA
| | - Satoshi Yoshimura
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - John C. Panetta
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Zhenhua Li
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Jaeki Min
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital; Memphis, TN, 38105, USA
| | - Lei Yang
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital; Memphis, TN, 38105, USA
| | - Divyabharathi Chepyala
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital; Memphis, TN, 38105, USA
| | - Marisa Actis
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital; Memphis, TN, 38105, USA
| | - Noemi Reyes
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Brandon Smart
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - David T. Teachey
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Zoran Rankovic
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital; Memphis, TN, 38105, USA,,Correspondence to: Jun J. Yang Ph.D., Member, Department of Pharmacy and Pharmaceutical Sciences, Department of Oncology, ; Zoran Rankovic Ph.D., Director, CBT Chemistry Centers, Department of Chemical Biology & Therapeutics, ; St. Jude Children’s Research Hospital, 262 Danny Thomas Pl., Memphis, TN 38105
| | - Jun J. Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA,,Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA,,Correspondence to: Jun J. Yang Ph.D., Member, Department of Pharmacy and Pharmaceutical Sciences, Department of Oncology, ; Zoran Rankovic Ph.D., Director, CBT Chemistry Centers, Department of Chemical Biology & Therapeutics, ; St. Jude Children’s Research Hospital, 262 Danny Thomas Pl., Memphis, TN 38105
| |
Collapse
|
71
|
Desantis J, Mammoli A, Eleuteri M, Coletti A, Croci F, Macchiarulo A, Goracci L. PROTACs bearing piperazine-containing linkers: what effect on their protonation state? RSC Adv 2022; 12:21968-21977. [PMID: 36043064 PMCID: PMC9361468 DOI: 10.1039/d2ra03761k] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022] Open
Abstract
Proteolysis targeting chimeras (PROTACs) represent an emerging class of compounds for innovative therapeutic application. Their bifunctional nature induces the formation of a ternary complex (target protein/PROTAC/E3 ligase) which allows target protein ubiquitination and subsequent proteasomal-dependent degradation. To date, despite great efforts being made to improve their biological efficacy PROTACs rational design still represents a challenging task, above all for the modulation of their physicochemical and pharmacokinetics properties. Considering the pivotal role played by the linker moiety, recently the insertion of a piperazine moiety into the PROTAC linker has been widely used, as this ring can in principle improve rigidity and increase solubility upon protonation. Nevertheless, the pK a of the piperazine ring is significantly affected by the chemical groups located nearby, and slight modifications in the linker could eliminate the desired effect. In the present study, the pK a values of a dataset of synthesized small molecule compounds including PROTACs and their precursors have been evaluated in order to highlight how a fine modulation of piperazine-containing linkers can impact the protonation state of these molecules or similar heterobifunctional ones. Finally, the possibility of predicting the trend through in silico approaches was also evaluated.
Collapse
Affiliation(s)
- Jenny Desantis
- Department of Chemistry, Biology, and Biotechnology, University of Perugia Via Elce di Sotto 8 06123 Perugia Italy
| | - Andrea Mammoli
- Department of Pharmaceutical Sciences, University of Perugia Via del Liceo 1 06123 Perugia Italy
| | - Michela Eleuteri
- Department of Chemistry, Biology, and Biotechnology, University of Perugia Via Elce di Sotto 8 06123 Perugia Italy
| | - Alice Coletti
- Department of Pharmaceutical Sciences, University of Perugia Via del Liceo 1 06123 Perugia Italy
| | - Federico Croci
- Department of Chemistry, Biology, and Biotechnology, University of Perugia Via Elce di Sotto 8 06123 Perugia Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia Via del Liceo 1 06123 Perugia Italy
| | - Laura Goracci
- Department of Chemistry, Biology, and Biotechnology, University of Perugia Via Elce di Sotto 8 06123 Perugia Italy
| |
Collapse
|
72
|
Hendrick CE, Jorgensen JR, Chaudhry C, Strambeanu II, Brazeau JF, Schiffer J, Shi Z, Venable JD, Wolkenberg SE. Direct-to-Biology Accelerates PROTAC Synthesis and the Evaluation of Linker Effects on Permeability and Degradation. ACS Med Chem Lett 2022; 13:1182-1190. [PMID: 35859867 PMCID: PMC9290060 DOI: 10.1021/acsmedchemlett.2c00124] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A platform to accelerate optimization of proteolysis targeting chimeras (PROTACs) has been developed using a direct-to-biology (D2B) approach with a focus on linker effects. A large number of linker analogs-with varying length, polarity, and rigidity-were rapidly prepared and characterized in four cell-based assays by streamlining time-consuming steps in synthesis and purification. The expansive dataset informs on linker structure-activity relationships (SAR) for in-cell E3 ligase target engagement, degradation, permeability, and cell toxicity. Unexpected aspects of linker SAR was discovered, consistent with literature reports on "linkerology", and the method dramatically speeds up empirical optimization. Physicochemical property trends emerged, and the platform has the potential to rapidly expand training sets for more complex prediction models. In-depth validation studies were carried out and confirm the D2B platform is a valuable tool to accelerate PROTAC design-make-test cycles.
Collapse
Affiliation(s)
- Charles E. Hendrick
- Discovery
Chemistry, Therapeutics Discovery, Janssen
Research & Development, LLC,Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Jeff R. Jorgensen
- Discovery
Technology and Molecular Pharmacology, Therapeutics Discovery, Janssen Research & Development, LLC, Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Charu Chaudhry
- Discovery
Technology and Molecular Pharmacology, Therapeutics Discovery, Janssen Research & Development, LLC, Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Iulia I. Strambeanu
- Discovery
Chemistry, Therapeutics Discovery, Janssen
Research & Development, LLC,Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Jean-Francois Brazeau
- Discovery
Chemistry, Therapeutics Discovery, Janssen
Research & Development, LLC, 3210 Merryfield Row, La Jolla, California 92121, United States
| | - Jamie Schiffer
- Computational
Chemistry, Therapeutics Discovery, Janssen
Research & Development, LLC, 3210 Merryfield Row, La Jolla, California 92121, United States
| | - Zhicai Shi
- Discovery
Chemistry, Therapeutics Discovery, Janssen
Research & Development, LLC,Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Jennifer D. Venable
- Discovery
Chemistry, Therapeutics Discovery, Janssen
Research & Development, LLC, 3210 Merryfield Row, La Jolla, California 92121, United States
| | - Scott E. Wolkenberg
- Discovery
Chemistry, Therapeutics Discovery, Janssen
Research & Development, LLC,Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
73
|
Ma S, Ji J, Tong Y, Zhu Y, Dou J, Zhang X, Xu S, Zhu T, Xu X, You Q, Jiang Z. Non-small molecule PROTACs (NSM-PROTACs): Protein degradation kaleidoscope. Acta Pharm Sin B 2022; 12:2990-3005. [PMID: 35865099 PMCID: PMC9293674 DOI: 10.1016/j.apsb.2022.02.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 12/29/2022] Open
Abstract
The proteolysis targeting chimeras (PROTACs) technology has been rapidly developed since its birth in 2001, attracting rapidly growing attention of scientific institutes and pharmaceutical companies. At present, a variety of small molecule PROTACs have entered the clinical trial. However, as small molecule PROTACs flourish, non-small molecule PROTACs (NSM-PROTACs) such as peptide PROTACs, nucleic acid PROTACs and antibody PROTACs have also advanced considerably over recent years, exhibiting the unique characters beyond the small molecule PROTACs. Here, we briefly introduce the types of NSM-PROTACs, describe the advantages of NSM-PROTACs, and summarize the development of NSM-PROTACs so far in detail. We hope this article could not only provide useful insights into NSM-PROTACs, but also expand the research interest of NSM-PROTACs.
Collapse
Affiliation(s)
- Sinan Ma
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Jianai Ji
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Tong
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxuan Zhu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Junwei Dou
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Xian Zhang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Shicheng Xu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Tianbao Zhu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoli Xu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
74
|
Zhang J, Che J, Luo X, Wu M, Kan W, Jin Y, Wang H, Pang A, Li C, Huang W, Zeng S, Zhuang W, Wu Y, Xu Y, Zhou Y, Li J, Dong X. Structural Feature Analyzation Strategies toward Discovery of Orally Bioavailable PROTACs of Bruton's Tyrosine Kinase for the Treatment of Lymphoma. J Med Chem 2022; 65:9096-9125. [PMID: 35671249 DOI: 10.1021/acs.jmedchem.2c00324] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bruton's tyrosine kinase proteolysis-targeting chimeras (BTK-PROTACs) have emerged as a promising approach to address the limitations of BTK inhibitors. However, conducting the rational discovery of orally bioavailable BTK-PROTACs presents significant challenges. In this study, dimensionality reduction analysis and model molecule validation were utilized to identify some key structural features for improving the oral absorption of BTK-PROTACs. The results were applied to optimize the newly discovered BTK-PROTACs B1 and B2. Compound C13 was discovered with improved oral bioavailability, high BTK degradation activity, and selectivity. It exhibited inhibitory effects against different hematologic cancer cells and attenuated the BTK-related signaling pathway. The oral administration of C13 effectively reduced BTK protein levels and suppressed tumor growth. This study led to the discovery of a new orally bioavailable BTK-PROTAC for the treatment of lymphoma, and we hope that the strategy will find wide utility.
Collapse
Affiliation(s)
- Jingyu Zhang
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xiaomin Luo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.,National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Mingfei Wu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Weijuan Kan
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Yuheng Jin
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Hanlin Wang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China.,School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Ao Pang
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Cong Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Wenhai Huang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 310058, P. R. China
| | - Shenxin Zeng
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 310058, P. R. China
| | - Weihao Zhuang
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yizhe Wu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yongjin Xu
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou 310005, P. R. China
| | - Yubo Zhou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.,National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China.,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Tsuihang New District, Guangdong 528400, P. R. China
| | - Jia Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.,National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China.,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Tsuihang New District, Guangdong 528400, P. R. China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China.,Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, P. R. China.,Cancer Center, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
75
|
Guenette RG, Yang SW, Min J, Pei B, Potts PR. Target and tissue selectivity of PROTAC degraders. Chem Soc Rev 2022; 51:5740-5756. [PMID: 35587208 DOI: 10.1039/d2cs00200k] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Targeted protein degradation (TPD) strategies have revolutionized how scientists tackle challenging protein targets deemed undruggable with traditional small molecule inhibitors. Many promising campaigns to inhibit proteins have failed due to factors surrounding inhibition selectivity and targeting of compounds to specific tissues and cell types. One of the major improvements that PROTAC (proteolysis targeting chimera) and molecular glue technology can exert is highly selective control of target inhibition. Multiple studies have shown that PROTACs can gain selectivity for their protein targets beyond that of their parent ligands via optimization of linker length and stabilization of ternary complexes. Due to the bifunctional nature of PROTACs, the tissue selective nature of E3 ligases can be exploited to uncover novel targeting mechanisms. In this review, we provide critical analysis of the recent progress towards making selective PROTAC molecules and new PROTAC technologies that will continue to push the boundaries of achieving selectivity. These efforts have wide implications in the future of treating disease as they will broaden the possible targets that can be addressed by small molecules, like undruggable proteins or broadly active targets that would benefit from degradation in specific tissue types.
Collapse
Affiliation(s)
| | - Seung Wook Yang
- Induced Proximity Platform, Amgen, Thousand Oaks, CA 91320, USA.
| | - Jaeki Min
- Induced Proximity Platform, Amgen, Thousand Oaks, CA 91320, USA.
| | - Baikang Pei
- Genome Analysis Unit, Amgen, Thousand Oaks, CA 91320, USA
| | | |
Collapse
|
76
|
Abstract
Degrader-antibody conjugates (DACs) are novel entities that combine a proteolysis targeting chimera (PROTAC) payload with a monoclonal antibody via some type of chemical linker. This review provides a current summary of the DAC field. Many general aspects associated with the creation and biological performance of traditional cytotoxic antibody-drug conjugates (ADCs) are initially presented. These characteristics are subsequently compared and contrasted with related parameters that impact DAC generation and biological activity. Several examples of DACs assembled from both the scientific and the patent literature are utilized to highlight differing strategies for DAC creation, and specific challenges associated with DAC construction are documented. Collectively, the assembled examples demonstrate that biologically-active DACs can be successfully prepared using a variety of PROTAC payloads which employ diverse E3 ligases to degrade multiple protein targets.
Collapse
|
77
|
García Jiménez D, Rossi Sebastiano M, Vallaro M, Mileo V, Pizzirani D, Moretti E, Ermondi G, Caron G. Designing Soluble PROTACs: Strategies and Preliminary Guidelines. J Med Chem 2022; 65:12639-12649. [PMID: 35469399 PMCID: PMC9574862 DOI: 10.1021/acs.jmedchem.2c00201] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Solubility optimization is a crucial step to obtaining oral PROTACs. Here we measured the thermodynamic solubilities (log S) of 21 commercial PROTACs. Next, we measured BRlogD and log kwIAM (lipophilicity), EPSA, and Δ log kwIAM (polarity) and showed that lipophilicity plays a major role in governing log S, but a contribution of polarity cannot be neglected. Two-/three-dimensional descriptors calculated on conformers arising from conformational sampling and steered molecular dynamics failed in modeling solubility. Infographic tools were used to identify a privileged region of soluble PROTACs in a chemical space defined by BRlogD, log kwIAM and topological polar surface area, while machine learning provided a log S classification model. Finally, for three pairs of PROTACs we measured the solubility, lipophilicity, and polarity of the building blocks and identified the limits of estimating PROTAC solubility from the synthetic components. Overall, this paper provides promising guidelines for optimizing PROTAC solubility in early drug discovery programs.
Collapse
Affiliation(s)
- Diego García Jiménez
- Molecular Biotechnology and Health Sciences Department, CASSMedChem, University of Torino, Via Quarello 15, 10135 Torino, Italy
| | - Matteo Rossi Sebastiano
- Molecular Biotechnology and Health Sciences Department, CASSMedChem, University of Torino, Via Quarello 15, 10135 Torino, Italy
| | - Maura Vallaro
- Molecular Biotechnology and Health Sciences Department, CASSMedChem, University of Torino, Via Quarello 15, 10135 Torino, Italy
| | - Valentina Mileo
- Global Research and Preclinical Development, Research Center, Chiesi Farmaceutici, Largo Belloli 11/a, 43122 Parma, Italy.,Emerging Science & Technology Unit, Research Center, Chiesi Farmaceutici, Largo Belloli 11/a, 43122 Parma, Italy
| | - Daniela Pizzirani
- Global Research and Preclinical Development, Research Center, Chiesi Farmaceutici, Largo Belloli 11/a, 43122 Parma, Italy.,Emerging Science & Technology Unit, Research Center, Chiesi Farmaceutici, Largo Belloli 11/a, 43122 Parma, Italy
| | - Elisa Moretti
- Global Research and Preclinical Development, Research Center, Chiesi Farmaceutici, Largo Belloli 11/a, 43122 Parma, Italy
| | - Giuseppe Ermondi
- Molecular Biotechnology and Health Sciences Department, CASSMedChem, University of Torino, Via Quarello 15, 10135 Torino, Italy
| | - Giulia Caron
- Molecular Biotechnology and Health Sciences Department, CASSMedChem, University of Torino, Via Quarello 15, 10135 Torino, Italy
| |
Collapse
|
78
|
He S, Dong G, Cheng J, Wu Y, Sheng C. Strategies for designing proteolysis targeting chimaeras (PROTACs). Med Res Rev 2022; 42:1280-1342. [PMID: 35001407 DOI: 10.1002/med.21877] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022]
Abstract
Proteolysis targeting chimaeras (PROTACs) is a cutting edge and rapidly growing technique for new drug discovery and development. Currently, the largest challenge in the molecular design and drug development of PROTACs is efficient identification of potent and drug-like degraders. This review aims to comprehensively summarize and analyse state-of-the-art methods and strategies in the design of PROTACs. We provide a detailed illustration of the general principles and tactics for designing potent PROTACs, highlight representative case studies, and discuss the advantages and limitations of these strategies. Particularly, structure-based rational PROTAC design and emerging new types of PROTACs (e.g., homo-PROTACs, multitargeting PROTACs, photo-control PROTACs and PROTAC-based conjugates) will be focused on.
Collapse
Affiliation(s)
- Shipeng He
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Guoqiang Dong
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Junfei Cheng
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Ying Wu
- School of Pharmacy, Second Military Medical University, Shanghai, China.,Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
79
|
Page S, Khan T, Kühl P, Schwach G, Storch K, Chokshi H. Patient Centricity Driving Formulation Innovation: Improvements in Patient Care Facilitated by Novel Therapeutics and Drug Delivery Technologies. Annu Rev Pharmacol Toxicol 2022; 62:341-363. [PMID: 34990203 DOI: 10.1146/annurev-pharmtox-052120-093517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Innovative formulation technologies can play a crucial role in transforming a novel molecule to a medicine that significantly enhances patients' lives. Improved mechanistic understanding of diseases has inspired researchers to expand the druggable space using new therapeutic modalities such as interfering RNA, protein degraders, and novel formats of monoclonal antibodies. Sophisticated formulation strategies are needed to deliver the drugs to their sites of action and to achieve patient centricity, exemplified by messenger RNA vaccines and oral peptides. Moreover, access to medical information via digital platforms has resulted in better-informed patient groups that are requesting consideration of their needs during drug development. This request is consistent with health authority efforts to upgrade their regulations to advance age-appropriate product development for patients. This review describes formulation innovations contributingto improvements in patient care: convenience of administration, preferred route of administration, reducing dosing burden, and achieving targeted delivery of new modalities.
Collapse
Affiliation(s)
- Susanne Page
- Pharma Technical Development, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
| | - Tarik Khan
- Pharma Technical Development, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
| | - Peter Kühl
- Pharma Technical Development, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
| | - Gregoire Schwach
- Pharma Technical Development, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
| | - Kirsten Storch
- Pharma Technical Development, Roche Diagnostics GmbH, 68305 Mannheim, Germany
| | - Hitesh Chokshi
- Pharma Technical Development, Roche TCRC Inc., Little Falls, New Jersey 07424, USA
| |
Collapse
|
80
|
Klein VG, Bond AG, Craigon C, Lokey RS, Ciulli A. Amide-to-Ester Substitution as a Strategy for Optimizing PROTAC Permeability and Cellular Activity. J Med Chem 2021; 64:18082-18101. [PMID: 34881891 PMCID: PMC8713283 DOI: 10.1021/acs.jmedchem.1c01496] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Indexed: 12/13/2022]
Abstract
Criteria for predicting the druglike properties of "beyond Rule of 5" Proteolysis Targeting Chimeras (PROTAC) degraders are underdeveloped. PROTAC components are often combined via amide couplings due to their reliability. Amides, however, can give rise to poor absorption, distribution, metabolism, and excretion (ADME) properties. We hypothesized that a bioisosteric amide-to-ester substitution could lead to improvements in both physicochemical properties and bioactivity. Using model compounds, bearing either amides or esters, we identify parameters for optimal lipophilicity and permeability. We applied these learnings to design a set of novel amide-to-ester-substituted, VHL-based BET degraders with the goal to increase permeability. Our ester PROTACs retained intracellular stability, were overall more potent degraders than their amide counterparts, and showed an earlier onset of the hook effect. These enhancements were driven by greater cell permeability rather than improvements in ternary complex formation. This largely unexplored amide-to-ester substitution provides a simple strategy to enhance PROTAC permeability and bioactivity and may prove beneficial to other beyond Ro5 molecules.
Collapse
Affiliation(s)
- Victoria G Klein
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States
| | - Adam G Bond
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K
| | - Conner Craigon
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K
| | - R Scott Lokey
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K
| |
Collapse
|
81
|
Kidney Cancer and Chronic Kidney Disease: Too Close for Comfort. Biomedicines 2021; 9:biomedicines9121761. [PMID: 34944574 PMCID: PMC8699019 DOI: 10.3390/biomedicines9121761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 12/11/2022] Open
Abstract
Kidney cancer and chronic kidney disease are two renal pathologies with very different clinical management strategies and therapeutical options. Nonetheless, the cellular and molecular mechanisms underlying both conditions are closely related. Renal physiology is adapted to operate with a limited oxygen supply, making the kidney remarkably equipped to respond to hypoxia. This tightly regulated response mechanism is at the heart of kidney cancer, leading to the onset of malignant cellular phenotypes. Although elusive, the role of hypoxia in chronic kidney diseases is emerging as related to fibrosis, a pivotal factor in decaying renal function. The present review offers a perspective on the common biological traits shared between kidney cancer and chronic kidney disease and the available and prospective therapies for both conditions.
Collapse
|
82
|
PROTAC cell permeability and oral bioavailability: a journey into uncharted territory. Future Med Chem 2021; 14:123-126. [PMID: 34583518 DOI: 10.4155/fmc-2021-0208] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
83
|
Rodriguez-Rivera FP, Levi SM. Unifying Catalysis Framework to Dissect Proteasomal Degradation Paradigms. ACS CENTRAL SCIENCE 2021; 7:1117-1125. [PMID: 34345664 PMCID: PMC8323112 DOI: 10.1021/acscentsci.1c00389] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Indexed: 06/13/2023]
Abstract
Diverging from traditional target inhibition, proteasomal protein degradation approaches have emerged as novel therapeutic modalities that embody distinct pharmacological profiles and can access previously undrugged targets. Small molecule degraders have the potential to catalytically destroy target proteins at substoichiometric concentrations, thus lowering administered doses and extending pharmacological effects. With this mechanistic premise, research efforts have advanced the development of small molecule degraders that benefit from stable and increased affinity ternary complexes. However, a holistic framework that evaluates different degradation modes from a catalytic perspective, including focusing on kinetically favored degradation mechanisms, is lacking. In this Outlook, we introduce the concept of an induced cooperativity spectrum as a unifying framework to mechanistically understand catalytic degradation profiles. This framework is bolstered by key examples of published molecular degraders extending from molecular glues to bivalent degraders. Critically, we discuss remaining challenges and future opportunities in drug discovery to rationally design and phenotypically screen for efficient degraders.
Collapse
Affiliation(s)
- Frances P. Rodriguez-Rivera
- Discovery
Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Samuel M. Levi
- Pfizer
Worldwide Research and Development, Pfizer,
Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
84
|
Xie S, Sun Y, Liu Y, Li X, Li X, Zhong W, Zhan F, Zhu J, Yao H, Yang DH, Chen ZS, Xu J, Xu S. Development of Alectinib-Based PROTACs as Novel Potent Degraders of Anaplastic Lymphoma Kinase (ALK). J Med Chem 2021; 64:9120-9140. [PMID: 34176264 DOI: 10.1021/acs.jmedchem.1c00270] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A series of novel anaplastic lymphoma kinase (ALK) degraders were designed and synthesized based on proteolysis-targeting chimera (PROTAC) technology by linking two alectinib analogs (36 and 37) with pomalidomide through linkers of different lengths and types. The most promising degrader 17 possessed a high ALK-binding affinity and potent antiproliferative activity in the ALK-dependent cell lines and did not exhibit obvious cytotoxicity in ALK fusion-negative cells. More importantly, the efficacy of compound 17 in a Karpas 299 xenograft mouse model was further evaluated based on its ALK-sustained degradation ability in vivo. The reduction in tumor weight in the compound 17-treated group (10 mg/kg/day, I.V.) reached 75.82%, while alectinib reduced tumor weight by 63.82% at a dose of 20 mg/kg/day (P.O.). Taken together, our findings suggest that alectinib-based PROTACs associated with the degradation of ALK may have promising beneficial effects for treating ALK-driven malignancies.
Collapse
Affiliation(s)
- Shaowen Xie
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Yuan Sun
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Yulin Liu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China.,Department of Organic Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Xinnan Li
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Xinuo Li
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Wenyi Zhong
- Department of Organic Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Feiyan Zhan
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Jingjie Zhu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Hong Yao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Dong-Hua Yang
- College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York 11439, United States
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York 11439, United States
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Shengtao Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| |
Collapse
|
85
|
Cresser-Brown JO, Marsh GP, Maple HJ. Reviewing the toolbox for degrader development in oncology. Curr Opin Pharmacol 2021; 59:43-51. [PMID: 34058637 DOI: 10.1016/j.coph.2021.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/29/2022]
Abstract
The field of targeted protein degradation encompasses a growing number of modalities that achieve potent and selective knockdown of target proteins at the post-translational level. Among the most clinically advanced are bifunctional small-molecule degraders, also referred to as PROteolysis Targeting Chimeras, Degronimids, SNIPERs, or uSMITEs. Although applicable to many disease indications, oncology stands to be the first to benefit from this promising therapeutic approach, with the first investigational new drugs (INDs) filed in 2019 and a proliferation of research specifically focused on harnessing degraders for cancer treatment. In this review, we consider the toolbox of guidelines, reagents, and technologies that has evolved alongside the field to support degrader research and development.
Collapse
Affiliation(s)
- Joel O Cresser-Brown
- Bio-Techne (Tocris), The Watkins Building, Atlantic Road, Avonmouth, Bristol, UK
| | - Graham P Marsh
- Bio-Techne (Tocris), The Watkins Building, Atlantic Road, Avonmouth, Bristol, UK
| | - Hannah J Maple
- Bio-Techne (Tocris), The Watkins Building, Atlantic Road, Avonmouth, Bristol, UK.
| |
Collapse
|
86
|
Discovery of an orally active VHL-recruiting PROTAC that achieves robust HMGCR degradation and potent hypolipidemic activity in vivo. Acta Pharm Sin B 2021; 11:1300-1314. [PMID: 34094835 PMCID: PMC8148065 DOI: 10.1016/j.apsb.2020.11.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022] Open
Abstract
HMG-CoA reductase (HMGCR) protein is usually upregulated after statin (HMGCR inhibitor) treatment, which inevitably diminishes its therapeutic efficacy, provoking the need for higher doses associated with adverse effects. The proteolysis targeting chimera (PROTAC) technology has recently emerged as a powerful approach for inducing protein degradation. Nonetheless, due to their bifunctional nature, developing orally bioavailable PROTACs remains a great challenge. Herein, we identified a powerful HMGCR-targeted PROTAC (21c) comprising a VHL ligand conjugated to lovastatin acid that potently degrades HMGCR in Insig-silenced HepG2 cells (DC50 = 120 nmol/L) and forms a stable ternary complex, as predicated by a holistic modeling protocol. Most importantly, oral administration of the corresponding lactone 21b reveled favorable plasma exposures referring to both the parent 21b and the conversed acid 21c. Further in vivo studies of 21b demonstrated robust HMGCR degradation and potent cholesterol reduction in mice with diet-induced hypercholesterolemia, highlighting a promising strategy for treating hyperlipidemia and associated diseases.
Collapse
Key Words
- CRBN, cereblon
- CVD, cardiovascular disease
- Cholesterol reduction
- DC50, half degradation concentration
- ER, endoplasmic reticulum
- H&E, hematoxylin/eosin
- HDAC, histone deacetylase
- HMGCR
- HMGCR, 3-hydroxy-3-methylglutaryl coenzyme A reductase
- LDL-C, low-density lipoprotein cholesterol
- MFD, medium fat diet
- ORO, oil-red O
- Oral bioavailability
- PK, pharmacokinetic
- PROTAC, proteolysis-targeting chimera
- PROTACs
- SAR, structure–activity relationship
- TC, total cholesterol
- TG, triglyceride
- VHL, von Hippel-Lindau
Collapse
|
87
|
Disch JS, Duffy JM, Lee ECY, Gikunju D, Chan B, Levin B, Monteiro MI, Talcott SA, Lau AC, Zhou F, Kozhushnyan A, Westlund NE, Mullins PB, Yu Y, von Rechenberg M, Zhang J, Arnautova YA, Liu Y, Zhang Y, McRiner AJ, Keefe AD, Kohlmann A, Clark MA, Cuozzo JW, Huguet C, Arora S. Bispecific Estrogen Receptor α Degraders Incorporating Novel Binders Identified Using DNA-Encoded Chemical Library Screening. J Med Chem 2021; 64:5049-5066. [PMID: 33844532 DOI: 10.1021/acs.jmedchem.1c00127] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bispecific degraders (PROTACs) of ERα are expected to be advantageous over current inhibitors of ERα signaling (aromatase inhibitors/SERMs/SERDs) used to treat ER+ breast cancer. Information from DNA-encoded chemical library (DECL) screening provides a method to identify novel PROTAC binding features as the linker positioning, and binding elements are determined directly from the screen. After screening ∼120 billion DNA-encoded molecules with ERα WT and 3 gain-of-function (GOF) mutants, with and without estradiol to identify features that enrich ERα competitively, the off-DNA synthesized small molecule exemplar 7 exhibited nanomolar ERα binding, antagonism, and degradation. Click chemistry synthesis on an alkyne E3 ligase engagers panel and an azide variant of 7 rapidly generated bispecific nanomolar degraders of ERα, with PROTACs 18 and 21 inhibiting ER+ MCF7 tumor growth in a mouse xenograft model of breast cancer. This study validates this approach toward identifying novel bispecific degrader leads from DECL screening with minimal optimization.
Collapse
Affiliation(s)
- Jeremy S Disch
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Jennifer M Duffy
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Esther C Y Lee
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Diana Gikunju
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Betty Chan
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Benjamin Levin
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Michael I Monteiro
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Sarah A Talcott
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Anthony C Lau
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Fei Zhou
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Anton Kozhushnyan
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Neil E Westlund
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Patrick B Mullins
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Yan Yu
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | | | - Junyi Zhang
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Yelena A Arnautova
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Yanbin Liu
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Ying Zhang
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Andrew J McRiner
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Anthony D Keefe
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Anna Kohlmann
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Matthew A Clark
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - John W Cuozzo
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Christelle Huguet
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Shilpi Arora
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| |
Collapse
|
88
|
Maneiro M, De Vita E, Conole D, Kounde CS, Zhang Q, Tate EW. PROTACs, molecular glues and bifunctionals from bench to bedside: Unlocking the clinical potential of catalytic drugs. PROGRESS IN MEDICINAL CHEMISTRY 2021; 60:67-190. [PMID: 34147206 DOI: 10.1016/bs.pmch.2021.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The vast majority of currently marketed drugs rely on small molecules with an 'occupancy-driven' mechanism of action (MOA). Therefore, the efficacy of these therapeutics depends on a high degree of target engagement, which often requires high dosages and enhanced drug exposure at the target site, thus increasing the risk of off-target toxicities (Churcher, 2018 [1]). Although small molecule drugs have been successfully used as treatments for decades, tackling a variety of disease-relevant targets with a defined binding site, many relevant therapeutic targets remain challenging to drug due, for example, to lack of well-defined binding pockets or large protein-protein interaction (PPI) interfaces which resist interference (Dang et al., 2017 [2]). In the quest for alternative therapeutic approaches to address different pathologies and achieve enhanced efficacy with reduced side effects, ligand-induced targeted protein degradation (TPD) has gained the attention of many research groups both in academia and in industry in the last two decades. This therapeutic modality represents a novel paradigm compared to conventional small-molecule inhibitors. To pursue this strategy, heterobifunctional small molecule degraders, termed PROteolysis TArgeting Chimeras (PROTACs) have been devised to artificially redirect a protein of interest (POI) to the cellular protein homeostasis machinery for proteasomal degradation (Chamberlain et al., 2019 [3]). In this chapter, the development of PROTACs will first be discussed providing a historical perspective in parallel to the experimental progress made to understand this novel therapeutic modality. Furthermore, common strategies for PROTAC design, including assays and troubleshooting tips will be provided for the reader, before presenting a compendium of all PROTAC targets reported in the literature to date. Due to the recent advancement of these molecules into clinical trials, consideration of pharmacokinetics and pharmacodynamic properties will be introduced, together with the biotech landscape that has developed from the success of PROTACs. Finally, an overview of subsequent strategies for targeted protein degradation will be presented, concluding with further scientific quests triggered by the invention of PROTACs.
Collapse
Affiliation(s)
- M Maneiro
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
| | - E De Vita
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
| | - D Conole
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
| | - C S Kounde
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
| | - Q Zhang
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
| | - E W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom.
| |
Collapse
|
89
|
Dragovich PS, Pillow TH, Blake RA, Sadowsky JD, Adaligil E, Adhikari P, Chen J, Corr N, Dela Cruz-Chuh J, Del Rosario G, Fullerton A, Hartman SJ, Jiang F, Kaufman S, Kleinheinz T, Kozak KR, Liu L, Lu Y, Mulvihill MM, Murray JM, O'Donohue A, Rowntree RK, Sawyer WS, Staben LR, Wai J, Wang J, Wei B, Wei W, Xu Z, Yao H, Yu SF, Zhang D, Zhang H, Zhang S, Zhao Y, Zhou H, Zhu X. Antibody-Mediated Delivery of Chimeric BRD4 Degraders. Part 2: Improvement of In Vitro Antiproliferation Activity and In Vivo Antitumor Efficacy. J Med Chem 2021; 64:2576-2607. [PMID: 33596073 DOI: 10.1021/acs.jmedchem.0c01846] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Heterobifunctional compounds that direct the ubiquitination of intracellular proteins in a targeted manner via co-opted ubiquitin ligases have enormous potential to transform the field of medicinal chemistry. These chimeric molecules, often termed proteolysis-targeting chimeras (PROTACs) in the chemical literature, enable the controlled degradation of specific proteins via their direction to the cellular proteasome. In this report, we describe the second phase of our research focused on exploring antibody-drug conjugates (ADCs), which incorporate BRD4-targeting chimeric degrader entities. We employ a new BRD4-binding fragment in the construction of the chimeric ADC payloads that is significantly more potent than the corresponding entity utilized in our initial studies. The resulting BRD4-degrader antibody conjugates exhibit potent and antigen-dependent BRD4 degradation and antiproliferation activities in cell-based experiments. Multiple ADCs bearing chimeric BRD4-degrader payloads also exhibit strong, antigen-dependent antitumor efficacy in mouse xenograft assessments that employ several different tumor models.
Collapse
Affiliation(s)
- Peter S Dragovich
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Thomas H Pillow
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Robert A Blake
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jack D Sadowsky
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Emel Adaligil
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Pragya Adhikari
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jinhua Chen
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Nicholas Corr
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | | | - Aaron Fullerton
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Steven J Hartman
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Fan Jiang
- Viva Biotech, Structural Biology, 334 Aidisheng Road, Zhangjiang High-Tech Park, Shanghai 201203, China
| | - Susan Kaufman
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Tracy Kleinheinz
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Katherine R Kozak
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Liling Liu
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Ying Lu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Melinda M Mulvihill
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jeremy M Murray
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Aimee O'Donohue
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Rebecca K Rowntree
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - William S Sawyer
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Leanna R Staben
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - John Wai
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Jian Wang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - BinQing Wei
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Wentao Wei
- Viva Biotech, Structural Biology, 334 Aidisheng Road, Zhangjiang High-Tech Park, Shanghai 201203, China
| | - Zijin Xu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Hui Yao
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Shang-Fan Yu
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Donglu Zhang
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Hongyan Zhang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Shenhua Zhang
- Viva Biotech, Structural Biology, 334 Aidisheng Road, Zhangjiang High-Tech Park, Shanghai 201203, China
| | - Yongxin Zhao
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Hao Zhou
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xiaoyu Zhu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| |
Collapse
|
90
|
Zeng S, Zhang H, Shen Z, Huang W. Photopharmacology of Proteolysis-Targeting Chimeras: A New Frontier for Drug Discovery. Front Chem 2021; 9:639176. [PMID: 33777902 PMCID: PMC7987681 DOI: 10.3389/fchem.2021.639176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Photopharmacology is an emerging field that uses light to precisely control drug activity. This strategy promises to improve drug specificity for reducing off-target effects. Proteolysis-targeting chimeras (PROTACs) are an advanced technology engineered to degrade pathogenic proteins through the ubiquitin-proteasome system for disease treatment. This approach has the potential to target the undruggable proteome via event-driven pharmacology. Recently, the combination strategy of photopharmacology and PROTACs has gained tremendous momentum for its use in the discovery and development of new therapies. This review systematically focuses on PROTAC-based photopharmacology. Herein, we provide an overview of the new and vibrant research on photoPROTACs, discuss the advantages and disadvantages of this approach as a biological tool, and outline the challenges it faces in a clinical setting.
Collapse
Affiliation(s)
- Shenxin Zeng
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, China
| | - Hongjie Zhang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, China
| | - Zhengrong Shen
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, China
| | - Wenhai Huang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
91
|
Avoid the trap: Targeting PARP1 beyond human malignancy. Cell Chem Biol 2021; 28:456-462. [PMID: 33657415 DOI: 10.1016/j.chembiol.2021.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/22/2020] [Accepted: 02/03/2021] [Indexed: 01/24/2023]
Abstract
PARP1 is a poly(ADP-ribose) polymerase (PARP) enzyme that plays a critical role in regulating DNA damage response. The main enzymatic function of PARP1 is to catalyze a protein post-translational modification known as poly(ADP-ribosyl)ation (PARylation). Human cancers with homologous recombination deficiency are highly sensitive to PARP1 inhibitors. PARP1 is aberrantly activated in many non-oncological diseases, leading to the excessive NAD+ depletion and PAR formation, thus causing cell death and tissue damage. PARP1 deletion offers a profound protective effect in the relevant animal models. However, many of the current PARP1 inhibitors also induce PARP1 trapping, which drives subsequent DNA damage, innate immune response and cytotoxicity. This minireview provides an overview of the basic biology of PARP1 trapping, and its implications in disease. Furthermore, we also discuss the recent development of PARP1 PROTAC compounds, and their utility as "non-trapping" PARP1 degraders for the potential amelioration of non-oncological diseases driven by aberrant PARP1 activation.
Collapse
|
92
|
Ghidini A, Cléry A, Halloy F, Allain FHT, Hall J. RNA‐PROTACs: Degraders of RNA‐Binding Proteins. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Alice Ghidini
- Department of Chemistry and Applied Biosciences ETH Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Antoine Cléry
- Department of Biology ETH Zurich Hönggerbergring 64 8093 Zurich Switzerland
| | - François Halloy
- Department of Chemistry and Applied Biosciences ETH Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | | | - Jonathan Hall
- Department of Chemistry and Applied Biosciences ETH Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| |
Collapse
|
93
|
Ghidini A, Cléry A, Halloy F, Allain FHT, Hall J. RNA-PROTACs: Degraders of RNA-Binding Proteins. Angew Chem Int Ed Engl 2021; 60:3163-3169. [PMID: 33108679 PMCID: PMC7898822 DOI: 10.1002/anie.202012330] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/08/2020] [Indexed: 12/19/2022]
Abstract
Defects in the functions of RNA binding proteins (RBPs) are at the origin of many diseases; however, targeting RBPs with conventional drugs has proven difficult. PROTACs are a new class of drugs that mediate selective degradation of a target protein through a cell's ubiquitination machinery. PROTACs comprise a moiety that binds the selected protein, conjugated to a ligand of an E3 ligase. Herein, we introduce RNA-PROTACs as a new concept in the targeting of RBPs. These chimeric structures employ small RNA mimics as targeting groups that dock the RNA-binding site of the RBP, whereupon a conjugated E3-recruiting peptide derived from the HIF-1α protein directs the RBP for proteasomal degradation. We performed a proof-of-concept demonstration with the degradation of two RBPs-a stem cell factor LIN28 and a splicing factor RBFOX1-and showed their use in cancer cell lines. The RNA-PROTAC approach opens the way to rapid, selective targeting of RBPs in a rational and general fashion.
Collapse
Affiliation(s)
- Alice Ghidini
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 48093ZurichSwitzerland
| | - Antoine Cléry
- Department of BiologyETH ZurichHönggerbergring 648093ZurichSwitzerland
| | - François Halloy
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 48093ZurichSwitzerland
| | | | - Jonathan Hall
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 48093ZurichSwitzerland
| |
Collapse
|
94
|
Atilaw Y, Poongavanam V, Svensson Nilsson C, Nguyen D, Giese A, Meibom D, Erdelyi M, Kihlberg J. Solution Conformations Shed Light on PROTAC Cell Permeability. ACS Med Chem Lett 2021; 12:107-114. [PMID: 33488971 PMCID: PMC7812666 DOI: 10.1021/acsmedchemlett.0c00556] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022] Open
Abstract
![]()
Proteolysis
targeting chimeras (PROTACs) induce intracellular degradation
of target proteins. Their bifunctional structure puts degraders in
a chemical space where ADME properties often complicate drug discovery.
Herein we provide the first structural insight into PROTAC cell permeability
obtained by NMR studies of a VHL-based PROTAC (1), which
is cell permeable despite having a high molecular weight and polarity
and a large number of rotatable bonds. We found that 1 populates elongated and polar conformations in solutions that mimic
extra- and intracellular compartments. Conformations were folded and
had a smaller polar surface area in chloroform, mimicking a cell membrane
interior. Formation of intramolecular and nonclassical hydrogen bonds,
π–π interactions, and shielding of amide groups
from solvent all facilitate cell permeability by minimization of size
and polarity. We conclude that molecular chameleonicity appears to
be of major importance for 1 to enter into target cells.
Collapse
Affiliation(s)
- Yoseph Atilaw
- Department of Chemistry - BMC, Uppsala University, SE-75123 Uppsala, Sweden
| | | | | | - Duy Nguyen
- Nuvisan Innovation Campus Berlin GmbH, Muellerstrasse 178, 13353 Berlin, Germany
| | - Anja Giese
- Drug Discovery Sciences, Bayer AG, 13342 Berlin, Germany
| | - Daniel Meibom
- Drug Discovery Sciences, Bayer AG, 42113 Wuppertal, Germany
| | - Mate Erdelyi
- Department of Chemistry - BMC, Uppsala University, SE-75123 Uppsala, Sweden
| | - Jan Kihlberg
- Department of Chemistry - BMC, Uppsala University, SE-75123 Uppsala, Sweden
| |
Collapse
|
95
|
Nowak RP, Jones LH. Target Validation Using PROTACs: Applying the Four Pillars Framework. SLAS DISCOVERY 2020; 26:474-483. [PMID: 33334221 DOI: 10.1177/2472555220979584] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Proteolysis targeting chimeras (PROTACs) are heterobifunctional compounds that recruit the E3 ubiquitin ligase machinery to proteins of interest, resulting in their ubiquitination and subsequent proteasomal degradation. Targeted protein degradation has generated considerable interest in drug discovery because inhibition of one particular function of a protein often does not deliver the therapeutic efficacy that results from whole-protein depletion. However, the physicochemistry and intrinsically complex pharmacology of PROTACs present challenges, particularly for the development of orally bioavailable drugs. Here we describe the application of a translational pharmacology framework (called the four pillars) to expedite PROTAC development by informing pharmacokinetic-pharmacodynamic (PKPD) understanding and helping elucidate structure-activity relationships. Experimental methods are reviewed that help illuminate exposure of the drug or probe at the site of action (pillar 1) and engagement of its target(s) (pillar 2) that drive functional pharmacological effects (pillar 3) resulting in modulation of a relevant phenotype (pillar 4). We hope the guidance will be useful to those developing targeted protein degraders and help establish PROTAC molecules as robust target validation chemical probes.
Collapse
Affiliation(s)
- Radosław P Nowak
- Center for Protein Degradation, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Lyn H Jones
- Center for Protein Degradation, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
96
|
Proteolysis targeting chimera (PROTAC) in drug discovery paradigm: Recent progress and future challenges. Eur J Med Chem 2020; 210:112981. [PMID: 33160761 DOI: 10.1016/j.ejmech.2020.112981] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/23/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
Proteolysis targeting chimera (PROTAC), hijacking protein of interest (POI) and recruiting E3 ligase for target degradation via the ubiquitin-proteasome pathway, is a novel drug discovery paradigm which has been widely used as biological tools and medicinal molecules with the potential of clinical application value. Currently, ARV-110, an orally small molecule PROTAC was designed to specifically target Androgen receptor (AR), firstly enters clinical phase I trials for the treatment of metastatic castration-resistant prostate cancer, which turns a new avenue for the development of PROTAC. We herein provide a detail summary on the latest one year progress of PROTAC target various proteins and elucidate the advantages of PROTAC technology. Finally, the potential challenges of this vibrant field are also discussed.
Collapse
|
97
|
Troup RI, Fallan C, Baud MGJ. Current strategies for the design of PROTAC linkers: a critical review. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:273-312. [PMID: 36046485 PMCID: PMC9400730 DOI: 10.37349/etat.2020.00018] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/23/2020] [Indexed: 12/11/2022] Open
Abstract
PROteolysis TArgeting Chimeras (PROTACs) are heterobifunctional molecules consisting of two ligands; an “anchor” to bind to an E3 ubiquitin ligase and a “warhead” to bind to a protein of interest, connected by a chemical linker. Targeted protein degradation by PROTACs has emerged as a new modality for the knock down of a range of proteins, with the first agents now reaching clinical evaluation. It has become increasingly clear that the length and composition of the linker play critical roles on the physicochemical properties and bioactivity of PROTACs. While linker design has historically received limited attention, the PROTAC field is evolving rapidly and currently undergoing an important shift from synthetically tractable alkyl and polyethylene glycol to more sophisticated functional linkers. This promises to unlock a wealth of novel PROTAC agents with enhanced bioactivity for therapeutic intervention. Here, the authors provide a timely overview of the diverse linker classes in the published literature, along with their underlying design principles and overall influence on the properties and bioactivity of the associated PROTACs. Finally, the authors provide a critical analysis of current strategies for PROTAC assembly. The authors highlight important limitations associated with the traditional “trial and error” approach around linker design and selection, and suggest potential future avenues to further inform rational linker design and accelerate the identification of optimised PROTACs. In particular, the authors believe that advances in computational and structural methods will play an essential role to gain a better understanding of the structure and dynamics of PROTAC ternary complexes, and will be essential to address the current gaps in knowledge associated with PROTAC design.
Collapse
Affiliation(s)
- Robert I. Troup
- School of Chemistry, University of Southampton, Highfield, SO17 1BJ Southampton, UK
| | - Charlene Fallan
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge Science Park, Milton Road, CB4 0WG Cambridge, UK
| | - Matthias G. J. Baud
- School of Chemistry, University of Southampton, Highfield, SO17 1BJ Southampton, UK
| |
Collapse
|
98
|
Pike A, Williamson B, Harlfinger S, Martin S, McGinnity DF. Optimising proteolysis-targeting chimeras (PROTACs) for oral drug delivery: a drug metabolism and pharmacokinetics perspective. Drug Discov Today 2020; 25:1793-1800. [DOI: 10.1016/j.drudis.2020.07.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 12/28/2022]
|
99
|
Klein VG, Townsend CE, Testa A, Zengerle M, Maniaci C, Hughes SJ, Chan KH, Ciulli A, Lokey RS. Understanding and Improving the Membrane Permeability of VH032-Based PROTACs. ACS Med Chem Lett 2020; 11:1732-1738. [PMID: 32939229 PMCID: PMC7488288 DOI: 10.1021/acsmedchemlett.0c00265] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/30/2020] [Indexed: 01/03/2023] Open
Abstract
![]()
Proteolysis targeting
chimeras (PROTACs) are catalytic heterobifunctional
molecules that can selectively degrade a protein of interest by recruiting
a ubiquitin E3 ligase to the target, leading to its ubiquitylation
and degradation by the proteasome. Most degraders lie outside the
chemical space associated with most membrane-permeable drugs. Although
many PROTACs have been described with potent activity in cells, our
understanding of the relationship between structure and permeability
in these compounds remains limited. Here, we describe a label-free
method for assessing the permeability of several VH032-based PROTACs
and their components by combining a parallel artificial membrane permeability
assay (PAMPA) and a lipophilic permeability efficiency (LPE) metric.
Our results show that the combination of these two cell-free membrane
permeability assays provides new insight into PROTAC structure–permeability
relationships and offers a conceptual framework for predicting the
physicochemical properties of PROTACs in order to better inform the
design of more permeable and more effective degraders.
Collapse
Affiliation(s)
- Victoria G. Klein
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Chad E. Townsend
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Andrea Testa
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K
| | - Michael Zengerle
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K
| | - Chiara Maniaci
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K
| | - Scott J. Hughes
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K
| | - Kwok-Ho Chan
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K
| | - R. Scott Lokey
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| |
Collapse
|
100
|
Minko T. Nanoformulation of BRD4-Degrading PROTAC: Improving Druggability To Target the 'Undruggable' MYC in Pancreatic Cancer. Trends Pharmacol Sci 2020; 41:684-686. [PMID: 32893006 DOI: 10.1016/j.tips.2020.08.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
In a recent study, Saraswat and colleagues identified a novel proteolysis targeting chimera (PROTAC), ARV-825 (ARV), that efficiently degrades bromodomain-containing protein 4 (BRD4) to drug the 'undruggable' MYC in pancreatic cancer. ARV-loaded polyethylene glycol-poly lactic acid-co-glycolic acid (PLGA-PEG) polymeric nanoparticles (ARV-NPs) showed promising anticancer activity in both 2D cell culture and 3D multicellular tumor spheroid models of pancreatic cancer. This study demonstrates a unique therapeutic strategy in which targeting BRD4 for degradation via the E3 ubiquitin ligase cereblon (CRBN) pathway leads to sustained inhibition of oncogenic MYC expression for effective treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|