51
|
Xu W, Suo A, Aldai AJM, Wang Y, Fan J, Xia Y, Xu J, Chen Z, Zhao H, Zhang M, Qian J. Hollow Calcium/Copper Bimetallic Amplifier for Cuproptosis/Paraptosis/Apoptosis Cancer Therapy via Cascade Reinforcement of Endoplasmic Reticulum Stress and Mitochondrial Dysfunction. ACS NANO 2024; 18:30053-30068. [PMID: 39412236 DOI: 10.1021/acsnano.4c11455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The endoplasmic reticulum (ER) and mitochondria are essential organelles that play crucial roles in maintaining cellular homeostasis. The simultaneous induction of ER stress and mitochondrial dysfunction represents a promising yet challenging strategy for cancer treatment. Herein, a hollow calcium-copper bimetallic nanoplatform is developed as a cascade amplifier to reinforce ER stress and mitochondrial dysfunction for breast cancer treatment. For this purpose, we report a facile method for preparing hollow CaCO3 (HCC) nanoparticles by regulating the dissolution-recrystallization process of amorphous CaCO3, and the amplifier D@HCC-CuTH is meticulously fabricated by sequentially coating disulfiram-loaded HCC nanoparticles with a copper coordination polymer and hyaluronan. In tumor cells, the dithiocarbamate-copper complex generated in situ by liberated disulfiram and Cu2+ inhibits the ubiquitin-proteasome system, causing irreversible ER stress and intracellular Ca2+ redistribution. Meanwhile, the amplifier induces mitochondrial dysfunction via triggering a self-amplifying loop of mitochondrial Ca2+ burst, and reactive oxygen species augment. Additionally, Cu2+ induces dihydrolipoamide S-acetyltransferase oligomerization in mitochondria, further exacerbating mitochondrial damage via cuproptosis. Collectively, ER stress amplification and mitochondrial dysfunction synergistically induce a cuproptosis-paraptosis-apoptosis trimodal cell death pathway, which demonstrates significant efficacy in suppressing tumor growth. This study presents a paradigm for synchronously inducing subcellular organelle disorders to boost cancer multimodal therapy.
Collapse
Affiliation(s)
- Weijun Xu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Aili Suo
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | | | - Yaping Wang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jingjing Fan
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuxiang Xia
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiaxuan Xu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhexi Chen
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Huichen Zhao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Junmin Qian
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
52
|
Zhou LJ, Li YY, Zhang LY, Zhang J. [The advancement of cuproptosis in hematological tumors]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:965-969. [PMID: 39622763 PMCID: PMC11579755 DOI: 10.3760/cma.j.cn121090-20240327-00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Indexed: 12/06/2024]
Abstract
Cuproptosis is a type of independent cell death form, that differs from apoptosis, necroptosis and ferroptosis. It is mediated by Copper (Cu), and mainly affects the lipoylation of proteases in the mitochondrial tricarboxylic acid (TCA) cycle and exhibits cytotoxicity through oligomerization; however, its specific mechanism, signal transduction process and regulation mode are still not clear. Mitochondria affect the sensitivity of cells to copper toxicity and play a central role in the occurrence and development of copper-related death. In recent years, though hematological tumors have achieved better remission through targeted therapy and immunotherapy, they are associated with high recurrence rates and poor prognoses. It is therefore imperative to find better prognostic indicators and new treatment ideas. This paper summarizes the interaction between Cu and mitochondria in the development of tumors and provides ideas for further exploration of the mechanism of copper death and coping with hematological tumors.
Collapse
Affiliation(s)
- L J Zhou
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Y Y Li
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - L Y Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - J Zhang
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
53
|
Jin Y, Wu Q, Pan S, Zhou Q, Liu H, Zhang Q, Zhang J, Zhu X. Baicalein enhances cisplatin sensitivity in cervical cancer cells by promoting cuproptosis through the Akt pathway. Biomed Pharmacother 2024; 179:117415. [PMID: 39265236 DOI: 10.1016/j.biopha.2024.117415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024] Open
Abstract
Resistance to cisplatin presents a major obstacle in managing advanced-stage cervical cancer. Cuproptosis, a newly identified form of cell death induced by copper ions, has potential in overcoming chemoresistance. But the application of cuproptosis in cervical cancer resistant to cisplatin has not yet been reported. In this study, treatment with Elsm-Cu in cervical cancer cells induced cuproptosis, affecting cell proliferation and apoptosis was found. Moreover, cuproptosis in cervical cancer cells was significantly induced by baicalein. The combination of baicalein and cisplatin exhibited a synergistic effect on cervical cancer cells by promoting apoptosis and inhibiting cell viability via the induction of cuproptosis. Animal experiments demonstrated that this combination significantly suppressed tumor growth. Upon treating cells with SC79 (Akt agonist), a significant inhibition of the expression of cuproptosis-related proteins SDHB and FDX1 were observed, indicating that baicalein induced cuproptosis through the Akt pathway. These results indicated that baicalein, mediated through the Akt pathway to induce cuproptosis, had the potential to improve the sensitivity of cervical cancer cells to cisplatin.
Collapse
Affiliation(s)
- Yanshan Jin
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Qianqian Wu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Shuangjia Pan
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Qingfeng Zhou
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Hejing Liu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Qianqian Zhang
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jianan Zhang
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Xueqiong Zhu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
54
|
Ren X, Luo X, Wang F, Wan L, Wang X, Xiong J, Ye M, Rui S, Liu Z, Wang S, Zhao Q. Recent advances in copper homeostasis-involved tumor theranostics. Asian J Pharm Sci 2024; 19:100948. [PMID: 39474127 PMCID: PMC11513462 DOI: 10.1016/j.ajps.2024.100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/19/2024] [Accepted: 06/06/2024] [Indexed: 01/05/2025] Open
Abstract
As the third essential trace element in the human body, copper plays a crucial role in various physiological processes, which lays the foundation for its broad applications in cancer treatments. The overview of copper, including pharmacokinetics, signaling pathways, and homeostasis dysregulation, is hereby discussed. Additionally, cuproptosis, as a newly proposed cell death mechanism associated with copper accumulation, is analyzed and further developed for efficient cancer treatment. Different forms of Cu-based nanoparticles and their advantages, as well as limiting factors, are introduced. Moreover, the unique characteristics of Cu-based nanoparticles give rise to their applications in various imaging modalities. In addition, Cu-based nanomaterials are featured by their excellent photothermal property and ROS-associated tumor-killing potential, which are widely explored in diverse cancer therapies and combined therapies. Reducing the concentration of Cu2+/Cu+ is another cancer-killing method, and chelators can meet this need. More importantly, challenges and future prospects are identified for further research.
Collapse
Affiliation(s)
- Xinghua Ren
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinyi Luo
- Wuya College of innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fuchang Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Long Wan
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, China
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xiaofan Wang
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110001, China
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Jinya Xiong
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengwei Ye
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shiqiao Rui
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhu Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
55
|
Han C, Feng Z, Wang Y, Hu M, Xu S, Jiang F, Han Y, Liu Z, Li Y. Copper metabolism-related signature for prognosis prediction and MMP13 served as malignant factor for breast cancer. Heliyon 2024; 10:e36445. [PMID: 39315182 PMCID: PMC11417231 DOI: 10.1016/j.heliyon.2024.e36445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Objectives To comprehensively analyze the copper metabolism in Breast cancer, we established a prognostic signature for breast cancer (BC) related to copper metabolism. Methods Copper metabolism-related genes were sourced from previous literatures and were selected by the Univariate Cox regression. Cu-enrichment scores were calculated via ssGSEA. Differentially expressed genes were identified with limma between high and low Cu-enrichment scores group, then we used the Random Survival Forest and LASSO to build the CuScore for BC. Kaplan-Meier analysis, ROC curves, and Cox regression were used to evaluate CuScore. Genomic mutations were analyzed with GISTIC. Immune cells were examined using ESTIMATE, ssGSEA and TIMER. Enrichment analysis used clusterProfiler and GSVA. The GDSC database and oncoPredict package analyzed chemotherapeutic sensitivity. MMP13 was selected for in vitro assays. Results Four copper metabolism-related genes (UBE2D2, SLC31A1, ATP7A, and MAPK1) with prognostic value were identified. Higher expression levels of these genes were associated with higher Cu-enrichment scores, a factor of malignancy in breast cancer. Among 115 differentially expressed genes, 19 prognostic genes were identified, with three (CEACAM5, MMP13, and CRISP3) highlighted by Random Survival Forest and LASSO. Higher CuScores correlated with worse prognoses and were effective in predicting breast cancer outcomes. CuScore and metastasis were independent prognostic factors. Tumor-infiltrating immune cells were associated with lower CuScores. GO-GSEA analysis indicated six immune-related pathways might be regulated by CuScore. Patients with higher CuScores had lower TMB and were more sensitive to Sapitinib and LCL161, while those with lower CuScores might respond better to anti-PD1 therapy. High MMP13 expression in breast cancer was linked to malignancy, affecting cell proliferation and migration. Conclusion The identified copper metabolism-related gene signature has the potential to predict prognosis and guide clinical treatment for BC. Among these genes, MMP13 may act as a malignant factor in BC.
Collapse
Affiliation(s)
- Chaojie Han
- Institutes of Biology and Medical Sciences, Soochow University, 333 East Ganjiang Road, Suzhou, Jiangsu, 215127, China
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China
- Zhejiang Zhenyuan Biotech Co., LTD, 61 Yuedongbei Road, Shaoxing, Zhejiang, 312000, China
| | - Zhangyang Feng
- Institutes of Biology and Medical Sciences, Soochow University, 333 East Ganjiang Road, Suzhou, Jiangsu, 215127, China
| | - Yingjian Wang
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China
| | - Mengsi Hu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China
| | - Shoufang Xu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China
| | - Feiyu Jiang
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China
| | - Yetao Han
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China
| | - Zhiwei Liu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China
| | - Yunsen Li
- Institutes of Biology and Medical Sciences, Soochow University, 333 East Ganjiang Road, Suzhou, Jiangsu, 215127, China
| |
Collapse
|
56
|
Bhat AA, Afzal M, Moglad E, Thapa R, Ali H, Almalki WH, Kazmi I, Alzarea SI, Gupta G, Subramaniyan V. lncRNAs as prognostic markers and therapeutic targets in cuproptosis-mediated cancer. Clin Exp Med 2024; 24:226. [PMID: 39325172 PMCID: PMC11427524 DOI: 10.1007/s10238-024-01491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as crucial regulators in various cellular processes, including cancer progression and stress response. Recent studies have demonstrated that copper accumulation induces a unique form of cell death known as cuproptosis, with lncRNAs playing a key role in regulating cuproptosis-associated pathways. These lncRNAs may trigger cell-specific responses to copper stress, presenting new opportunities as prognostic markers and therapeutic targets. This paper delves into the role of lncRNAs in cuproptosis-mediated cancer, underscoring their potential as biomarkers and targets for innovative therapeutic strategies. A thorough review of scientific literature was conducted, utilizing databases such as PubMed, Google Scholar, and ScienceDirect, with search terms like 'lncRNAs,' 'cuproptosis,' and 'cancer.' Studies were selected based on their relevance to lncRNA regulation of cuproptosis pathways and their implications for cancer prognosis and treatment. The review highlights the significant contribution of lncRNAs in regulating cuproptosis-related genes and pathways, impacting copper metabolism, mitochondrial stress responses, and apoptotic signaling. Specific lncRNAs are potential prognostic markers in breast, lung, liver, ovarian, pancreatic, and gastric cancers. The objective of this article is to explore the role of lncRNAs as potential prognostic markers and therapeutic targets in cancers mediated by cuproptosis.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al Kharj, Saudi Arabia
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
57
|
Sabolović J. Bis(amino acidato)copper(II) compounds in blood plasma: a review of computed structural properties and amino acid affinities for Cu 2+ informing further pharmacological research. Arh Hig Rada Toksikol 2024; 75:159-171. [PMID: 39369326 PMCID: PMC11456223 DOI: 10.2478/aiht-2024-75-3871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/01/2024] [Accepted: 06/01/2024] [Indexed: 10/07/2024] Open
Abstract
Neutral bis(amino acidato)copper(II) [Cu(aa)2] coordination compounds are the physiological species of copper(II) amino acid compounds in blood plasma taking the form of bis(l-histidinato)copper(II) and mixed ternary copper(II)-l-histidine complexes, preferably with l-glutamine, l-threonine, l-asparagine, and l-cysteine. These amino acids have three functional groups that can bind metal ions: the common α-amino and carboxylate groups and a side-chain polar group. In Cu(aa)2, two coordinating groups per amino acid bind to copper(II) in-plane, while the third group can bind apically, which yields many possibilities for axial and planar bonds, that is, for bidentate and tridentate binding. So far, the experimental studies of physiological Cu(aa)2 compounds in solutions have not specified their complete geometries. This paper provides a brief review of my group's research on structural properties of physiological Cu(aa)2 calculated using the density functional theory (DFT) to locate low-energy conformers that can coexist in aqueous solutions. These DFT investigations have revealed high conformational flexibility of ternary Cu(aa)2 compounds for tridentate or bidentate chelation, which may explain copper(II) exchange reactions in the plasma and inform the development of small multifunctional copper(II)-binding drugs with several possible copper(II)-binding groups. Furthermore, our prediction of metal ion affinities for Cu2+ binding with amino-acid ligands in low-energy conformers with different coordination modes of five physiological Cu(aa)2 in aqueous solution supports the findings of their abundance in human plasma obtained with chemical speciation modelling.
Collapse
Affiliation(s)
- Jasmina Sabolović
- Institute for Medical Research and Occupational Health, Division of Occupational and Environmental Health, Zagreb, Croatia
| |
Collapse
|
58
|
Huang Y, Chen C, Tan H, Dong S, Ren Y, Chao M, Yan H, Yan X, Jiang G, Gao F. A Stimulus-Responsive Ternary Heterojunction Boosting Oxidative Stress, Cuproptosis for Melanoma Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401147. [PMID: 38770990 DOI: 10.1002/smll.202401147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/23/2024] [Indexed: 05/22/2024]
Abstract
Cuproptosis, a recently discovered copper-dependent cell death, presents significant potential for the development of copper-based nanoparticles to induce cuproptosis in cancer therapy. Herein, a unique ternary heterojunction, denoted as HACT, composed of core-shell Au@Cu2O nanocubes with surface-deposited Titanium Dioxide quantum dots and modified with hyaluronic acid is introduced. Compared to core-shell AC NCs, the TiO2/Au@Cu2O exhibits improved energy structure optimization, successfully separating electron-hole pairs for redox use. This optimization results in a more rapid generation of singlet oxygen and hydroxyl radicals triggering oxidative stress under ultrasound radiation. Furthermore, the HACT NCs initiate cuproptosis by Fenton-like reaction and acidic environment, leading to the sequential release of cupric and cuprous ions. This accumulation of copper induces the aggregation of lipoylated proteins and reduces iron-sulfur proteins, ultimately initiating cuproptosis. More importantly, HACT NCs show a tendency to selectively target cancer cells, thereby granting them a degree of biosecurity. This report introduces a ternary heterojunction capable of triggering both cuproptosis and oxidative stress-related combination therapy in a stimulus-responsive manner. It can energize efforts to develop effective melanoma treatment strategies using Cu-based nanoparticles through rational design.
Collapse
Affiliation(s)
- Yuqi Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P. R. China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 223002, P. R. China
| | - Cheng Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P. R. China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 223002, P. R. China
| | - Huarong Tan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P. R. China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 223002, P. R. China
| | - Shuqing Dong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P. R. China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 223002, P. R. China
| | - Yiping Ren
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P. R. China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 223002, P. R. China
| | - Minghao Chao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P. R. China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 223002, P. R. China
| | - Hanrong Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P. R. China
| | - Xiang Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P. R. China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 223002, P. R. China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 223002, P. R. China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P. R. China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 223002, P. R. China
| |
Collapse
|
59
|
Li Y, Liu J, Weichselbaum RR, Lin W. Mitochondria-Targeted Multifunctional Nanoparticles Combine Cuproptosis and Programmed Cell Death-1 Downregulation for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403520. [PMID: 39013093 PMCID: PMC11425249 DOI: 10.1002/advs.202403520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/02/2024] [Indexed: 07/18/2024]
Abstract
The combination of cuproptosis and immune checkpoint inhibition has shown promise in treating malignant tumors. However, it remains a challenge to deliver copper ions and immune checkpoint inhibitors efficiently and simultaneously to tumors. Herein, a mitochondria-targeted nanoscale coordination polymer particle, Cu/TI, comprising Cu(II), and a triphenylphosphonium conjugate of 5-carboxy-8-hydroxyquinoline (TI), for effective cuproptosis induction and programmed cell death-1 (PD-L1) downregulation is reported. Upon systemic administration, Cu/TI efficiently accumulates in tumor tissues to induce immunogenic cancer cell death and reduce PD-L1 expression. Consequently, Cu/TI promotes the intratumoral infiltration and activation of cytotoxic T lymphocytes to greatly inhibit tumor progression of colorectal carcinoma and triple-negative breast cancer in mouse models without causing obvious side effects.
Collapse
Affiliation(s)
- Youyou Li
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Jing Liu
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, 5758 South Maryland Avenue, Chicago, IL, 60637, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, 5758 South Maryland Avenue, Chicago, IL, 60637, USA
| | - Wenbin Lin
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, 5758 South Maryland Avenue, Chicago, IL, 60637, USA
| |
Collapse
|
60
|
Ma Y, Zhang H, Shen X, Yang X, Deng Y, Tian Y, Chen Z, Pan Y, Luo H, Zhong C, Yu S, Lu A, Zhang B, Tang T, Zhang G. Aptamer functionalized hypoxia-potentiating agent and hypoxia-inducible factor inhibitor combined with hypoxia-activated prodrug for enhanced tumor therapy. Cancer Lett 2024; 598:217102. [PMID: 38969157 DOI: 10.1016/j.canlet.2024.217102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer. Hypoxia-activated prodrugs (HAPs) have shown promise as potential therapeutic agents for TNBC. While increasing hypoxia levels may promote the HAP activation, it raises concerns regarding HIF1α-dependent drug resistance. It is desirable to develop a targeted approach that enhances tumor hypoxia for HAP activation without promoting HIF1α-dependent drug resistance in TNBC treatment. Herein, we proposed a multi-responsive carrier-free self-assembled nanomedicine named AQ4N@CA4T1ASO. This nanomedicine first targeted tumors by the TNBC-targeting aptamers (T1), and then disassembled in the reductive and acidic conditions within tumors. The released Combretastatin 4 (CA4) could exacerbate hypoxia, thereby promoting the conversion of inactive Banoxantrone (AQ4N) to its active form, AQ4. Simultaneously, the released antisense oligonucleotide (ASO) could attenuate hypoxia-induced HIF1α mRNA expression, thereby sensitizing the tumor to chemotherapy. Overall, this smart nanomedicine represents a profound targeted therapy strategy, combining "hypoxia-potentiating, hypoxia-activated, chemo-sensitization" approaches for TNBC treatment. In vivo study demonstrated significant suppression of tumor growth, highlighting the promising potential of this nanomedicine for future clinical translation.
Collapse
Affiliation(s)
- Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Huarui Zhang
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Xinyang Shen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xin Yang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Yan Deng
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yuan Tian
- Law Sau Fai Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Zefeng Chen
- Law Sau Fai Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Yufei Pan
- Law Sau Fai Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Hang Luo
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Chuanxin Zhong
- Law Sau Fai Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Sifan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Baoting Zhang
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Tao Tang
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China; Department of Gynecology, The Sixth Affiliated Hospital of Jinan University, Dongguan Eastern Central Hospital, Dongguan, Guangdong, 523560, China.
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China.
| |
Collapse
|
61
|
Zhou Z, Mai Y, Zhang G, Wang Y, Sun P, Jing Z, Li Z, Xu Y, Han B, Liu J. Emerging role of immunogenic cell death in cancer immunotherapy: Advancing next-generation CAR-T cell immunotherapy by combination. Cancer Lett 2024; 598:217079. [PMID: 38936505 DOI: 10.1016/j.canlet.2024.217079] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Immunogenic cell death (ICD) is a stress-driven form of regulated cell death (RCD) in which dying tumor cells' specific signaling pathways are activated to release damage-associated molecular patterns (DAMPs), leading to the robust anti-tumor immune response as well as a reversal of the tumor immune microenvironment from "cold" to "hot". Chimeric antigen receptor (CAR)-T cell therapy, as a landmark in anti-tumor immunotherapy, plays a formidable role in hematologic malignancies but falls short in solid tumors. The Gordian knot of CAR-T cells for solid tumors includes but is not limited to, tumor antigen heterogeneity or absence, physical and immune barriers of tumors. The combination of ICD induction therapy and CAR-T cell immunotherapy is expected to promote the intensive use of CAR-T cell in solid tumors. In this review, we summarize the characteristics of ICD, stress-responsive mechanism, and the synergistic effect of various ICD-based therapies with CAR-T cells to effectively improve anti-tumor capacity.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yumiao Mai
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Henan Province Key Laboratory of Cardiac Injury and Repair, Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, 450052, China
| | - Yingjie Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Pan Sun
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhaohe Jing
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yudi Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jian Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
62
|
Li X, Tang C, Ye H, Fang C. Injectable Hydrogel-Encapsulating Pickering Emulsion for Overcoming Lenvatinib-Resistant Hepatocellular Carcinoma via Cuproptosis Induction and Stemness Inhibition. Polymers (Basel) 2024; 16:2418. [PMID: 39274051 PMCID: PMC11397159 DOI: 10.3390/polym16172418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Lenvatinib resistance (LenR) presents a significant challenge in hepatocellular carcinoma (HCC) treatment, leading to high cancer-related mortality rates globally. Unlike traditional chemotherapy resistance mechanisms, LenR in HCC is primarily driven by increased cancer cell stemness. Disulfiram, (DSF), functioning as a Cu ionophore, can coordinate with Cu2+ to overcome LenR in HCC by inhibiting cancer cell stemness and cuproptosis. However, DSF faces challenges due to its poor water solubility, while copper ions present issues related to systemic toxicity during widespread use. To address this, DSF and CuO nanoparticles (NPs) were co-encapsulated to form an oil-in-water Pickering emulsion (DSF@CuO), effectively elevating DSF and copper ion concentrations within the tumor microenvironment (TME). DSF@CuO was then combined with sodium alginate (SA) to form a DSF@CuO-SA solution, which gelatinizes in situ with Ca2+ in the TME to form a DSF@CuO Gel, enhancing Pickering emulsion stability and sustaining DSF and copper ion release. A DSF@CuO Gel exhibits enhanced stability and therapeutic efficacy compared to conventional administration methods. It effectively induces mitochondrial dysfunction and cuproptosis in LenR HCC cells by downregulating DLAT, LIAS, and CDKN2A, while upregulating FDX1. Furthermore, it suppresses cancer stemness pathways through activation of the JNK/p38 MAPK pathway and inhibition of the NF-κB and NOTCH signaling pathways. These findings suggest that DSF@CuO Gels are a promising therapeutic strategy for treating LenR HCC. In vivo and in vitro LenR HCC models demonstrated significant therapeutic efficacy. In conclusion, this novel approach underscores DSF@CuO Gel's potential to overcome LenR in HCC, offering a novel approach to address this clinical challenge.
Collapse
Affiliation(s)
- Xin Li
- Department of Hepatobiliary Surgery I, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Chuanyu Tang
- Department of Hepatobiliary Surgery I, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Hanjie Ye
- Department of Hepatobiliary Surgery I, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Chihua Fang
- Department of Hepatobiliary Surgery I, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Institute of Digital Intelligent Minimally Invasive Surger, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou 510280, China
- South China Institute of National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Guangzhou 510280, China
| |
Collapse
|
63
|
Zhang C, Huang T, Li L. Targeting cuproptosis for cancer therapy: mechanistic insights and clinical perspectives. J Hematol Oncol 2024; 17:68. [PMID: 39152464 PMCID: PMC11328505 DOI: 10.1186/s13045-024-01589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
Cuproptosis is a newly identified form of cell death induced by excessive copper (Cu) accumulation within cells. Mechanistically, cuproptosis results from Cu-induced aggregation of dihydrolipoamide S-acetyltransferase, correlated with the mitochondrial tricarboxylic acid cycle and the loss of iron-sulfur cluster proteins, ultimately resulting in proteotoxic stress and triggering cell death. Recently, cuproptosis has garnered significant interest in tumor research due to its potential as a crucial therapeutic strategy against cancer. In this review, we summarized the cellular and molecular mechanisms of cuproptosis and its relationship with other types of cell death. Additionally, we reviewed the current drugs or strategies available to induce cuproptosis in tumor cells, including Cu ionophores, small compounds, and nanomedicine. Furthermore, we targeted cell metabolism and specific regulatory genes in cancer therapy to enhance tumor sensitivity to cuproptosis. Finally, we discussed the feasibility of targeting cuproptosis to overcome tumor chemotherapy and immunotherapy resistance and suggested future research directions. This study suggested that targeting cuproptosis could open new avenues for developing tumor therapy.
Collapse
Affiliation(s)
- Chenliang Zhang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Tingting Huang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Liping Li
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
64
|
Fan FM, Fleishman JS, Chen J, Chen ZS, Dong HH. New insights into the mechanism of resistance to lenvatinib and strategies for lenvatinib sensitization in hepatocellular carcinoma. Drug Discov Today 2024; 29:104069. [PMID: 38936692 DOI: 10.1016/j.drudis.2024.104069] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/04/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Lenvatinib is a multikinase inhibitor that suppresses vascular endothelial growth factor receptor (VEGFR), fibroblast growth factor receptor (FGFR), platelet-derived growth factor receptor α (PDGFRα), as well as the proto-oncogenes RET and KIT. Lenvatinib has been approved by the US Food and Drug Administration (FDA) for the first-line treatment of hepatocellular carcinoma (HCC) due to its superior efficacy when compared to sorafenib. Unfortunately, the development of drug resistance to lenvatinib is becoming increasingly common. Thus, there is an urgent need to identify the factors that lead to drug resistance and ways to mitigate it. We summarize the molecular mechanisms that lead to lenvatinib resistance (LR) in HCC, which involve programmed cell death (PCD), translocation processes, and changes in the tumor microenvironment (TME), and provide strategies to reverse resistance.
Collapse
Affiliation(s)
- Fei-Mu Fan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430000, China
| | - Joshua S Fleishman
- College of Pharmacy and Health Sciences, St John's University, Queens, NY 11439, USA
| | - Jin Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430000, China.
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St John's University, Queens, NY 11439, USA.
| | - Han-Hua Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430000, China.
| |
Collapse
|
65
|
Zhao Z, Miao Z, Hou Y, Zhong Y, Zhang X, Fang X. A novel signature constructed by cuproptosis-related RNA methylation regulators suggesting downregulation of YTHDC2 may induce cuproptosis resistance in colorectal cancer. Int Immunopharmacol 2024; 139:112691. [PMID: 39029230 DOI: 10.1016/j.intimp.2024.112691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/28/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND A newly identified type of cell death due to intracellular copper accumulation is known as cuproptosis and RNA methylation is a post-transcriptional modification mechanism, both of which perform vital roles in the immune microenvironment of colorectal cancer (CRC), but the link between the two needs more research. METHODS TCGA database provided RNA-seq data and details clinically of CRC samples. Cuproptosis-related RNA methylation regulators (CRRMRs) were identified by correlation analysis. We screened 6 CRRMRs for prognostic model construction by employing LASSO-Cox regression analysis and calculated risk scores by CRRMRs (CuMS). GSE39582 and GSE38832 cohort were used as external validation sets. This research concentrated on the connection between the prognostic model and somatic mutation, anti-cancer drug sensitivity, immune infiltration, immune checkpoint expression. In addition, we investigated the differential expression of YTHDC2 in epithelial cell subpopulations by single-cell analysis with GSE166555, calculated cuproptosis scores and performed pathway enrichment. In vitro experiments were performed to explore the consequences of knockdown of YTHDC2 on CRC cell proliferation and migration, as well as changes in CRC cell viability in response to elesclomol after knockdown of YTHDC2. In vivo experiments, we constructed the cell line-derived xenograft model to further validate the results of the in vitro experiments. RESULTS The prognosis of CRC can be predicted by CuMS, which GSE39582 and GSE38832 confirmed. Two CuMS groups showed different tumor mutation burden (TMB) and immune infiltration. CuMS was connected to emerging immune checkpoints CD47 and PVR, therefore, it can be clinically complementary to TMB and microsatellite instability (MSI) status. In single-cell analysis, a subpopulation of epithelial cells with high YTHDC2 expression had a high cuproptosis score. In vitro experiments, knocking down YTHDC2 promoted cell proliferation and migration in CRC, and weaken the inhibitory effect of elesclomol and elesclomol-Cu on cell viability, which in vivo experiments validated. CONCLUSION We developed a prognostic model constructed by 6 CRRMRs to assess overall survival and immune microenvironment of CRC patients. YTHDC2 might regulate cuproptosis in multiple ways.
Collapse
Affiliation(s)
- Zhongkai Zhao
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, No. 126 Sendai Street, Changchun, Jilin, China.
| | - Zeyu Miao
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, No. 126 Xinmin Street, Changchun, Jilin, China.
| | - Yuyang Hou
- Department of Immunology, College of Basic Medical Sciences, Jilin University, No. 126 Xinmin Street, Changchun, Jilin, China.
| | - Yifan Zhong
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, No. 126 Xinmin Street, Changchun, Jilin, China.
| | - Xiaorong Zhang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, No. 126 Xinmin Street, Changchun, Jilin, China.
| | - Xuedong Fang
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, No. 126 Sendai Street, Changchun, Jilin, China.
| |
Collapse
|
66
|
Yang Z, Feng R, Zhao H. Cuproptosis and Cu: a new paradigm in cellular death and their role in non-cancerous diseases. Apoptosis 2024:10.1007/s10495-024-01993-y. [PMID: 39014119 DOI: 10.1007/s10495-024-01993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/18/2024]
Abstract
Cuproptosis, a newly characterized form of regulated cell death driven by copper accumulation, has emerged as a significant mechanism underlying various non-cancerous diseases. This review delves into the complex interplay between copper metabolism and the pathogenesis of conditions such as Wilson's disease (WD), neurodegenerative disorders, and cardiovascular pathologies. We examine the molecular mechanisms by which copper dysregulation induces cuproptosis, highlighting the pivotal roles of key copper transporters and enzymes. Additionally, we evaluate the therapeutic potential of copper chelation strategies, which have shown promise in experimental models by mitigating copper-induced cellular damage and restoring physiological homeostasis. Through a comprehensive synthesis of recent advancements and current knowledge, this review underscores the necessity of further research to translate these findings into clinical applications. The ultimate goal is to harness the therapeutic potential of targeting cuproptosis, thereby improving disease management and patient outcomes in non-cancerous conditions associated with copper dysregulation.
Collapse
Affiliation(s)
- Zhibo Yang
- Department of Neurosurgery, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, 723000, Shaanxi, China
| | - Ridong Feng
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine (FAHZU), 79 Qingchun Rd., Shangcheng District, Hangzhou, 330100, Zhejiang, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266005, Shandong, China.
| |
Collapse
|
67
|
Zhao C, Tang X, Chen X, Jiang Z. Multifaceted Carbonized Metal-Organic Frameworks Synergize with Immune Checkpoint Inhibitors for Precision and Augmented Cuproptosis Cancer Therapy. ACS NANO 2024; 18:17852-17868. [PMID: 38939981 DOI: 10.1021/acsnano.4c04022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The discovery of cuproptosis, a copper-dependent mechanism of programmed cell death, has provided a way for cancer treatment. However, cuproptosis has inherent limitations, including potential cellular harm, the lack of targeting, and insufficient efficacy as a standalone treatment. Therefore, exogenously controlled combination treatments have emerged as key strategies for cuproptosis-based oncotherapy. In this study, a Cu2-xSe@cMOF nanoplatform was constructed for combined sonodynamic/cuproptosis/gas therapy. This platform enabled precise cancer cotreatment, with external control allowing the selective induction of cuproptosis in cancer cells. This approach effectively prevented cancer metastasis and recurrence. Furthermore, Cu2-xSe@cMOF was combined with the antiprogrammed cell death protein ligand-1 antibody (aPD-L1), and this combination maximized the advantages of cuproptosis and immune checkpoint therapy. Additionally, under ultrasound irradiation, the H2Se gas generated from Cu2-xSe@cMOF induced cytotoxicity in cancer cells. Further, it generated reactive oxygen species, which hindered cell survival and proliferation. This study reports an externally controlled system for cuproptosis induction that combines a carbonized metal-organic framework with aPD-L1 to enhance cancer treatment. This precision and reinforced cuproptosis cancer therapy platform could be valuable as an effective therapeutic agent to reduce cancer mortality and morbidity in the future.
Collapse
Affiliation(s)
- Chen Zhao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Xiaoying Tang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Zhenqi Jiang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
68
|
Li B, Li Z, Qian Y, Xiao N, Fan C, Huang Y, Zhou A, Ning X. The Convergence of Sonodynamic Therapy and Cuproptosis in the Dual-Responsive Biomimetic CytoNano for Precision Mitochondrial Intervention in Cancer Treatment. NANO LETTERS 2024; 24:8107-8116. [PMID: 38888223 DOI: 10.1021/acs.nanolett.4c01864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The integration of sonodynamic therapy (SDT) with cuproptosis for targeted cancer treatment epitomizes a significant advancement in oncology. Herein, we present a dual-responsive therapeutic system, "CytoNano", which combines a cationic liposome infused with copper-nitride nanoparticles and oxygen-rich perfluorocarbon (Lip@Cu3N/PFC-O2), all enveloped in a biomimetic coating of neutrophil membrane and acid-responsive carboxymethylcellulose. CytoNano leverages the cellular mimicry of neutrophils and acid-responsive materials, enabling precise targeting of tumors and their acidic microenvironment. This strategic design facilitates the targeted release of Lip@Cu3N/PFC-O2 within the tumor, enhancing cancer cell uptake and mitochondrial localization. Consequently, it amplifies the therapeutic efficacy of both Cu3N-driven SDT and cuproptosis while preserving healthy tissues. Additionally, CytoNano's ultrasound responsiveness enhances intratumoral oxygenation, overcoming physiological barriers and initiating a combined sonodynamic-cuproptotic effect that induces multiple cell death pathways. Thus, we pioneer a biomimetic approach in precise sonodynamic cuproptosis, revolutionizing cancer therapy.
Collapse
Affiliation(s)
- Binyi Li
- Department of Ultrasound, The People's Hospital of Danyang, Danyang Hospital of Nantong University, Danyang, Jiangsu 212300, P. R. China
| | - Zheng Li
- Department of Ultrasound, The People's Hospital of Danyang, Danyang Hospital of Nantong University, Danyang, Jiangsu 212300, P. R. China
| | - Ying Qian
- Department of Ultrasound, The People's Hospital of Danyang, Danyang Hospital of Nantong University, Danyang, Jiangsu 212300, P. R. China
| | - Nan Xiao
- Department of Ultrasound, The People's Hospital of Danyang, Danyang Hospital of Nantong University, Danyang, Jiangsu 212300, P. R. China
| | - Chunyun Fan
- Department of Ultrasound, The People's Hospital of Danyang, Danyang Hospital of Nantong University, Danyang, Jiangsu 212300, P. R. China
| | - Yong Huang
- Department of Endocrinology, The People's Hospital of Danyang, Danyang Hospital of Nantong University, Danyang, Jiangsu 212300, P. R. China
| | - Anwei Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, P. R. China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
69
|
Zhang X, Han X. Targeting cuproptosis for cancer therapy: Focus on the anti-tumor immune system. CANCER PATHOGENESIS AND THERAPY 2024. [DOI: 10.1016/j.cpt.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
70
|
Du Y, Zhao X, He F, Gong H, Yang J, Wu L, Cui X, Gai S, Yang P, Lin J. A Vacancy-Engineering Ferroelectric Nanomedicine for Cuproptosis/Apoptosis Co-Activated Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403253. [PMID: 38703184 DOI: 10.1002/adma.202403253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/14/2024] [Indexed: 05/06/2024]
Abstract
Low efficacy of immunotherapy due to the poor immunogenicity of most tumors and their insufficient infiltration by immune cells highlights the importance of inducing immunogenic cell death and activating immune system for achieving better treatment outcomes. Herein, ferroelectric Bi2CuO4 nanoparticles with rich copper vacancies (named BCO-VCu) are rationally designed and engineered for ferroelectricity-enhanced apoptosis, cuproptosis, and the subsequently evoked immunotherapy. In this structure, the suppressed recombination of the electron-hole pairs by the vacancies and the band bending by the ferroelectric polarization lead to high catalytic activity, triggering reactive oxygen species bursts and inducing apoptosis. The cell fragments produced by apoptosis serve as antigens to activate T cells. Moreover, due to the generated charge by the ferroelectric catalysis, this nanomedicine can act as "a smart switch" to open the cell membrane, promote nanomaterial endocytosis, and shut down the Cu+ outflow pathway to evoke cuproptosis, and thus a strong immune response is triggered by the reduced content of adenosine triphosphate. Ribonucleic acid transcription tests reveal the pathways related to immune response activation. Thus, this study firstly demonstrates a feasible strategy for enhancing the efficacy of immunotherapy using single ferroelectric semiconductor-induced apoptosis and cuproptosis.
Collapse
Affiliation(s)
- Yaqian Du
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Xudong Zhao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
- State Key Laboratory of Rare Earth Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Haijiang Gong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Jiani Yang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150001, P. R. China
| | - Linzhi Wu
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Xianchang Cui
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
71
|
Wang Y, Cheng S, Fleishman JS, Chen J, Tang H, Chen ZS, Chen W, Ding M. Targeting anoikis resistance as a strategy for cancer therapy. Drug Resist Updat 2024; 75:101099. [PMID: 38850692 DOI: 10.1016/j.drup.2024.101099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Anoikis, known as matrix detachment-induced apoptosis or detachment-induced cell death, is crucial for tissue development and homeostasis. Cancer cells develop means to evade anoikis, e.g. anoikis resistance, thereby allowing for cells to survive under anchorage-independent conditions. Uncovering the mechanisms of anoikis resistance will provide details about cancer metastasis, and potential strategies against cancer cell dissemination and metastasis. Here, we summarize the principal elements and core molecular mechanisms of anoikis and anoikis resistance. We discuss the latest progress of how anoikis and anoikis resistance are regulated in cancers. Furthermore, we summarize emerging data on selective compounds and nanomedicines, explaining how inhibiting anoikis resistance can serve as a meaningful treatment modality against cancers. Finally, we discuss the key limitations of this therapeutic paradigm and possible strategies to overcome them. In this review, we suggest that pharmacological modulation of anoikis and anoikis resistance by bioactive compounds could surmount anoikis resistance, highlighting a promising therapeutic regimen that could be used to overcome anoikis resistance in cancers.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China
| | - Sihang Cheng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Wenkuan Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Mingchao Ding
- Department of Peripheral Vascular Intervention, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China.
| |
Collapse
|
72
|
Wang Y, Fleishman JS, Wang J, Chen J, Zhao L, Ding M. Pharmacologically inducing anoikis offers novel therapeutic opportunities in hepatocellular carcinoma. Biomed Pharmacother 2024; 176:116878. [PMID: 38843588 DOI: 10.1016/j.biopha.2024.116878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Tumor metastasis occurs in hepatocellular carcinoma (HCC), leading to tumor progression and therapeutic failure. Anoikis is a matrix detachment-induced apoptosis, also known as detachment-induced cell death, and mechanistically prevents tumor cells from escaping their native extracellular matrix to metastasize to new organs. Deciphering the regulators and mechanisms of anoikis in cancer metastasis is urgently needed to treat HCC. Several natural and synthetic products induce anoikis in HCC cells and in vivo models. Here, we first briefly summarize the current understanding of the molecular mechanisms of anoikis regulation and relevant regulators involved in HCC metastasis. Then we discuss the therapeutic potential of pharmacological induction of anoikis as a potential treatment against HCC. Finally, we discuss the key limitations of this therapeutic paradigm and propose possible strategies to overcome them. Cumulatively this review suggests that the pharmacological induction of anoikis can be used a promising therapeutic modality against HCC.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Jinhua Wang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China.
| | - Lianmei Zhao
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
| | - Mingchao Ding
- Department of Peripheral Vascular Intervention, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China.
| |
Collapse
|
73
|
Duan J, Zhang X, Xu J, Liu J, Zhao H. Unveiling a cuproptosis-related risk model and the role of FARSB in hepatocellular carcinoma. Heliyon 2024; 10:e32289. [PMID: 38975141 PMCID: PMC11226817 DOI: 10.1016/j.heliyon.2024.e32289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Cuproptosis, a type of regulated cell death that was recently identified, has been linked to the development of a variety of diseases, among them being cancers. Nevertheless, the prognostic significance and therapeutic implications of the cuproptosis potential index in hepatocellular carcinoma (HCC) remain uncertain. METHODS Single-sample gene set enrichment analysis (ssGSEA) and Weighted Gene Co-expression Network Analysis (WGCNA) methodology was conducted to ascertain the identification of modular genes that are closely linked to cuproptosis. In addition, the gene signature indicative of prognosis was formulated by employing univariate Cox regression analysis in conjunction with a random forest algorithm. The efficacy of this gene signature in predicting outcomes was confirmed through validation in both The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) datasets. Furthermore, a study was undertaken to evaluate the association between the risk score and various clinical-pathological characteristics, explore the biological processes linked to the gene signature, and analyze tumor mutational burden and somatic mutations. Lastly, potential drugs targeting the identified gene signature were identified through screening. RESULTS The results of our comprehensive analysis across multiple cancer types demonstrated a positive correlation between an elevated cuproptosis potential index (CPI) and an accelerated rate of tumor progression. Furthermore, employing the WGCNA technique, we successfully identified 640 genes associated with cuproptosis. Among these genes, we meticulously screened and validated a seven-gene signature (TCOF1, NOP58, TMEM69, FARSB, DHX37, SLC16A3, and CBX2) that exhibited substantial prognostic significance. Using the median risk score, the division of HCC patients into cohorts with high- and low-risk highlighted significant disparities in survival results, wherein the group with higher risk exhibited a less favorable overall survival. The risk score exhibited commendable predictive efficacy. Moreover, the in vitro knockdown of FARSB significantly hindered cell viability, induced G1 phase arrest, increased apoptosis, and impaired migration in HepG2 and Huh7 cells. CONCLUSION Our research has successfully identified a strong seven-gene signature linked to cuproptosis, which could be utilized for prognostic evaluation and risk stratification in patients with HCC. Furthermore, the discovered gene signature, coupled with the functional analysis of FARSB, presents promising prospects as potential targets for therapeutic interventions in HCC.
Collapse
Affiliation(s)
- Junlin Duan
- Department of Clinical Laboratory, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Xuan Zhang
- Department of Traditional Chinese Medicine, Navy NO.905 Hospital, Navy Medical University, Shanghai, China
| | - Jingyu Xu
- Department of Traditional Chinese Medicine, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Jun Liu
- Department of Clinical Laboratory, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Hetong Zhao
- Department of Traditional Chinese Medicine, Navy NO.905 Hospital, Navy Medical University, Shanghai, China
| |
Collapse
|
74
|
Li L, Zhou H, Zhang C. Cuproptosis in cancer: biological implications and therapeutic opportunities. Cell Mol Biol Lett 2024; 29:91. [PMID: 38918694 PMCID: PMC11201306 DOI: 10.1186/s11658-024-00608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Cuproptosis, a newly identified copper (Cu)-dependent form of cell death, stands out due to its distinct mechanism that sets it apart from other known cell death pathways. The molecular underpinnings of cuproptosis involve the binding of Cu to lipoylated enzymes in the tricarboxylic acid cycle. This interaction triggers enzyme aggregation and proteotoxic stress, culminating in cell death. The specific mechanism of cuproptosis has yet to be fully elucidated. This newly recognized form of cell death has sparked numerous investigations into its role in tumorigenesis and cancer therapy. In this review, we summarized the current knowledge on Cu metabolism and its link to cancer. Furthermore, we delineated the molecular mechanisms of cuproptosis and summarized the roles of cuproptosis-related genes in cancer. Finally, we offered a comprehensive discussion of the most recent advancements in Cu ionophores and nanoparticle delivery systems that utilize cuproptosis as a cutting-edge strategy for cancer treatment.
Collapse
Affiliation(s)
- Liping Li
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Houfeng Zhou
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Chenliang Zhang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
75
|
Wang B, Liu Y, Xiong F, Wang C. Improved Immunotherapy Outcomes via Cuproptosis Upregulation of HLA-DRA Expression: Promoting the Aggregation of CD4 + and CD8 +T Lymphocytes in Clear Cell Renal Cell Carcinoma. Pharmaceuticals (Basel) 2024; 17:678. [PMID: 38931345 PMCID: PMC11206763 DOI: 10.3390/ph17060678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
Immunotherapy has shown promising clinical results in clear cell renal cell carcinoma (ccRCC), but low clinical target response rates due to dysfunction of the major histocompatibility complex (MHC) and an inhibitory tumor immune microenvironment (TIME) have largely limited the associated clinical benefits. In the present study, we explored the feasibility of enhancing tumor-specific-MHC-II-HLA-DRA expression, counteracting the TIME's suppressive effects, thereby improving the sensitivity of immune checkpoint inhibitor (ICI) therapy from the standpoint of cuproptosis. Immunohistochemical staining and in vitro experiments validated the expression of HLA-DRA in ccRCC and its positive impact on ICI therapy. Subsequently, we observed that cuproptosis upregulated HLA-DRA expression in a dose-dependent manner, further confirming the link between cuproptosis and HLA-DRA. In vivo experiments showed that cuproptosis increased the sensitivity to ICI treatment, and implementing cuproptosis alongside anti-PD-1 treatment curtailed tumor growth. Mechanistically, cuproptosis upregulates HLA-DRA expression at the transcriptional level in a dose-dependent manner by inducing the production of reactive oxygen species; high levels of HLA-DRA promote the expression of chemokines CCL5, CXCL9, and CXCL10 in the TIME, inhibiting the development of a pro-tumor microenvironment by promoting the infiltration of CD4+T and CD8+T cells, thereby synergizing ICI therapy and exerting anti-tumor effects. Taken together, this work highlights the role of cuproptosis in mediating TIME remodeling and synergistic immunotherapy, providing new evidence that cuproptosis can evoke effective anti-tumor immune responses.
Collapse
Affiliation(s)
| | | | | | - Chunyang Wang
- Urology Surgery Department, The First Affiliated Hospital of Harbin Medical University, Youzheng Street #37, Nangang District, Harbin 150001, China
| |
Collapse
|
76
|
Huang Y, Liu X, Zhu J, Chen Z, Yu L, Huang X, Dong C, Li J, Zhou H, Yang Y, Tan W. Enzyme Core Spherical Nucleic Acid That Enables Enhanced Cuproptosis and Antitumor Immune Response through Alleviating Tumor Hypoxia. J Am Chem Soc 2024; 146:13805-13816. [PMID: 38552185 DOI: 10.1021/jacs.3c14247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Cuproptosis, a copper-dependent cell death process, has been confirmed to further activate the immune response and mediate the immune resistance. However, hypoxic tumor microenvironment hampers cuproptosis sensitivity and suppresses the body's antitumor immune response. Herein, we have successfully immobilized and functionalized catalase (CAT) with long single-stranded DNA containing polyvalent CpG sequences through rolling circle amplification (RCA) techniques, obtaining an enzyme-cored spherical nucleic acid nanoplatform (CAT-ecSNA-Cu) to deliver copper ions for cuproptosis. The presence of long-stranded DNA-protected CAT enhances mitochondrial respiration by catalyzing the conversion of H2O2 to O2, thereby sensitizing cuproptosis. Meanwhile, increased tumor oxygenation suppresses the expression of the hypoxia-inducible factor-1 (HIF-1) protein, resulting in the alleviation of the immunosuppressive tumor microenvironment. Of note, cuproptosis induces immunogenic cell death (ICD), which facilitates dendritic cell (DC) maturation and enhances antigen presentation through polyCpG-supported Toll-like receptor 9 (TLR9) activation. Furthermore, cuproptosis-induced PD-L1 upregulation in tumor cells complements checkpoint blockers (αPD-L1), enhancing antitumor immunity. The strategy of enhancing cuproptosis-mediated antitumor immune responses by alleviating hypoxia effectively promotes the activation and proliferation of effector T cells, ultimately leading to long-term immunity against cancer.
Collapse
Affiliation(s)
- Yuting Huang
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200240, China
| | - Xueliang Liu
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200240, China
| | - Jiawei Zhu
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200240, China
| | - Zhejie Chen
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200240, China
| | - Lu Yu
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200240, China
| | - Xin Huang
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200240, China
| | - Chuhuang Dong
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200240, China
| | - Jiabei Li
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200240, China
| | - Huayuan Zhou
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200240, China
| | - Yu Yang
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200240, China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200240, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
77
|
Kundu M, Butti R, Panda VK, Malhotra D, Das S, Mitra T, Kapse P, Gosavi SW, Kundu GC. Modulation of the tumor microenvironment and mechanism of immunotherapy-based drug resistance in breast cancer. Mol Cancer 2024; 23:92. [PMID: 38715072 PMCID: PMC11075356 DOI: 10.1186/s12943-024-01990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/02/2024] [Indexed: 05/12/2024] Open
Abstract
Breast cancer, the most frequent female malignancy, is often curable when detected at an early stage. The treatment of metastatic breast cancer is more challenging and may be unresponsive to conventional therapy. Immunotherapy is crucial for treating metastatic breast cancer, but its resistance is a major limitation. The tumor microenvironment (TME) is vital in modulating the immunotherapy response. Various tumor microenvironmental components, such as cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs), are involved in TME modulation to cause immunotherapy resistance. This review highlights the role of stromal cells in modulating the breast tumor microenvironment, including the involvement of CAF-TAM interaction, alteration of tumor metabolism leading to immunotherapy failure, and other latest strategies, including high throughput genomic screening, single-cell and spatial omics techniques for identifying tumor immune genes regulating immunotherapy response. This review emphasizes the therapeutic approach to overcome breast cancer immune resistance through CAF reprogramming, modulation of TAM polarization, tumor metabolism, and genomic alterations.
Collapse
Affiliation(s)
- Moumita Kundu
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India
- Department of Pharmaceutical Technology, Brainware University, West Bengal, 700125, India
| | - Ramesh Butti
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Venketesh K Panda
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India
| | - Diksha Malhotra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India
| | - Sumit Das
- National Centre for Cell Sciences, Savitribai Phule Pune University Campus, Pune, 411007, India
| | - Tandrima Mitra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India
| | - Prachi Kapse
- School of Basic Medical Sciences, Savitribai Phule Pune University, Pune, 411007, India
| | - Suresh W Gosavi
- School of Basic Medical Sciences, Savitribai Phule Pune University, Pune, 411007, India
| | - Gopal C Kundu
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India.
- Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Bhubaneswar, 751024, India.
| |
Collapse
|
78
|
Abdolmaleki S, Aliabadi A, Khaksar S. Unveiling the promising anticancer effect of copper-based compounds: a comprehensive review. J Cancer Res Clin Oncol 2024; 150:213. [PMID: 38662225 PMCID: PMC11045632 DOI: 10.1007/s00432-024-05641-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/03/2024] [Indexed: 04/26/2024]
Abstract
Copper is a necessary micronutrient for maintaining the well-being of the human body. The biological activity of organic ligands, especially their anticancer activity, is often enhanced when they coordinate with copper(I) and (II) ions. Copper and its compounds are capable of inducing tumor cell death through various mechanisms of action, including activation of apoptosis signaling pathways by reactive oxygen species (ROS), inhibition of angiogenesis, induction of cuproptosis, and paraptosis. Some of the copper complexes are currently being evaluated in clinical trials for their ability to map tumor hypoxia in various cancers, including locally advanced rectal cancer and bulky tumors. Several studies have shown that copper nanoparticles can be used as effective agents in chemodynamic therapy, phototherapy, hyperthermia, and immunotherapy. Despite the promising anticancer activity of copper-based compounds, their use in clinical trials is subject to certain limitations. Elevated copper concentrations may promote tumor growth, angiogenesis, and metastasis by affecting cellular processes.
Collapse
Affiliation(s)
- Sara Abdolmaleki
- Department of Pharmaceutical Chemistry, School of Science and Technology, The University of Georgia, Tbilisi, Georgia.
| | - Alireza Aliabadi
- Pharmaceutical Sciences Research Center, Health Institute, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Samad Khaksar
- Department of Pharmaceutical Chemistry, School of Science and Technology, The University of Georgia, Tbilisi, Georgia.
| |
Collapse
|
79
|
Wei M, Lu L, Luo Z, Ma J, Wang J. Prognostic analysis of hepatocellular carcinoma based on cuproptosis -associated lncRNAs. BMC Gastroenterol 2024; 24:142. [PMID: 38654165 DOI: 10.1186/s12876-024-03219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/01/2024] [Indexed: 04/25/2024] Open
Abstract
OBJECTIVES Cuproptosis represents an innovative type of cell death, distinct from apoptosis, driven by copper dependency, yet the involvement of copper apoptosis-associated long non-coding RNAs (CRLncRNAs) in hepatocellular carcinoma (HCC) remains unclear. This study is dedicated to unveiling the role and significance of these copper apoptosis-related lncRNAs within the context of HCC, focusing on their impact on both the development of the disease and its prognosis. METHODS We conducted an analysis of gene transcriptomic and clinical data for HCC cases by sourcing information from The Cancer Genome Atlas database. By incorporating cuproptosis-related genes, we established prognostic features associated with cuproptosis-related lncRNAs. Furthermore, we elucidated the mechanism of cuproptosis-related lncRNAs in the prognosis and treatment of HCC through comprehensive approaches, including Lasso and Cox regression analyses, survival analyses of samples, as well as examinations of tumor mutation burden and immune function. RESULTS We developed a prognostic model featuring six cuproptosis-related lncRNAs: AC026412.3, AC125437.1, AL353572.4, MKLN1-AS, TMCC1-AS1, and SLC6A1-AS1. This model demonstrated exceptional prognostic accuracy in both training and validation cohorts for patients with tumors, showing significantly longer survival times for those categorized in the low-risk group compared to the high-risk group. Additionally, our analyses, including tumor mutation burden, immune function, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway enrichment, and drug sensitivity, further elucidated the potential mechanisms through which cuproptosis-associated lncRNAs may influence disease outcome. CONCLUSIONS The model developed using cuproptosis-related long non-coding RNAs (lncRNAs) demonstrates promising predictive capabilities for both the prognosis and immunotherapy outcomes of tumor patients. This could play a crucial role in patient management and the optimization of immunotherapeutic strategies, offering valuable insights for future research.
Collapse
Affiliation(s)
- Mingwei Wei
- Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Department of Hepatobiliary and Pancreatic Surgery, Baidong Hospital, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Libai Lu
- Department of Hepatobiliary and Pancreatic Surgery, Baidong Hospital, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Zongjiang Luo
- Department of Hepatobiliary and Pancreatic Surgery, Baidong Hospital, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jiasheng Ma
- Department of Hepatobiliary and Pancreatic Surgery, Baidong Hospital, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jianchu Wang
- Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
- Department of Hepatobiliary and Pancreatic Surgery, Baidong Hospital, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| |
Collapse
|
80
|
Wendlocha D, Kubina R, Krzykawski K, Mielczarek-Palacz A. Selected Flavonols Targeting Cell Death Pathways in Cancer Therapy: The Latest Achievements in Research on Apoptosis, Autophagy, Necroptosis, Pyroptosis, Ferroptosis, and Cuproptosis. Nutrients 2024; 16:1201. [PMID: 38674891 PMCID: PMC11053927 DOI: 10.3390/nu16081201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The complex and multi-stage processes of carcinogenesis are accompanied by a number of phenomena related to the potential involvement of various chemopreventive factors, which include, among others, compounds of natural origin such as flavonols. The use of flavonols is not only promising but also a recognized strategy for cancer treatment. The chemopreventive impact of flavonols on cancer arises from their ability to act as antioxidants, impede proliferation, promote cell death, inhibit angiogenesis, and regulate the immune system through involvement in diverse forms of cellular death. So far, the molecular mechanisms underlying the regulation of apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis, and cuproptosis occurring with the participation of flavonols have remained incompletely elucidated, and the results of the studies carried out so far are ambiguous. For this reason, one of the therapeutic goals is to initiate the death of altered cells through the use of quercetin, kaempferol, myricetin, isorhamnetin, galangin, fisetin, and morin. This article offers an extensive overview of recent research on these compounds, focusing particularly on their role in combating cancer and elucidating the molecular mechanisms governing apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis, and cuproptosis. Assessment of the mechanisms underlying the anticancer effects of compounds in therapy targeting various types of cell death pathways may prove useful in developing new therapeutic regimens and counteracting resistance to previously used treatments.
Collapse
Affiliation(s)
- Dominika Wendlocha
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland;
| | - Robert Kubina
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 41-752 Katowice, Poland; (R.K.); (K.K.)
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Kamil Krzykawski
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 41-752 Katowice, Poland; (R.K.); (K.K.)
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland;
| |
Collapse
|
81
|
Laurent R, Maraval V, Bernardes-Génisson V, Caminade AM. Dendritic Pyridine-Imine Copper Complexes as Metallo-Drugs. Molecules 2024; 29:1800. [PMID: 38675623 PMCID: PMC11052306 DOI: 10.3390/molecules29081800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Since the discovery of cisplatin in the 1960s, the search for metallo-drugs that are more efficient than platinum complexes with negligible side effects has attracted much interest. Among the other metals that have been examined for potential applications as anticancer agents is copper. The interest in copper was recently boosted by the discovery of cuproptosis, a recently evidenced form of cell death mediated by copper. However, copper is also known to induce the proliferation of cancer cells. In view of these contradictory results, there is a need to find the most suitable copper chelators, among which Schiff-based derivatives offer a wide range of possibilities. Gathering several metal complexes in a single, larger entity may provide enhanced properties. Among the nanometric objects suitable for such purpose are dendrimers, precisely engineered hyperbranched macromolecules, which are outstanding candidates for improving therapy and diagnosis. In this review article, we present an overview of the use of a particular Schiff base, namely pyridine-imine, linked to the surface of dendrimers, suitable for complexing copper, and the use of such dendrimer complexes in biology, in particular against cancers.
Collapse
Affiliation(s)
- Régis Laurent
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 Toulouse, CEDEX 4, France; (R.L.); (V.M.); (V.B.-G.)
- LCC-CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France
| | - Valérie Maraval
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 Toulouse, CEDEX 4, France; (R.L.); (V.M.); (V.B.-G.)
- LCC-CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France
| | - Vania Bernardes-Génisson
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 Toulouse, CEDEX 4, France; (R.L.); (V.M.); (V.B.-G.)
- LCC-CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 Toulouse, CEDEX 4, France; (R.L.); (V.M.); (V.B.-G.)
- LCC-CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France
| |
Collapse
|
82
|
Abdullah K, Kaushal JB, Takkar S, Sharma G, Alsafwani ZW, Pothuraju R, Batra SK, Siddiqui JA. Copper metabolism and cuproptosis in human malignancies: Unraveling the complex interplay for therapeutic insights. Heliyon 2024; 10:e27496. [PMID: 38486750 PMCID: PMC10938126 DOI: 10.1016/j.heliyon.2024.e27496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/17/2024] Open
Abstract
Copper, a vital trace element, orchestrates diverse cellular processes ranging from energy production to antioxidant defense and angiogenesis. Copper metabolism and cuproptosis are closely linked in the context of human diseases, with a particular focus on cancer. Cuproptosis refers to a specific type of copper-mediated cell death or copper toxicity triggered by disruptions in copper metabolism within the cells. This phenomenon encompasses a spectrum of mechanisms, such as oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, and perturbations in metal ion equilibrium. Mechanistically, cuproptosis is driven by copper binding to the lipoylated enzymes within the tricarboxylic acid (TCA) cycle. This interaction participates in protein aggregation and proteotoxic stress, ultimately culminating in cell death. Targeting copper metabolism and its associated pathways in cancer cells hold therapeutic potential by selectively targeting and eliminating cancerous cells. Strategies to modulate copper levels, enhance copper excretion, or interfere with cuproptotic pathways are being explored to identify novel therapeutic targets for cancer therapy and improve patient outcomes. Understanding the relationship between cuproptosis and copper metabolism in human malignancies remains an active area of research. This review provides a comprehensive overview of the association among copper metabolism, copper homeostasis, and carcinogenesis, explicitly emphasizing the cuproptosis mechanism and its implications for cancer pathogenesis. Additionally, we emphasize the therapeutic aspects of targeting copper and cuproptosis for cancer treatment.
Collapse
Affiliation(s)
- K.M. Abdullah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jyoti B. Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Simran Takkar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Gunjan Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Zahraa W. Alsafwani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
83
|
Liu C, Chen L, Cong Y, Cheng L, Shuai Y, Lv F, Chen K, Song Y, Xing Y. Protein phosphatase 1 regulatory subunit 15 A promotes translation initiation and induces G2M phase arrest during cuproptosis in cancers. Cell Death Dis 2024; 15:149. [PMID: 38365764 PMCID: PMC10873343 DOI: 10.1038/s41419-024-06489-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
Copper ions play a crucial role as cofactors for essential enzymes in cellular processes. However, when the intracellular concentration of copper ions exceeds the homeostatic threshold, they become toxic to cells. In our study, we demonstrated that elesclomol, as a carrier of copper ions, caused an upregulation of protein phosphatase 1 regulatory subunit 15 A (PPP1R15A), which plays a role in regulating substrate selectivity of protein phosphatase 1 during cuproptosis. Mechanistically, we investigated that PPP1R15A activated translation initiation by dephosphorylating eukaryotic translation initiation factor 2 subunit alpha at the S51 residue through protein phosphatase 1 and phosphorylating eukaryotic translation initiation factor 4E binding protein 1 at the T70 residue. In addition, PPP1R15A reduced H3K4 methylation by altering the phosphorylation of histone methyltransferases, which led to the silencing of MYC and G2M phase arrest.
Collapse
Affiliation(s)
- Chunyu Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Liang Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yukun Cong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Lulin Cheng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yujun Shuai
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Fang Lv
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Kang Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yarong Song
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| | - Yifei Xing
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| |
Collapse
|
84
|
Springer C, Humayun D, Skouta R. Cuproptosis: Unraveling the Mechanisms of Copper-Induced Cell Death and Its Implication in Cancer Therapy. Cancers (Basel) 2024; 16:647. [PMID: 38339398 PMCID: PMC10854864 DOI: 10.3390/cancers16030647] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Copper, an essential element for various biological processes, demands precise regulation to avert detrimental health effects and potential cell toxicity. This paper explores the mechanisms of copper-induced cell death, known as cuproptosis, and its potential health and disease implications, including cancer therapy. Copper ionophores, such as elesclomol and disulfiram, increase intracellular copper levels. This elevation triggers oxidative stress and subsequent cell death, offering potential implications in cancer therapy. Additionally, copper ionophores disrupt mitochondrial respiration and protein lipoylation, further contributing to copper toxicity and cell death. Potential targets and biomarkers are identified, as copper can be targeted to those proteins to trigger cuproptosis. The role of copper in different cancers is discussed to understand targeted cancer therapies using copper nanomaterials, copper ionophores, and copper chelators. Furthermore, the role of copper is explored through diseases such as Wilson and Menkes disease to understand the physiological mechanisms of copper. Exploring cuproptosis presents an opportunity to improve treatments for copper-related disorders and various cancers, with the potential to bring significant advancements to modern medicine.
Collapse
Affiliation(s)
- Chloe Springer
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA;
| | - Danish Humayun
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA;
| | - Rachid Skouta
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA;
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA;
| |
Collapse
|
85
|
Wang J, Li J, Liu J, Chan KY, Lee HS, Lin KN, Wang CC, Lau TS. Interplay of Ferroptosis and Cuproptosis in Cancer: Dissecting Metal-Driven Mechanisms for Therapeutic Potentials. Cancers (Basel) 2024; 16:512. [PMID: 38339263 PMCID: PMC10854932 DOI: 10.3390/cancers16030512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/12/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Iron (Fe) and copper (Cu), essential transition metals, play pivotal roles in various cellular processes critical to cancer biology, including cell proliferation, mitochondrial respiration, distant metastases, and oxidative stress. The emergence of ferroptosis and cuproptosis as distinct forms of non-apoptotic cell death has heightened their significance, particularly in connection with these metal ions. While initially studied separately, recent evidence underscores the interdependence of ferroptosis and cuproptosis. Studies reveal a link between mitochondrial copper accumulation and ferroptosis induction. This interconnected relationship presents a promising strategy, especially for addressing refractory cancers marked by drug tolerance. Harnessing the toxicity of iron and copper in clinical settings becomes crucial. Simultaneous targeting of ferroptosis and cuproptosis, exemplified by the combination of sorafenib and elesclomol-Cu, represents an intriguing approach. Strategies targeting mitochondria further enhance the precision of these approaches, providing hope for improving treatment outcomes of drug-resistant cancers. Moreover, the combination of iron chelators and copper-lowering agents with established therapeutic modalities exhibits a synergy that holds promise for the augmentation of anti-tumor efficacy in various malignancies. This review elaborates on the complex interplay between ferroptosis and cuproptosis, including their underlying mechanisms, and explores their potential as druggable targets in both cancer research and clinical settings.
Collapse
Affiliation(s)
- Jinjiang Wang
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong; (J.W.); (K.N.L.); (C.-C.W.)
| | - Jiaxi Li
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jiao Liu
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong; (J.W.); (K.N.L.); (C.-C.W.)
| | - Kit-Ying Chan
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong; (J.W.); (K.N.L.); (C.-C.W.)
| | - Ho-Sze Lee
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong; (J.W.); (K.N.L.); (C.-C.W.)
| | - Kenneth Nansheng Lin
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong; (J.W.); (K.N.L.); (C.-C.W.)
| | - Chi-Chiu Wang
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong; (J.W.); (K.N.L.); (C.-C.W.)
| | - Tat-San Lau
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong; (J.W.); (K.N.L.); (C.-C.W.)
| |
Collapse
|