51
|
Massara L, Khairallah C, Yared N, Pitard V, Rousseau B, Izotte J, Giese A, Dubus P, Gauthereau X, Déchanet-Merville J, Capone M. Uncovering the Anticancer Potential of Murine Cytomegalovirus against Human Colon Cancer Cells. MOLECULAR THERAPY-ONCOLYTICS 2020; 16:250-261. [PMID: 32140563 PMCID: PMC7052516 DOI: 10.1016/j.omto.2020.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/22/2020] [Indexed: 12/28/2022]
Abstract
Human cytomegalovirus (HCMV) components are often found in tumors, but the precise relationship between HCMV and cancer remains a matter of debate. Pro-tumor functions of HCMV were described in several studies, but an association between HCMV seropositivity and reduced cancer risk was also evidenced, presumably relying on recognition and killing of cancer cells by HCMV-induced lymphocytes. This study aimed at deciphering whether CMV influences cancer development in an immune-independent manner. Using immunodeficient mice, we showed that systemic infection with murine CMV (MCMV) inhibited the growth of murine carcinomas. Surprisingly, MCMV, but not HCMV, also reduced human colon carcinoma development in vivo. In vitro, both viruses infected human cancer cells. Expression of human interferon-β (IFN-β) and nuclear domain (ND10) were induced in MCMV-infected, but not in HCMV-infected human colon cancer cells. These results suggest a decreased capacity of MCMV to counteract intrinsic defenses in the human cellular host. Finally, immunodeficient mice receiving peri-tumoral MCMV therapy showed a reduction of human colon cancer cell growth, albeit no clinical sign of systemic virus dissemination was evidenced. Our study, which describes a selective advantage of MCMV over HCMV to control human colon cancer, could pave the way for the development of CMV-based therapies against cancer.
Collapse
Affiliation(s)
- Layal Massara
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33076 Bordeaux, France.,Equipe Labellisée Ligue Contre le Cancer, Toulouse, France
| | - Camille Khairallah
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33076 Bordeaux, France
| | - Nathalie Yared
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33076 Bordeaux, France
| | - Vincent Pitard
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33076 Bordeaux, France.,Equipe Labellisée Ligue Contre le Cancer, Toulouse, France.,University of Bordeaux, INSERM, CNRS, TBM Core, UMS 3427, Plateforme de Cytométrie, 33076 Bordeaux, France
| | - Benoit Rousseau
- University of Bordeaux, Service Commun des Animaleries, Animalerie A2, 33076 Bordeaux, France
| | - Julien Izotte
- University of Bordeaux, Service Commun des Animaleries, Animalerie A2, 33076 Bordeaux, France
| | - Alban Giese
- University of Bordeaux, EA2406 Histologie et Pathologie Moléculaire des Tumeurs, 33076 Bordeaux, France
| | - Pierre Dubus
- University of Bordeaux, EA2406 Histologie et Pathologie Moléculaire des Tumeurs, 33076 Bordeaux, France
| | - Xavier Gauthereau
- University of Bordeaux, INSERM, CNRS, TBM Core, UMS 3427, Plateforme de PCR Quantitative, 33076 Bordeaux, France
| | - Julie Déchanet-Merville
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33076 Bordeaux, France.,Equipe Labellisée Ligue Contre le Cancer, Toulouse, France.,University of Bordeaux, INSERM, CNRS, TBM Core, UMS 3427, Plateforme de Cytométrie, 33076 Bordeaux, France
| | - Myriam Capone
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33076 Bordeaux, France.,Equipe Labellisée Ligue Contre le Cancer, Toulouse, France.,University of Bordeaux, INSERM, CNRS, TBM Core, UMS 3427, Plateforme de PCR Quantitative, 33076 Bordeaux, France
| |
Collapse
|
52
|
Geisler J, Touma J, Rahbar A, Söderberg-Nauclér C, Vetvik K. A Review of the Potential Role of Human Cytomegalovirus (HCMV) Infections in Breast Cancer Carcinogenesis and Abnormal Immunity. Cancers (Basel) 2019; 11:cancers11121842. [PMID: 31766600 PMCID: PMC6966479 DOI: 10.3390/cancers11121842] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022] Open
Abstract
Previously recognized classical human onco-viruses can regulate complex neoplastic events, and are estimated to play a role during carcinogenesis in 15-20% of cancer cases. Although the DNA and gene products of several viruses have been found in breast tumors, none of the classical onco-viruses have definitely been linked to the initiation of breast cancer. However, recent evidence shows that human cytomegalovirus (HCMV) gene products are found in >90% of tumors and metastases of breast cancers, and their increased expression can be correlated to a more aggressive breast cancer phenotype. Supporting the active role of HCMV in breast cancer, a specific HCMV strain, HCMV-DB, was recently shown to exert oncogenic transformational activity in breast epithelial cells in vitro, and to give rise to fast-growing, triple-negative breast tumors when injected into immune deficient mice. The same observation holds true for clinical studies implying increased HCMV protein expression in triple negative breast cancer biopsies. In addition to functionally being able to hijack tumor-promoting cellular events, HCMV is known to exhibit a wide range of immunosuppressive effects, which can have radical impact on the tumor microenvironment. HCMV infected cells can avoid recognition and elimination by the immune system by orchestrating polarization of immunosuppressive type II macrophages, preventing antigen presentation, by expressing T cell inhibitory molecules, and possibly, by the induction of regulatory T (Treg) cell responses. These actions would be especially deleterious for the antigenic activation and proliferation of tumor specific CD8+ cytotoxic T lymphocytes (CTLs), whose effector functions have recently been targeted by successful, experimental immunotherapy protocols. The recognition of alternative causes and drivers of breast cancer is a pivotal research topic for the development of diagnostics and novel, effective preventive and therapeutic strategies targeting both tumor cells and their microenvironments.
Collapse
Affiliation(s)
- Jürgen Geisler
- Department of Oncology, Akershus University Hospital (AHUS), 1478 Lørenskog, Norway; (J.G.); (J.T.)
- Institute of Clinical Medicine, University of Oslo, Campus Akershus University Hospital (AHUS), 1478 Lørenskog, Norway
| | - Joel Touma
- Department of Oncology, Akershus University Hospital (AHUS), 1478 Lørenskog, Norway; (J.G.); (J.T.)
- Institute of Clinical Medicine, University of Oslo, Campus Akershus University Hospital (AHUS), 1478 Lørenskog, Norway
- Department of Breast and Endocrine Surgery at Akershus University Hospital (AHUS), 1478 Lørenskog, Norway
| | - Afsar Rahbar
- Department of Medicine, Division of Microbial Pathogenesis, Bioclinicum, Karolinska Institutet, 17176 Stockholm, Sweden; (A.R.); (C.S.-N.)
- Department of Neurosurgery, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Cecilia Söderberg-Nauclér
- Department of Medicine, Division of Microbial Pathogenesis, Bioclinicum, Karolinska Institutet, 17176 Stockholm, Sweden; (A.R.); (C.S.-N.)
- Department of Neurosurgery, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Katja Vetvik
- Institute of Clinical Medicine, University of Oslo, Campus Akershus University Hospital (AHUS), 1478 Lørenskog, Norway
- Department of Breast and Endocrine Surgery at Akershus University Hospital (AHUS), 1478 Lørenskog, Norway
- Correspondence: ; Tel.: +47-95796638
| |
Collapse
|
53
|
Vaccine Vectors Harnessing the Power of Cytomegaloviruses. Vaccines (Basel) 2019; 7:vaccines7040152. [PMID: 31627457 PMCID: PMC6963789 DOI: 10.3390/vaccines7040152] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 02/05/2023] Open
Abstract
Cytomegalovirus (CMV) species have been gaining attention as experimental vaccine vectors inducing cellular immune responses of unparalleled strength and protection. This review outline the strengths and the restrictions of CMV-based vectors, in light of the known aspects of CMV infection, pathogenicity and immunity. We discuss aspects to be considered when optimizing CMV based vaccines, including the innate immune response, the adaptive humoral immunity and the T-cell responses. We also discuss the antigenic epitopes presented by unconventional major histocompatibility complex (MHC) molecules in some CMV delivery systems and considerations about routes for delivery for the induction of systemic or mucosal immune responses. With the first clinical trials initiating, CMV-based vaccine vectors are entering a mature phase of development. This impetus needs to be maintained by scientific advances that feed the progress of this technological platform.
Collapse
|
54
|
Cytomegalovirus is a tumor-associated virus: armed and dangerous. Curr Opin Virol 2019; 39:49-59. [PMID: 31525538 DOI: 10.1016/j.coviro.2019.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/05/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022]
Abstract
Human cytomegalovirus (HCMV) gene products are present in multiple human malignancies, often in specific association with tumor cells and tumor vasculature. Emerging evidence from human and mouse models of CMV infection in cancer indicate that CMV can transform epithelial cells, promote epithelial to mesenchymal transition (EMT) and mesenchymal to epithelial (MET) in tumor cells, promote tumor angiogenesis and proliferation and incapacitate the host anti-CMV immune response. This review will discuss the increasing role of HCMV in human cancer by demonstrating how HCMV is well suited for impacting major themes in oncogenesis including initiation, promotion, progression, metastasis and immune evasion. What emerges is a picture of an extremely versatile pathogen that may play a significant role in human cancer progression and death.
Collapse
|
55
|
Nauclér CS, Geisler J, Vetvik K. The emerging role of human cytomegalovirus infection in human carcinogenesis: a review of current evidence and potential therapeutic implications. Oncotarget 2019; 10:4333-4347. [PMID: 31303966 PMCID: PMC6611507 DOI: 10.18632/oncotarget.27016] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022] Open
Abstract
It is well-established that infections with viruses harboring oncogenic potential increase the cancer risk. Virus induced oncogenic processes are influenced by a complex and unique combination of host and environmental risk factors that are currently not fully understood. Many of the oncogenic viruses exhibit a prolonged, asymptomatic latency after a primary infection, and cause cancer in only a minority of carriers. From an epidemiologic point of view, it is therefore difficult to determine their role in cancer development. However, recent evidence suggests a neoplastic potential of one additional ubiquitous virus; human Cytomegalovirus (HCMV). Emerging data presents HCMV as a plausible cancer-causing virus by demonstrating its presence in >90% of common tumor types, while being absent in normal tissue surrounding the tumor. HCMV targets many cell types in tumor tissues, and can cause all the ten proposed hallmarks of cancer. This virus exhibits cellular tumor-promoting and immune-evasive strategies, hijacks proangiogenic and anti-apoptotic mechanisms and induces immunosuppressive effects in the tumor micro-environment. Recognizing new cancer-causing mechanisms may increase the therapeutic potential and prophylactic options for virus associated cancer forms. Such approaches could limit viral spread, and promote anti-viral and immune controlling strategies if given as add on to standard therapy to potentially improve the prognosis of cancer patients. This review will focus on HCMV-related onco-viral mechanisms and the potential of HCMV as a new therapeutic target in HCMV positive cancer forms.
Collapse
Affiliation(s)
- Cecilia Söderberg Nauclér
- Department of Medicine, Unit of Microbial Pathogenesis, Center for Molecular Medicine, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Jürgen Geisler
- Department of Oncology, Akershus University Hospital (AHUS), Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Katja Vetvik
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Breast and Endocrine Surgery, AHUS, Lørenskog, Norway
| |
Collapse
|
56
|
Richardson AK, Walker LC, Cox B, Rollag H, Robinson BA, Morrin H, Pearson JF, Potter JD, Paterson M, Surcel HM, Pukkala E, Currie MJ. Breast cancer and cytomegalovirus. Clin Transl Oncol 2019; 22:585-602. [PMID: 31256361 DOI: 10.1007/s12094-019-02164-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 06/14/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE To determine whether cytomegalovirus is causally associated with breast cancer and whether cytomegalovirus should be categorised as an oncogenic virus. METHODS We undertook a review of published epidemiological and laboratory studies, using established causal criteria: Bradford Hill criteria to determine whether cytomegalovirus is associated with breast cancer; and Evans/Mueller criteria to determine whether cytomegalovirus should be categorised as an oncogenic virus. RESULTS Although there are inconsistencies in the findings of published epidemiological and laboratory studies, these may be explained by factors such as: differences in timing of blood samples, differences in selection of cases and controls, or high cytomegalovirus seroprevalence among participants in the epidemiological studies; and, in the laboratory studies, differences in sample preparations, age of sample, whether or not paired breast cancer and normal breast tissue samples were used, differences in the tests, primers and/or antibodies used, differences in histological types of breast cancer studied, and/or features of the virus. CONCLUSIONS Overall, the results of published studies of cytomegalovirus and breast cancer suggest cytomegalovirus is a causal factor for at least some types of breast cancer. If the evidence for a link between cytomegalovirus and breast cancer continues to strengthen, further research could lead to: targeted screening; therapy using antiviral drugs; and, perhaps, primary prevention of a significant proportion of breast cancer. Vaccination against viruses has already been shown to be effective in preventing cervix and liver cancer; cytomegalovirus vaccines are already under development.
Collapse
Affiliation(s)
- A K Richardson
- Wayne Francis Cancer Epidemiology Research Group, School of Health Sciences, University of Canterbury, Christchurch, New Zealand.
| | - L C Walker
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - B Cox
- Hugh Adam Cancer Epidemiology Unit, Department of Preventive and Social Medicine, University of Otago, Dunedin, New Zealand
| | - H Rollag
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - B A Robinson
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - H Morrin
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - J F Pearson
- Department of the Dean, University of Otago Christchurch, Christchurch, New Zealand
| | - J D Potter
- Wayne Francis Cancer Epidemiology Research Group, School of Health Sciences, University of Canterbury, Christchurch, New Zealand.,Centre for Public Health Research, Massey University, Wellington, New Zealand.,Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - M Paterson
- University of Canterbury Library, University of Canterbury, Christchurch, New Zealand
| | - H-M Surcel
- European Science Infrastructure Services, University of Oulu, Oulu, Finland
| | - E Pukkala
- Finnish Cancer Registry Institute for Statistical and Epidemiological Cancer Research, Helsinki, Finland.,Faculty of Social Sciences, University of Tampere, Tampere, Finland
| | - M J Currie
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
57
|
Human cytomegalovirus infection is correlated with enhanced cyclooxygenase-2 and 5-lipoxygenase protein expression in breast cancer. J Cancer Res Clin Oncol 2019; 145:2083-2095. [PMID: 31203442 PMCID: PMC6658585 DOI: 10.1007/s00432-019-02946-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/27/2019] [Indexed: 01/26/2023]
Abstract
Purpose While enhanced expression of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LO) and their derived metabolites is associated with breast cancer (BC) risk, the precise link between BC carcinogenesis and enhanced inflammatory activity remains to be clarified. Human Cytomegalovirus (HCMV) may induce expression of COX-2 and 5-LO and is frequently found in breast cancer biopsies. Thus, we investigated whether there is an association between HCMV proteins and expression of COX-2 and 5-LO in human BC tissue and BC cell lines. Materials and methods Paraffin embedded biopsies obtained from 49 patients with breast cancer and 26 tissue samples from adjacent, benign breast tissues were retrospectively examined for HCMV-immediate early (IE), HCMV-Late (LA), COX-2, and 5-LO proteins by immunohistochemistry. In vitro, uninfected and HCMV-infected BC cell lines were examined for COX-2 and 5-LO transcripts and proteins by PCR and flow cytometry. Results Extensive expression of COX-2, 5-LO and HCMV-IE proteins were preferentially detected in BC samples. We found a statistically significant concordant correlation between extensive HCMV-IE and COX-2 (P < 0.0001) as well as with HCMV-IE and 5-LO (P = 0.0003) in infiltrating BC. In vitro, HCMV infection induced COX-2 and 5-LO transcripts and COX-2 proteins in MCF-7 cells (P =0.008, P =0.018, respectively). In MDA-MB-231 cells that already had high base line levels of COX-2 expression, HCMV induced both COX-2 and 5-LO proteins but not transcripts. Conclusion Our findings demonstrate a significant correlation between extensive HCMV-IE protein expression and overexpression of COX-2 and 5-LO in human breast cancer. Electronic supplementary material The online version of this article (10.1007/s00432-019-02946-8) contains supplementary material, which is available to authorized users.
Collapse
|
58
|
Nehme Z, Pasquereau S, Herbein G. Control of viral infections by epigenetic-targeted therapy. Clin Epigenetics 2019; 11:55. [PMID: 30917875 PMCID: PMC6437953 DOI: 10.1186/s13148-019-0654-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/13/2019] [Indexed: 12/13/2022] Open
Abstract
Epigenetics is defined as the science that studies the modifications of gene expression that are not owed to mutations or changes in the genetic sequence. Recently, strong evidences are pinpointing toward a solid interplay between such epigenetic alterations and the outcome of human cytomegalovirus (HCMV) infection. Guided by the previous possibly promising experimental trials of human immunodeficiency virus (HIV) epigenetic reprogramming, the latter is paving the road toward two major approaches to control viral gene expression or latency. Reactivating HCMV from the latent phase ("shock and kill" paradigm) or alternatively repressing the virus lytic and reactivation phases ("block and lock" paradigm) by epigenetic-targeted therapy represent encouraging options to overcome latency and viral shedding or otherwise replication and infectivity, which could lead eventually to control the infection and its complications. Not limited to HIV and HCMV, this concept is similarly studied in the context of hepatitis B and C virus, herpes simplex virus, and Epstein-Barr virus. Therefore, epigenetic manipulations stand as a pioneering research area in modern biology and could constitute a curative methodology by potentially consenting the development of broad-spectrum antivirals to control viral infections in vivo.
Collapse
Affiliation(s)
- Zeina Nehme
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté, University of Bourgogne Franche-Comté, 16 route de Gray, F-25030 Besançon cedex, France
- Université Libanaise, Beirut, Lebanon
| | - Sébastien Pasquereau
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté, University of Bourgogne Franche-Comté, 16 route de Gray, F-25030 Besançon cedex, France
| | - Georges Herbein
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté, University of Bourgogne Franche-Comté, 16 route de Gray, F-25030 Besançon cedex, France
- Department of Virology, CHRU Besancon, F-25030 Besançon, France
| |
Collapse
|
59
|
The transcriptome of human mammary epithelial cells infected with the HCMV-DB strain displays oncogenic traits. Sci Rep 2018; 8:12574. [PMID: 30135434 PMCID: PMC6105607 DOI: 10.1038/s41598-018-30109-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/21/2018] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence indicates that human cytomegalovirus (HCMV) populations under the influence of host environment, can either be stable or rapidly differentiating, leading to tissue compartment colonization. We isolated previously from a 30-years old pregnant woman, a clinical isolate of HCMV, that we refered to as the HCMV-DB strain (accession number KT959235). The HCMV-DB clinical isolate demonstrated its ability to infect primary macrophages and to upregulate the proto-oncogene Bcl-3. We observed in this study that the genome of HCMV-DB strain is close to the genomes of other primary clinical isolates including the Toledo and the JP strains with the later having been isolated from a glandular tissue, the prostate. Using a phylogenetic analysis to compare the genes involved in virus entry, we observed that the HCMV-DB strain is close to the HCMV strain Merlin, the prototype HCMV strain. HCMV-DB infects human mammary epithelial cells (HMECs) which in turn display a ER−/PR−/HER2− phenotype, commonly refered to as triple negative. The transcriptome of HCMV-DB-infected HMECs presents the characteristics of a pro-oncogenic cellular environment with upregulated expression of numerous oncogenes, enhanced activation of pro-survival genes, and upregulated markers of cell proliferation, stemcellness and epithelial mesenchymal transition (EMT) that was confirmed by enhanced cellular proliferation and tumorsphere formation in vitro. Taken together our data indicate that some clinical isolates could be well adapted to the mammary tissue environment, as it is the case for the HCMV-DB strain. This could influence the viral fitness, ultimately leading to breast cancer development.
Collapse
|
60
|
The Human Cytomegalovirus, from Oncomodulation to Oncogenesis. Viruses 2018; 10:v10080408. [PMID: 30081496 PMCID: PMC6115842 DOI: 10.3390/v10080408] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022] Open
Abstract
Besides its well-described impact in immunosuppressed patients, the role of human cytomegalovirus (HCMV) in the pathogenesis of cancer has been more recently investigated. In cancer, HCMV could favor the progression and the spread of the tumor, a paradigm named oncomodulation. Although oncomodulation could account for part of the protumoral effect of HCMV, it might not explain the whole impact of HCMV infection on the tumor and the tumoral microenvironment. On the contrary cases have been reported where HCMV infection slows down the progression and the spread of the tumor. In addition, HCMV proteins have oncogenic properties per se, HCMV activates pro-oncogenic pathways in infected cells, and recently the direct transformation of cells following HCMV infection has been described, which gave rise to tumors when injected in mice. Thus, beyond the oncomodulation model, this review will assess the direct transforming role of HMCV-infected cells and the potential classification of HCMV as an oncovirus.
Collapse
|