51
|
Flynn DC, Cho Y, Vincent D, Cunnick JM. Podosomes and Invadopodia: Related structures with Common Protein Components that May Promote Breast Cancer Cellular Invasion. Breast Cancer (Auckl) 2008; 2:17-29. [PMID: 21655365 PMCID: PMC3085414 DOI: 10.4137/bcbcr.s789] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A rate-limiting step in breast cancer progression is acquisition of the invasive phenotype, which can precede metastasis. Expression of cell-surface proteases at the leading edge of a migrating cell provides cells with a mechanism to cross tissue barriers. A newly appreciated mechanism that may be relevant for breast cancer cell invasion is the formation of invadopodia, well-defined structures that project from the ventral membrane and promote degradation of the extracellular matrix, allowing the cell to cross a tissue barrier. Recently, there has been some controversy and discussion as to whether invadopodia, which are associated with carcinoma cells, are related to a similar structure called podosomes, which are associated with normal cells. Invadopodia and podosomes share many common characteristics, including a similar size, shape, subcellular localization and an ability to promote invasion. These two structures also share many common protein components, which we outline herein. It has been speculated that podosomes may be precursors to invadopodia and by extension both structures may be relevant to cancer cell invasion. Here, we compare and contrast the protein components of invadopodia and podosomes and discuss a potential role for these proteins and the evidence that supports a role for invadopodia and podosomes in breast cancer invasion.
Collapse
Affiliation(s)
- Daniel C. Flynn
- Mary Babb Randolph Cancer Center
- Department of Microbiology, Immunology and Cell Biology and
| | - YoungJin Cho
- Mary Babb Randolph Cancer Center
- Department of Microbiology, Immunology and Cell Biology and
| | - Deanne Vincent
- Mary Babb Randolph Cancer Center
- Department of Microbiology, Immunology and Cell Biology and
| | - Jess M. Cunnick
- Mary Babb Randolph Cancer Center
- Department of Pathology, West Virginia University, Morgantown, WV 26506-9300
| |
Collapse
|
52
|
Ha VL, Bharti S, Inoue H, Vass WC, Campa F, Nie Z, de Gramont A, Ward Y, Randazzo PA. ASAP3 is a focal adhesion-associated Arf GAP that functions in cell migration and invasion. J Biol Chem 2008; 283:14915-26. [PMID: 18400762 DOI: 10.1074/jbc.m709717200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
ASAP3, an Arf GTPase-activating protein previously called DDEFL1 and ACAP4, has been implicated in the pathogenesis of hepatocellular carcinoma. We have examined in vitro and in vivo functions of ASAP3 and compared it to the related Arf GAP ASAP1 that has also been implicated in oncogenesis. ASAP3 was biochemically similar to ASAP1: the pleckstrin homology domain affected function of the catalytic domain by more than 100-fold; catalysis was stimulated by phosphatidylinositol 4,5-bisphosphate; and Arf1, Arf5, and Arf6 were used as substrates in vitro. Like ASAP1, ASAP3 associated with focal adhesions and circular dorsal ruffles. Different than ASAP1, ASAP3 did not localize to invadopodia or podosomes. Cells, derived from a mammary carcinoma and from a glioblastoma, with reduced ASAP3 expression had fewer actin stress fiber, reduced levels of phosphomyosin, and migrated more slowly than control cells. Reducing ASAP3 expression also slowed invasion of mammary carcinoma cells. In contrast, reduction of ASAP1 expression had no effect on migration or invasion. We propose that ASAP3 functions nonredundantly with ASAP1 to control cell movement and may have a role in cancer cell invasion. In comparing ASAP1 and ASAP3, we also found that invadopodia are dispensable for the invasive behavior of cells derived from a mammary carcinoma.
Collapse
Affiliation(s)
- Vi Luan Ha
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Bruni-Cardoso A, Vilamaior PSL, Taboga SR, Carvalho HF. Localized matrix metalloproteinase (MMP)-2 and MMP-9 activity in the rat ventral prostate during the first week of postnatal development. Histochem Cell Biol 2008; 129:805-15. [DOI: 10.1007/s00418-008-0407-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2008] [Indexed: 10/25/2022]
|
54
|
Gimona M. The microfilament system in the formation of invasive adhesions. Semin Cancer Biol 2008; 18:23-34. [DOI: 10.1016/j.semcancer.2007.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 08/30/2007] [Accepted: 08/31/2007] [Indexed: 12/23/2022]
|
55
|
Abstract
The Arf (ADP-ribosylation factor) GAPs (GTPase-activating proteins) are a family of proteins with a common catalytic domain that induces hydrolysis of GTP bound to Arf GTP-binding proteins. At least three groups of multidomain Arf GAPs affect the actin cytoskeleton and cellular activities, such as migration and movement, that depend on the cytoskeleton. One role of the Arf GAPs is to regulate membrane remodelling that accompanies actin polymerization. Regulation of membrane remodelling is mediated in part by the regulation of Arf proteins. However, Arf GAPs also regulate actin independently of effects on membranes or Arf. These functions include acting as upstream regulators of Rho family proteins and providing a scaffold for Rho effectors and exchange factors. With multiple functional elements, the Arf GAPs could integrate signals and biochemical activities that result in co-ordinated changes in actin and membranes necessary for a wide range of cellular functions.
Collapse
Affiliation(s)
- Paul A Randazzo
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
56
|
Abstract
Arf GAPs are a family of proteins with a common catalytic domain that induces hydrolysis of GTP bound to the small GTP-binding protein Arf. The proteins are otherwise structurally diverse. Several subtypes of Arf GAPs have been found to be targets of oncogenes and to control cell proliferation and cell migration. The latter effects are thought to be mediated by coordinating changes in actin remodeling and membrane traffic. In this chapter, we discuss Arf GAPs that have been linked to oncogenesis and the molecular mechanisms underlying the effects of these proteins in cancer cells. We also discuss the enzymology of the Arf GAPs related to possible targeted inhibition of specific subtypes of Arf GAPs.
Collapse
Affiliation(s)
- Vi Luan Ha
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
57
|
Badowski C, Pawlak G, Grichine A, Chabadel A, Oddou C, Jurdic P, Pfaff M, Albigès-Rizo C, Block MR. Paxillin phosphorylation controls invadopodia/podosomes spatiotemporal organization. Mol Biol Cell 2007; 19:633-45. [PMID: 18045996 DOI: 10.1091/mbc.e06-01-0088] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In Rous sarcoma virus (RSV)-transformed baby hamster kidney (BHK) cells, invadopodia can self-organize into rings and belts, similarly to podosome distribution during osteoclast differentiation. The composition of individual invadopodia is spatiotemporally regulated and depends on invadopodia localization along the ring section: the actin core assembly precedes the recruitment of surrounding integrins and integrin-linked proteins, whereas the loss of the actin core was a prerequisite to invadopodia disassembly. We have shown that invadopodia ring expansion is controlled by paxillin phosphorylations on tyrosine 31 and 118, which allows invadopodia disassembly. In BHK-RSV cells, ectopic expression of the paxillin mutant Y31F-Y118F induces a delay in invadopodia disassembly and impairs their self-organization. A similar mechanism is unraveled in osteoclasts by using paxillin knockdown. Lack of paxillin phosphorylation, calpain or extracellular signal-regulated kinase inhibition, resulted in similar phenotype, suggesting that these proteins belong to the same regulatory pathways. Indeed, we have shown that paxillin phosphorylation promotes Erk activation that in turn activates calpain. Finally, we observed that invadopodia/podosomes ring expansion is required for efficient extracellular matrix degradation both in BHK-RSV cells and primary osteoclasts, and for transmigration through a cell monolayer.
Collapse
Affiliation(s)
- Cédric Badowski
- Equipe DySAD, Institut Albert Bonniot, Institut National de la Santé et de la Recherche Médicale U823, 38042 Grenoble Cedex 09, France
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Vignjevic D, Montagnac G. Reorganisation of the dendritic actin network during cancer cell migration and invasion. Semin Cancer Biol 2007; 18:12-22. [PMID: 17928234 DOI: 10.1016/j.semcancer.2007.08.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Revised: 08/30/2007] [Accepted: 08/30/2007] [Indexed: 11/17/2022]
Abstract
Invasion of cancer cells into surrounding tissues has a causal role in tumour progression and is an initial step in tumour metastasis. It requires cell migration, which is driven by the polymerisation of actin within two distinct structures, lamellipodia and filopodia, and attachment to the extracellular matrix through actin-rich adhesive structures. Podosomes and invadopodia are modified adhesive structures that not only establish contact with the substratum, but are also involved in matrix degradation leading to invasion. Actin dynamics and organisation are tightly regulated processes responsible for the range of different and specific cellular functions in response to various stimuli. This review explores the mechanistic basis of tumour cell invasion by focusing on the reorganisation of the dendritic actin network. Actin filaments are flexible structures that are poorly able to resist bending forces, causing them to bend rather than push when encountering obstacles. During migration, cells overcome this problem either by creating a dense array of short-branched filaments as found in lamellipodia, or by bundling filaments as found in filopodia. Here we discuss the possible switch mechanism for the two modes of actin organisation and the advantages of each in the perspective of cell migration and invasion during tumour metastasis.
Collapse
Affiliation(s)
- Danijela Vignjevic
- Equipe de Morphogenèse et Signalisation cellulaires, UMR 144/Centre National de la Recherche Scientifique, Institut Curie, 25 rue d'Ulm, Paris, France.
| | | |
Collapse
|
59
|
Clark ES, Whigham AS, Yarbrough WG, Weaver AM. Cortactin is an essential regulator of matrix metalloproteinase secretion and extracellular matrix degradation in invadopodia. Cancer Res 2007; 67:4227-35. [PMID: 17483334 DOI: 10.1158/0008-5472.can-06-3928] [Citation(s) in RCA: 352] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Invadopodia are branched actin-rich structures associated with extracellular matrix (ECM) degradation that collectively form the invasive machinery of aggressive cancer cells. Cortactin is a prominent component and a specific marker of invadopodia. Amplification of cortactin is associated with poor prognosis in head and neck squamous cell carcinomas (HNSCC), possibly because of its activity in invadopodia. Although the role of cortactin in invadopodia has been attributed to signaling and actin assembly, it is incompletely understood. We made HNSCC cells deficient in cortactin by RNA interference knockdown methods. In these cortactin knockdown cells, invadopodia were reduced in number and lost their ability to degrade ECM. In the reverse experiment, overexpression of cortactin dramatically increased ECM degradation, far above and beyond the effect on formation of actin/Arp3-positive invadopodia puncta. Secretion of matrix metalloproteinases (MMP) MMP-2 and MMP-9, as well as plasma membrane delivery of MT1-MMP correlated closely with cortactin expression levels. MMP inhibitor treatment of control cells mimicked the cortactin knockdown phenotype, with abolished ECM degradation and fewer invadopodia, suggesting a positive feedback loop in which degradation products from MMP activity promote new invadopodia formation. Collectively, these data suggest that a major role of cortactin in invadopodia is to regulate the secretion of MMPs and point to a novel mechanism coupling dynamic actin assembly to the secretory machinery, producing enhanced ECM degradation and invasiveness. Furthermore, these data provide a possible explanation for the observed association between cortactin overexpression and enhanced invasiveness and poor prognosis in HNSCC patients.
Collapse
Affiliation(s)
- Emily S Clark
- Department of Pathology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
60
|
Furmaniak-Kazmierczak E, Crawley SW, Carter RL, Maurice DH, Côté GP. Formation of extracellular matrix-digesting invadopodia by primary aortic smooth muscle cells. Circ Res 2007; 100:1328-36. [PMID: 17446433 DOI: 10.1161/circresaha.106.147744] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Invasion of the subendothelial space by vascular smooth muscle cells (VSMCs) contributes to the development and progression of diverse cardiovascular diseases. In this report we show that the expression of activated versions of Src, Cdc42 and Rac1, or a kinase-dead but open form of the p21-activated kinase (PAK1), induces primary rat aorta VSMCs to form extracellular matrix-degrading actin-rich protrusions that are morphologically similar to the invadopodia formed by highly invasive tumor cells. The matrix-degrading structures are enriched in known markers for invadopodia, including cortactin and tyrosine-phosphorylated cortactin and contain the matrix metalloproteinases MMP-9 and MT1-MMP and the urokinase plasminogen activator receptor (uPAR). In contrast to other cell types, invadopodia formation in VSMCs is only weakly supported by the phorbol ester PBDu. Invadopodia formation by Src was dependent on Cdc42, Rac, and ERK, but not on p38 MAPK. Invadopodia formation induced by kinase-dead PAK1 required Src and ERK activity and a direct interaction with the exchange factor PIX. VSMCs embedded in a three-dimensional collagen matrix formed actin- and cortactin-rich extensions that penetrated through holes in the matrix, suggesting that invadopodia-like structures are formed in a three-dimensional environment.
Collapse
|
61
|
Webb BA, Jia L, Eves R, Mak AS. Dissecting the functional domain requirements of cortactin in invadopodia formation. Eur J Cell Biol 2007; 86:189-206. [PMID: 17343955 DOI: 10.1016/j.ejcb.2007.01.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2006] [Revised: 01/19/2007] [Accepted: 01/22/2007] [Indexed: 12/28/2022] Open
Abstract
Cells degrade extracellular matrix (ECM) barriers at focal locations by the formation of membrane protrusions called invadopodia. Polymerization of the actin cytoskeleton is critical to the extension of these processes into the ECM. We used a short interference RNA/rescue strategy to investigate the role of cortactin in the formation of Src-induced invadopodia in 3T3 fibroblasts, and subsequent degradation of the ECM. Cortactin-depleted cells did not form invadopodia or degrade the ECM. Functional invadopodia were restored in cortactin-depleted cells by expression of full-length cortactin, and fragments that contained the intact actin-binding repeats. Mutation of the three Src-targeted Tyr sites to Phe caused a loss in its rescuing ability, while mutation of the Erk phosphorylation sites had little effect on invadopodia formation. Interestingly, knock-down of cortactin did not affect the formation of lamellipodia and only slightly attenuated random cell motility. Our data shows that formation of functional invadopodia requires interaction between cortactin and filamentous actin, while interaction with SH3- and NTA-binding partners plays a less significant role. Furthermore, phosphorylation of cortactin by Src, but not by Erk, is essential for functional invadopodia formation. These results also suggest that cortactin plays a different role in invadopodia-dependent ECM degradation and lamellipodia formation in cell movement.
Collapse
Affiliation(s)
- Bradley A Webb
- Department of Biochemistry and Protein Function Discovery Program, Queen's University, Room 616 Botterell Hall, Kingston, Ont., Canada K7L 3N6
| | | | | | | |
Collapse
|
62
|
The matrix corroded: podosomes and invadopodia in extracellular matrix degradation. Trends Cell Biol 2007; 17:107-17. [PMID: 17275303 DOI: 10.1016/j.tcb.2007.01.002] [Citation(s) in RCA: 486] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 12/20/2006] [Accepted: 01/17/2007] [Indexed: 01/09/2023]
Abstract
Podosomes and invadopodia are unique actin-rich adhesions that establish close contact to the substratum but can also degrade components of the extracellular matrix. Accordingly, matrix degradation localized at podosomes or invadopodia is thought to contribute to cellular invasiveness in physiological and pathological situations. Cell types that form podosomes include monocytic, endothelial and smooth muscle cells, whereas invadopodia have been mostly observed in carcinoma cells. This review highlights important new developments in the field, discusses the common and divergent features of podosomes and invadopodia and summarizes current knowledge about matrix-degrading proteinases at these structures.
Collapse
|
63
|
Baldassarre M, Ayala I, Beznoussenko G, Giacchetti G, Machesky LM, Luini A, Buccione R. Actin dynamics at sites of extracellular matrix degradation. Eur J Cell Biol 2006; 85:1217-31. [PMID: 17010475 DOI: 10.1016/j.ejcb.2006.08.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 08/10/2006] [Accepted: 08/10/2006] [Indexed: 10/24/2022] Open
Abstract
The degradation of extracellular matrix (ECM) by proteases is crucial in physiological and pathological cell invasion alike. In vitro, degradation occurs at specific sites where invasive cells make contact with the ECM via specialized plasma membrane protrusions termed invadopodia. Here we present an extensive morpho-functional analysis of invadopodia actively engaged in ECM degradation and show that they are actin comet-based structures, not unlike the well-known bacteria-propelling actin tails. The relative mapping of the basic molecular components of invadopodia to actin tails is also provided. Finally, a live-imaging analysis of invadopodia highlights the intrinsic long-term stability of the structures coupled to a highly dynamic actin turnover. The results offer new insight into the tight coordination between signalling, actin remodelling and trafficking activities occurring at sites of focalized ECM degradation by invadopodia. In conclusion, invadopodia-associated actin comets are a striking example of consistently arising, spontaneous expression of actin-driven propulsion events that also represent a valuable experimental paradigm.
Collapse
Affiliation(s)
- Massimiliano Baldassarre
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Via Nazionale 8A, I-66030 S. Maria Imbaro, Chieti, Italy
| | | | | | | | | | | | | |
Collapse
|
64
|
Larsen M, Artym VV, Green JA, Yamada KM. The matrix reorganized: extracellular matrix remodeling and integrin signaling. Curr Opin Cell Biol 2006; 18:463-71. [PMID: 16919434 DOI: 10.1016/j.ceb.2006.08.009] [Citation(s) in RCA: 370] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 08/03/2006] [Indexed: 12/22/2022]
Abstract
Via integrins, cells can sense dimensionality and other physical and biochemical properties of the extracellular matrix (ECM). Cells respond differently to two-dimensional substrates and three-dimensional environments, activating distinct signaling pathways for each. Direct integrin signaling and indirect integrin modulation of growth factor and other intracellular signaling pathways regulate ECM remodeling and control subsequent cell behavior and tissue organization. ECM remodeling is critical for many developmental processes, and remodeled ECM contributes to tumorigenesis. These recent advances in the field provide new insights and raise new questions about the mechanisms of ECM synthesis and proteolytic degradation, as well as the roles of integrins and tension in ECM remodeling.
Collapse
Affiliation(s)
- Melinda Larsen
- Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, MSC 4370, Bethesda, MD 20892-4370, USA
| | | | | | | |
Collapse
|
65
|
Gimona M, Buccione R. Adhesions that mediate invasion. Int J Biochem Cell Biol 2006; 38:1875-92. [PMID: 16790362 DOI: 10.1016/j.biocel.2006.05.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 05/01/2006] [Accepted: 05/09/2006] [Indexed: 01/13/2023]
Abstract
Infiltration of new tissue areas requires that a mammalian cell overcomes the physical and biochemical barrier of the surrounding extracellular matrix. Cell migration during embryonic development, and growth, invasion and dispersal of metastatic tumor cells depend to a large extent on the controlled degradation of extracellular matrix components. Localized degradation of the surrounding matrix is seen at defined adhesive (podosomes) and/or protrusive (invadopodia) locations in a variety of normal cells and aggressive carcinoma cells, suggesting that these membrane-associated cellular devices have a central role in mediating polarized migration in cells that cross-tissue boundaries. Here, we will discuss the recent advances and developments in this field, and provide our provisional outlook into the future understanding of the principles of focal extracellular matrix degradation by podosomes and invadopodia.
Collapse
Affiliation(s)
- Mario Gimona
- Unit of Actin Cytoskeleton Regulation, Consorzio Mario Negri Sud, Department of Cell Biology and Oncology, Via Nazionale 8a, 66030 Santa Maria Imbaro, Italy.
| | | |
Collapse
|