51
|
Gao F, Yao M, Cao Y, Liu S, Liu Q, Duan H. Valsartan ameliorates podocyte loss in diabetic mice through the Notch pathway. Int J Mol Med 2016; 37:1328-36. [PMID: 26985716 DOI: 10.3892/ijmm.2016.2525] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 03/01/2016] [Indexed: 11/06/2022] Open
Abstract
The Notch pathway is known to be linked to diabetic nephropathy (DN); however, its underlying mechanism was poorly understood. In the present study, we examined the effect of Valsartan, an angiotensin II type 1 receptor antagonist, on the Notch pathway and podocyte loss in DN. Diabetes was induced in mice by an intraperitoneal injection of streptozotocin and and this was followed by treatment with Valsartan. Levels of blood glucose, kidney weight and body weight, as well as proteinuria were measured. Samples of the kidneys were also histologically examined. The relative levels of Jagged1, Notch1, Notch intracellular domain 1 (NICD1), Hes family BHLH transcription factor 1 (Hes1) and Hes-related family BHLH transcription factor with YRPW motif 1 expression (Hey1) in the glomeruli were determined by immunohistochemical analysis, western blot analysis and RT-qPCR. The B-Cell CLL/Lymphoma 2 (Bcl-2) and p53 pathways were examined by western blot analysis. Apoptosis and detachment of podocytes from the glomerular basement membrane were examined using a TUNEL assay, flow cytometric analysis and ELISA. The number of podocytes was quantified by measuring Wilms tumor-1 (WT-1) staining. We noted that the expression of Jagged1, Notch1, NICD1, Hes1 and Hey1 was increased in a time-dependent manner in the glomeruli of mice with streptozotocin (STZ)-induced diabetes. Moreover, in diabetic mice, Valsartan significantly reduced kidney weight and proteinuria, and mitigated the pathogenic processes in the kidneys. Valsartan also inhibited the activation of Notch, Bcl-2 and p53 pathways and ameliorated podocyte loss in the glomeruli of mice with STZ-induced diabetes. Taken together, these findings indicated that Valsartan exerted a beneficial effect on reducing podocyte loss, which is associated with inhibition of Notch pathway activation in the glomeruli of diabetic mice.
Collapse
Affiliation(s)
- Feng Gao
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Min Yao
- Department of Biochemistry, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Yanping Cao
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Shuxia Liu
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Qingjuan Liu
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Huijun Duan
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| |
Collapse
|
52
|
Pascoe VL, Fenves AZ, Wofford J, Jackson JM, Menter A, Kimball AB. The spectrum of nephrocutaneous diseases and associations. J Am Acad Dermatol 2016; 74:247-70; quiz 271-2. [DOI: 10.1016/j.jaad.2015.05.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/26/2015] [Accepted: 05/26/2015] [Indexed: 12/31/2022]
|
53
|
Jaisser F, Farman N. Emerging Roles of the Mineralocorticoid Receptor in Pathology: Toward New Paradigms in Clinical Pharmacology. Pharmacol Rev 2016; 68:49-75. [PMID: 26668301 DOI: 10.1124/pr.115.011106] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The mineralocorticoid receptor (MR) and its ligand aldosterone are the principal modulators of hormone-regulated renal sodium reabsorption. In addition to the kidney, there are several other cells and organs expressing MR, in which its activation mediates pathologic changes, indicating potential therapeutic applications of pharmacological MR antagonism. Steroidal MR antagonists have been used for decades to fight hypertension and more recently heart failure. New therapeutic indications are now arising, and nonsteroidal MR antagonists are currently under development. This review is focused on nonclassic MR targets in cardiac, vascular, renal, metabolic, ocular, and cutaneous diseases. The MR, associated with other risk factors, is involved in organ fibrosis, inflammation, oxidative stress, and aging; for example, in the kidney and heart MR mediates hormonal tissue-specific ion channel regulation. Genetic and epigenetic modifications of MR expression/activity that have been documented in hypertension may also present significant risk factors in other diseases and be susceptible to MR antagonism. Excess mineralocorticoid signaling, mediated by aldosterone or glucocorticoids binding, now appears deleterious in the progression of pathologies that may lead to end-stage organ failure and could therefore benefit from the repositioning of pharmacological MR antagonists.
Collapse
Affiliation(s)
- F Jaisser
- INSERM UMR 1138 Team 1, Cordeliers Research Center, Pierre et Marie Curie University, Paris, France (F.J., N.F); and University Paris-Est Creteil, Creteil, France (F.J.)
| | - N Farman
- INSERM UMR 1138 Team 1, Cordeliers Research Center, Pierre et Marie Curie University, Paris, France (F.J., N.F); and University Paris-Est Creteil, Creteil, France (F.J.)
| |
Collapse
|
54
|
Arai K, Tsuruoka H, Homma T. CS-3150, a novel non-steroidal mineralocorticoid receptor antagonist, prevents hypertension and cardiorenal injury in Dahl salt-sensitive hypertensive rats. Eur J Pharmacol 2015; 769:266-73. [PMID: 26607463 DOI: 10.1016/j.ejphar.2015.11.028] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/13/2015] [Accepted: 11/18/2015] [Indexed: 11/19/2022]
Abstract
The present study was designed to evaluate the antihypertensive and cardiorenal protective effects of CS-3150, a novel non-steroidal mineralocorticoid receptor antagonist, in Dahl salt-sensitive hypertensive rats (DS rats), and to compare the effects with spironolactone and eplerenone. DS rats were fed a control diet (0.3% NaCl) or high salt diet (8% NaCl) from 7 weeks of age. CS-3150 (0.25-2mg/kg), spironolactone (10-100mg/kg) or eplerenone (10-100mg/kg) were orally administered once a day to DS rats fed a high salt diet for 7 weeks. The high salt diet significantly increased systolic blood pressure, which was prevented by treatment with CS-3150 in a dose-dependent manner with no hyperkalemia (>5.5mEq/L). The antihypertensive effect of CS-3150 (0.5mg/kg) was equivalent to that of spironolactone (100mg/kg) and eplerenone (100mg/kg). CS-3150 also suppressed proteinuria and renal hypertrophy induced by the high salt diet. Histopathological examination of kidneys showed that CS-3150 markedly ameliorated glomerulosclerosis, tubular injury and tubulointerstitial fibrosis. In addition, CS-3150 inhibited left ventricular hypertrophy and elevation of plasma brain natriuretic peptide level. In contrast, the cardiorenal protective effects of spironolactone or eplerenone were partial, and the dose-dependency was not clear, especially in eplerenone-treated rats. These results indicate that chronic treatment with CS-3150 exerts antihypertensive and cardiorenal protective effects in a DS hypertensive rat model, and its potency is much superior to that of spironolactone or eplerenone. Thus, CS-3150 could be a promising agent for the treatment of hypertension and cardiorenal disorders.
Collapse
Affiliation(s)
- Kiyoshi Arai
- Cardiovascular-Metabolics Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan.
| | - Hiroyuki Tsuruoka
- Medicinal Chemistry Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Tsuyoshi Homma
- Cardiovascular-Metabolics Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| |
Collapse
|
55
|
Lozano-Maneiro L, Puente-García A. Renin-Angiotensin-Aldosterone System Blockade in Diabetic Nephropathy. Present Evidences. J Clin Med 2015; 4:1908-37. [PMID: 26569322 PMCID: PMC4663476 DOI: 10.3390/jcm4111908] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/27/2015] [Accepted: 10/15/2015] [Indexed: 12/14/2022] Open
Abstract
Diabetic Kidney Disease (DKD) is the leading cause of chronic kidney disease in developed countries and its prevalence has increased dramatically in the past few decades. These patients are at an increased risk for premature death, cardiovascular disease, and other severe illnesses that result in frequent hospitalizations and increased health-care utilization. Although much progress has been made in slowing the progression of diabetic nephropathy, renal dysfunction and the development of end-stage renal disease remain major concerns in diabetes. Dysregulation of the renin-angiotensin-aldosterone system (RAAS) results in progressive renal damage. RAAS blockade is the cornerstone of treatment of DKD, with proven efficacy in many arenas. The theoretically-attractive option of combining these medications that target different points in the pathway, potentially offering a more complete RAAS blockade, has also been tested in clinical trials, but long-term outcomes were disappointing. This review examines the “state of play” for RAAS blockade in DKD, dual blockade of various combinations, and a perspective on its benefits and potential risks.
Collapse
Affiliation(s)
- Luz Lozano-Maneiro
- Division of Nephrology, Department of Internal Medicine, Fuenlabrada University Hospital, Rey Juan Carlos University School of Medicine, Camino del Molino, 2, 28942 Fuenlabrada, Madrid, Spain.
| | - Adriana Puente-García
- Division of Nephrology, Department of Internal Medicine, Fuenlabrada University Hospital, Rey Juan Carlos University School of Medicine, Camino del Molino, 2, 28942 Fuenlabrada, Madrid, Spain.
| |
Collapse
|
56
|
Diabetic nephropathy: Nonsteroidal MRA added to RAS blockade reduces albuminuria. Nat Rev Nephrol 2015; 11:691-2. [PMID: 26460357 DOI: 10.1038/nrneph.2015.167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
57
|
Hou J, Xiong W, Cao L, Wen X, Li A. Spironolactone Add-on for Preventing or Slowing the Progression of Diabetic Nephropathy: A Meta-analysis. Clin Ther 2015; 37:2086-2103.e10. [PMID: 26254276 DOI: 10.1016/j.clinthera.2015.05.508] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/17/2015] [Accepted: 05/27/2015] [Indexed: 12/19/2022]
Abstract
PURPOSE The aim of this meta-analysis was to evaluate the benefits and potential adverse effects of adding spironolactone to standard antidiabetic/renoprotective/antihypertensive (AD/RP/AHT) treatment in patients with diabetic nephropathy (DN). METHODS PubMed/MEDLINE and Web of Knowledge were searched for relevant randomized, controlled studies (RCTs) or quasi-RCTs of the effects of adding spironolactone to standard AD/RP/AHT treatment in patients with DN. Results were summarized with a random-effects model or a fixed-effects model. FINDINGS According to the outcomes measured (benefits and risks of adding spironolactone to standard AD/RP/AHT treatment), compared with controls, the addition of spironolactone significantly decreased end-of-treatment (EOT) 24-hour urinary albumin/protein excretion and significantly increased percentage reduction from baseline in urinary albumin/creatinine ratio (UACR), although it did not significantly affect EOT UACR. The addition of spironolactone further led to a significantly greater reduction from baseline in glomerular filtration rate (GFR)/estimated (e) GFR, although it did not significantly affect EOT GFR/eGFR. Further, the addition of spironolactone significantly reduced EOT in-office, 24-hour, and daytime systolic and diastolic blood pressure (SBP and DBP, respectively) and led to significantly greater reductions from baseline in in-office SBP and DBP, although it did not significantly affect nighttime SBP or DBP. Finally, the addition of spironolactone significantly increased mean serum/plasma potassium levels and the risk for hyperkalemia. IMPLICATIONS Spironolactone could be added to preexisting AD/RP/AHT therapy in patients with DN to prevent or slow DN progression by reducing proteinuria. The addition of spironolactone would likely provide even more beneficial effect in patients with DN and hypertension due to the BP reduction associated with spironolactone use. However, the beneficial effects of spironolactone add-on should be weighed against its potential risks, especially hyperkalemia. The long-term effects of spironolactone add-on on renal outcomes and mortality need to be studied.
Collapse
Affiliation(s)
- Jing Hou
- Renal Department of Internal Medicine.
| | | | - Ling Cao
- Renal Department of Internal Medicine
| | | | - Ailing Li
- Center of Evidence-Based Medicine, The Affiliated Hospital, Luzhou Medical College, Luzhou, People's Republic of China
| |
Collapse
|
58
|
Abstract
IN BRIEF Diabetic kidney disease carries a heavy burden, both economically and in terms of quality of life, largely because of its very high risk for vascular disease. Coordinated, multidisciplinary care with attention to appropriate, timely screening and preventive management is crucial to reducing the morbidity and mortality of this devastating disease.
Collapse
Affiliation(s)
- Koyal Jain
- UNC Kidney Center, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Amy K Mottl
- UNC Kidney Center, University of North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|
59
|
Nariai T, Fujita K, Kawane K, Mori M, Nakayama R, Matsuda K, Katayama S, Fukuda N, Hori S, Iwata M, Hasegawa F, Suzuki K, Kato H. DSR-71167, a novel mineralocorticoid receptor antagonist with carbonic anhydrase inhibitory activity, separates urinary sodium excretion and serum potassium elevation in rats. J Pharmacol Exp Ther 2015; 354:2-9. [PMID: 25922341 DOI: 10.1124/jpet.114.221341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/24/2015] [Indexed: 01/22/2023] Open
Abstract
Mineralocorticoid receptor (MR) antagonists, such as spironolactone (SPI) and eplerenone (EPL), are useful for treating hypertension and heart failure. However, these two agents have the serious side effect of hyperkalemia. We hypothesized that adding the ability to inhibit carbonic anhydrase (CA) would reduce the risk of hyperkalemia associated with MR antagonists. We investigated the profiles of DSR-71167 [2-([(2,2-difluoroethyl)amino]methyl)-2'-fluoro-N-(3-methoxy-4-sulfamoylphenyl)biphenyl-4-carboxamide hydrochloride; an MR antagonist with weak CA inhibitory activity] with regard to antimineralocorticoid actions by examining relationships between the urinary excretion of sodium (index of antimineralocorticoid action) in deoxycorticosterone acetate-treated rats and elevation of serum levels of potassium in potassium-loaded rats compared with a DSR-71167 derivative without CA inhibition (2-(hydroxymethyl)-N-[4-(methylsulfonyl)phenyl]-2'-(trifluoromethyl)biphenyl-4-carboxamide), SPI, and EPL. DSR-71167 dose-dependently increased urinary excretion of sodium in deoxycorticosterone acetate-treated rats without elevating serum levels of potassium in potassium-loaded rats. 2-(Hydroxymethyl)-N-[4-(methylsulfonyl)phenyl]-2'-(trifluoromethyl)biphenyl-4-carboxamide, SPI, and EPL elevated serum levels of potassium significantly in potassium-loaded rats at doses that increased MR inhibitory activity. We confirmed that DSR-71167 significantly increases urinary bicarbonate and decreases blood bicarbonate, as pharmacodynamic markers of CA inhibition, in intact rats. Chronic DSR-71167 administration showed antihypertensive effects in high salt-loaded Dahl hypertensive rats. These results demonstrate that DSR-71167 is a novel type of MR antagonist, with CA inhibitory activity, which is expected to become a safer MR antagonist with a low potential risk for hyperkalemia.
Collapse
MESH Headings
- Animals
- Antihypertensive Agents/pharmacology
- Antihypertensive Agents/therapeutic use
- Benzamides/pharmacology
- Benzamides/therapeutic use
- COS Cells
- Carbonic Anhydrase Inhibitors/pharmacology
- Carbonic Anhydrase Inhibitors/therapeutic use
- Chlorocebus aethiops
- Eplerenone
- Hypertension/drug therapy
- Hypertension/physiopathology
- Male
- Mineralocorticoid Receptor Antagonists/pharmacology
- Mineralocorticoid Receptor Antagonists/therapeutic use
- Potassium/blood
- Rats, Inbred Dahl
- Rats, Sprague-Dawley
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Risk Assessment
- Sodium/urine
- Spironolactone/analogs & derivatives
- Spironolactone/pharmacology
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Transcriptional Activation
Collapse
Affiliation(s)
- Tetsuro Nariai
- Drug Research Division, Sumitomo Dainippon Pharma., Co., Ltd., Osaka, Japan
| | - Katsuya Fujita
- Drug Research Division, Sumitomo Dainippon Pharma., Co., Ltd., Osaka, Japan
| | - Kenji Kawane
- Drug Research Division, Sumitomo Dainippon Pharma., Co., Ltd., Osaka, Japan
| | - Masaya Mori
- Drug Research Division, Sumitomo Dainippon Pharma., Co., Ltd., Osaka, Japan
| | - Ryo Nakayama
- Drug Research Division, Sumitomo Dainippon Pharma., Co., Ltd., Osaka, Japan
| | - Koichi Matsuda
- Drug Research Division, Sumitomo Dainippon Pharma., Co., Ltd., Osaka, Japan
| | - Seiji Katayama
- Drug Research Division, Sumitomo Dainippon Pharma., Co., Ltd., Osaka, Japan
| | - Nobuhisa Fukuda
- Drug Research Division, Sumitomo Dainippon Pharma., Co., Ltd., Osaka, Japan
| | - Seiji Hori
- Drug Research Division, Sumitomo Dainippon Pharma., Co., Ltd., Osaka, Japan
| | - Masato Iwata
- Drug Research Division, Sumitomo Dainippon Pharma., Co., Ltd., Osaka, Japan
| | - Futoshi Hasegawa
- Drug Research Division, Sumitomo Dainippon Pharma., Co., Ltd., Osaka, Japan
| | - Kuniko Suzuki
- Drug Research Division, Sumitomo Dainippon Pharma., Co., Ltd., Osaka, Japan
| | - Hiroshi Kato
- Drug Research Division, Sumitomo Dainippon Pharma., Co., Ltd., Osaka, Japan
| |
Collapse
|
60
|
Anti-albuminuric effects of spironolactone in patients with type 2 diabetic nephropathy: a multicenter, randomized clinical trial. Clin Exp Nephrol 2015; 19:1098-106. [PMID: 25795029 DOI: 10.1007/s10157-015-1106-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/03/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND Several studies have demonstrated that spironolactone has an anti-albuminuric property in diabetic nephropathy. As an adverse event, spironolactone often induces the elevation of creatinine levels with hypotension and hyperkalemia. Therefore, we aimed to evaluate the efficacy and safety of spironolactone in Japanese patients with type 2 diabetes treated with either angiotensin-converting enzyme inhibitors or angiotensin receptor blockers. METHODS Fifty-two Japanese patients with diabetic nephropathy and albuminuria (100 mg/gCr-2000 mg/gCr) treated with renin-angiotensin system (RAS) blockade were enrolled in a prospective, randomized, open-label study. The patients were subjected to add-on treatment with spironolactone 25 mg once daily and compared with matched controls for 8 weeks. The primary outcome was a reduction in the rate of albuminuria at 8 weeks compared with the baseline value. This study was registered with UMIN Clinical Trials Registry (000008016). RESULTS Albuminuria was reduced by 33 % (95 % confidence interval: 22-54; P = 0.0002) at 8 weeks with spironolactone. In the spironolactone group, blood pressure tended to lower and the estimated glomerular filtration rate (eGFR) was significantly decreased compared to those in the control group. When adjusted by systolic blood pressure and eGFR, spironolactone treatment still showed a significant effect on albuminuria reduction in a linear mixed model (coefficient ± standard error; 514.4 ± 137.6 mg/gCr, P < 0.0005). No patient was excluded from the study because of hyperkalemia. CONCLUSIONS Spironolactone reduced albuminuria along with conventional RAS inhibitors in patients with diabetic nephropathy. Our study suggests that spironolactone exerts anti-albuminuric effects independent of systemic hemodynamic alterations.
Collapse
|
61
|
Lang F, Ritz E, Alesutan I, Voelkl J. Impact of aldosterone on osteoinductive signaling and vascular calcification. Nephron Clin Pract 2014; 128:40-5. [PMID: 25377380 DOI: 10.1159/000368268] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Vascular calcification is frequently found already in early stages of chronic kidney disease (CKD) patients and is associated with high cardiovascular risk. The process of vascular calcification is not considered a passive phenomenon but involves, at least in part, phenotypical transformation of vascular smooth muscle cells (VSMCs). Following exposure to excessive extracellular phosphate concentrations, VSMCs undergo a reprogramming into osteo-/chondroblast-like cells. Such 'vascular osteoinduction' is characterized by expression of osteogenic transcription factors and triggered by increased phosphate concentrations. A key role in this process is assigned to cellular phosphate transporters, most notably the type III sodium-dependent phosphate transporter Pit1. Pit1 expression is stimulated by mineralocorticoid receptor activation. Therefore, aldosterone participates in the phenotypical transformation of VSMCs. In preclinical models, aldosterone antagonism reduces vascular osteoinduction. Patients with CKD suffer from hyperphosphatemia predisposing to vascular osteogenic transformation, potentially further fostered by concomitant hyperaldosteronism. Clearly, additional research is required to define the role of aldosterone in the regulation of osteogenic signaling and the consecutive vascular calcification in CKD, but more generally also other diseases associated with excessive vascular calcification and even in individuals without overt disease.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | |
Collapse
|
62
|
Abstract
Classical effects of mineralocorticoids include stimulation of Na(+) reabsorption and K(+) secretion in the kidney and other epithelia including colon and several glands. Moreover, mineralocorticoids enhance the excretion of Mg(2+) and renal tubular H(+) secretion. The renal salt retention following mineralocorticoid excess leads to extracellular volume expansion and hypertension. The increase of blood pressure following mineralocorticoid excess is, however, not only the result of volume expansion but may result from stiff endothelial cell syndrome impairing the release of vasodilating nitric oxide. Beyond that, mineralocorticoids are involved in the regulation of a wide variety of further functions, including cardiac fibrosis, platelet activation, neuronal function and survival, inflammation as well as vascular and tissue fibrosis and calcification. Those functions are briefly discussed in this short introduction to the special issue. Beyond that, further contributions of this special issue amplify on mineralocorticoid-induced sodium appetite and renal salt retention, the role of mineralocorticoids in the regulation of acid-base balance, the involvement of aldosterone and its receptors in major depression, the mineralocorticoid stimulation of inflammation and tissue fibrosis and the effect of aldosterone on osteoinductive signaling and vascular calcification. Clearly, still much is to be learned about the various ramifications of mineralocorticoid-sensitive physiology and pathophysiology.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
63
|
Bauersachs J, Jaisser F, Toto R. Mineralocorticoid receptor activation and mineralocorticoid receptor antagonist treatment in cardiac and renal diseases. Hypertension 2014; 65:257-63. [PMID: 25368026 DOI: 10.1161/hypertensionaha.114.04488] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Johann Bauersachs
- From the Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany (J.B.); Centre de Recherche des Cordeliers, Inserm U1138, Université Pierre et Marie Curie, Paris, France (F.J.); and Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas (R.T.).
| | - Frédéric Jaisser
- From the Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany (J.B.); Centre de Recherche des Cordeliers, Inserm U1138, Université Pierre et Marie Curie, Paris, France (F.J.); and Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas (R.T.)
| | - Robert Toto
- From the Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany (J.B.); Centre de Recherche des Cordeliers, Inserm U1138, Université Pierre et Marie Curie, Paris, France (F.J.); and Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas (R.T.)
| |
Collapse
|
64
|
Bruder-Nascimento T, da Silva MAB, Tostes RC. The involvement of aldosterone on vascular insulin resistance: implications in obesity and type 2 diabetes. Diabetol Metab Syndr 2014; 6:90. [PMID: 25352918 PMCID: PMC4210491 DOI: 10.1186/1758-5996-6-90] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/02/2014] [Indexed: 12/31/2022] Open
Abstract
Aldosterone, a mineralocorticoid hormone produced at the adrenal glands, controls corporal hydroelectrolytic balance and, consequently, has a key role in blood pressure adjustments. Aldosterone also has direct effects in many organs, including the vasculature, leading to many cellular events that influence proliferation, migration, inflammation, redox balance and apoptosis. Aldosterone effects depend on its binding to mineralocorticoid receptors (MR). Aldosterone binding to MR triggers two pathways, the genomic pathway and the non-genomic pathway. In the vasculature e.g., activation of the non-genomic pathway by aldosterone induces rapid effects that involve activation of kinases, phosphatases, transcriptional factors and NAD(P)H oxidases. Aldosterone also plays a crucial role on systemic and vascular insulin resistance, i.e. the inability of a tissue to respond to insulin. Insulin has a critical role on cell function and vascular insulin resistance is considered an early contributor to vascular damage. Accordingly, aldosterone impairs insulin receptor (IR) signaling by altering the phosphatidylinositol 3-kinase (PI3K)/nitric oxide (NO) pathway and by inducing oxidative stress and crosstalk between the IR and the insulin-like growth factor-1 receptor (IGF-1R). This mini-review focuses on the relationship between aldosterone and vascular insulin resistance. Evidence indicating MR antagonists as therapeutic tools to minimize vascular injury associated with obesity and diabetes type 2 is also discussed.
Collapse
Affiliation(s)
- Thiago Bruder-Nascimento
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av Bandeirantes 3900, Ribeirao Preto, SP 14049-900 Brazil
| | - Marcondes AB da Silva
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av Bandeirantes 3900, Ribeirao Preto, SP 14049-900 Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av Bandeirantes 3900, Ribeirao Preto, SP 14049-900 Brazil
| |
Collapse
|