51
|
Zhang H, Wang X, Song R, Ding W, Li F, Ji L. Emerging Metabolic Profiles of Sulfonamide Antibiotics by Cytochromes P450: A Computational-Experimental Synergy Study on Emerging Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5368-5379. [PMID: 36921339 DOI: 10.1021/acs.est.3c00071] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Metabolism, especially by CYP450 enzymes, is the main reason for mediating the toxification and detoxification of xenobiotics in humans, while some uncommon metabolic pathways, especially for emerging pollutants, probably causing idiosyncratic toxicity are easily overlooked. The pollution of sulfonamide antibiotics in aqueous system has attracted increasing public attention. Hydroxylation of the central amine group can trigger a series of metabolic processes of sulfonamide antibiotics in humans; however, this work parallelly reported the coupling and fragmenting initiated by amino H-abstraction of sulfamethoxazole (SMX) catalyzed by human CYP450 enzymes. Elucidation of the emerging metabolic profiles was mapped via a multistep synergy between computations and experiments, involving preliminary DFT computations and in vitro and in vivo assays, profiling adverse effects, and rationalizing the fundamental factors via targeted computations. Especially, the confirmed SMX dimer was shown to potentially act as a metabolism disruptor in humans, while spin aromatic delocalization resulting in the low electron donor ability of amino radicals was revealed as the fundamental factor to enable coupling of sulfonamide antibiotics by CYP450 through the nonconventional nonrebound pathway. This work may further strengthen the synergistic use of computations prior to experiments to avoid wasteful experimental screening efforts in environmental chemistry and toxicology.
Collapse
Affiliation(s)
- Huanni Zhang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, China
| | - Runqian Song
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen Ding
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, China
| | - Li Ji
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)─International Research Agenda, Lodz University of Technology, Zeromskiego 116, Lodz 90-924, Poland
| |
Collapse
|
52
|
Ravindar L, Hasbullah SA, Rakesh KP, Hassan NI. Pyrazole and pyrazoline derivatives as antimalarial agents: A key review. Eur J Pharm Sci 2023; 183:106365. [PMID: 36563914 DOI: 10.1016/j.ejps.2022.106365] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/28/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Malaria poses a severe public health risk and a significant economic burden in disease-endemic countries. One of the most severe issues in malaria control is the development of drug resistance in malaria parasites. The standard treatment for malaria is artemisinin-combination therapy (ACT). Nevertheless, the Plasmodium parasite's extensive resistance to prior drugs and reduced ACT efficiency necessitates novel drug discovery. The progress in discovering novel, affordable, and effective antimalarial agents is significant in combating drug resistance, and the hybrid drug concept can be used to covalently link two or more active pharmacophores that may act on multiple targets. Pyrazole and pyrazoline derivatives are considered pharmacologically necessary active heterocyclic scaffolds that possess almost all types of pharmacological activities. This review summarized recent progress in antimalarial activities of synthesized pyrazole and pyrazoline derivatives. The studies published since 2000 are included in this systematic review. This review is anticipated to be beneficial for future study and new ideas in searching for rational development strategies for more effective pyrazole and pyrazoline derivatives as antimalarial drugs.
Collapse
Affiliation(s)
- Lekkala Ravindar
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600 Selangor, Malaysia
| | - Siti Aishah Hasbullah
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600 Selangor, Malaysia
| | - K P Rakesh
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nurul Izzaty Hassan
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600 Selangor, Malaysia.
| |
Collapse
|
53
|
Salam MA, Imdadulhaq ES, Al-Romaizan AN, Saleh TS, Mostafa MMM. Ultrasound-Assisted 1,3-Dipolar Cycloadditions Reaction Utilizing Ni-Mg-Fe LDH: A Green and Sustainable Perspective. Catalysts 2023. [DOI: 10.3390/catal13040650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Ultrasound-assisted synthesis of novel pyrazoles using Ni-Mg-Fe LDH as a catalyst in cyclopentyl methyl ether (CPME) is introduced. Different LDHs were tested as a catalyst for the synthesis of pyrazoles via a 1,3-dipolar cycloaddition reaction. Among them, Ni-Mg-Fe LDH was the superior catalyst for this reaction. This protocol offered high yields, a short reaction time, and a green solvent, and with the reuse of this catalyst six times with the same activity, it could be regarded as an ecofriendly, greener process. The NiMgFe LDH catalyst with the smallest particle size (29 nm) and largest surface area showed its superior efficacy for the 1,3 dipolar cycloaddition rection and can be successfully used in up to six catalytic cycles with little loss of catalytic activity. A plausible mechanism for this reaction over the Ni-Mg-Fe LDH is proposed.
Collapse
|
54
|
Hu J, Wang S, Li B, Lei A. K 2S 2O 8-Induced [4+2] Annulation of Tertiary Anilines and Alkenes toward Tetrahydroquinolines. Org Lett 2023. [PMID: 36866524 DOI: 10.1021/acs.orglett.2c04335] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Due to the unique physicochemical properties of heterocyclic compounds, their construction is one of the central issues in synthetic chemistry. Here, we report a K2S2O8-induced protocol for constructing tetrahydroquinolines from bulk chemicals (alkenes and anilines). The merit of this method has been demonstrated by its operational simplicity, wide scope, mild conditions, and transition-metal-free system.
Collapse
Affiliation(s)
- Jianguo Hu
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China.,Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, P. R. China
| | - Shengchun Wang
- The Institute for Advanced Studies (IAS) and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Bin Li
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, P. R. China
| | - Aiwen Lei
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China.,The Institute for Advanced Studies (IAS) and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| |
Collapse
|
55
|
Lapshin LS, Shchegolkov EV, Burgart YV, Triandafilova GA, Krasnykh OP, Malysheva KO, Saloutin VI. Synthesis of new analgesics based on 4-isopropyl-1-phenyl-3-(trifluoromethyl)pyrazol-5-one. MENDELEEV COMMUNICATIONS 2023. [DOI: 10.1016/j.mencom.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
56
|
Das M, Zamani L, Bratcher C, Musacchio PZ. Azolation of Benzylic C-H Bonds via Photoredox-Catalyzed Carbocation Generation. J Am Chem Soc 2023; 145:10.1021/jacs.2c12850. [PMID: 36757817 PMCID: PMC10409882 DOI: 10.1021/jacs.2c12850] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
A visible-light photoredox-catalyzed method is reported that enables the coupling between benzylic C-H substrates and N-H azoles. Classically, medicinally relevant N-benzyl azoles are produced via harsh substitution conditions between the azole and a benzyl electrophile in the presence of strong bases at high temperatures. Use of C-H bonds as the alkylating partner streamlines the preparation of these important motifs. In this work, we report the use of N-alkoxypyridinium salts as a critically enabling reagent for the development of a general C(sp3)-H azolation. The platform enables the alkylation of electron-deficient, -neutral, and -rich azoles with a range of C-H bonds, most notably secondary and tertiary partners. Moreover, the protocol is mild enough to tolerate benzyl electrophiles, thus offering an orthogonal approach to existing SN2 and cross-coupling methods.
Collapse
Affiliation(s)
- Mrinmoy Das
- Department of Chemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| | - Leila Zamani
- Department of Chemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| | - Christopher Bratcher
- Department of Chemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| | - Patricia Z Musacchio
- Department of Chemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| |
Collapse
|
57
|
No J, Yun YJ, Kim SG. Chemodivergent 1,3-Dipolar Cycloadditions of C, N-Cyclic Azomethine Imines with γ-Sulfonamido-α,β-Unsaturated Ketones to Synthesize Tricyclic Dinitrogen-Fused Heterocycles. J Org Chem 2023; 88:1772-1785. [PMID: 36693432 DOI: 10.1021/acs.joc.2c02949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
1,3-Dipolar cycloadditions of C,N-cyclic azomethine imines with γ-NHTs-α,β-unsaturated ketones were developed to synthesize tricyclic dinitrogen-fused heterocycles. Highly functionalized tricyclic tetrahydroisoquinolines were readily obtained in good to high yields in the [3 + 2]-cycloaddition reaction of N-Bz-protected C,N-cyclic azomethine imines with γ-NHTs-α,β-unsaturated ketones under mild reaction conditions. Moreover, DABCO-catalyzed cycloaddition of N-Ts-protected C,N-cyclic azomethine imines with γ-NHTs-α,β-unsaturated ketones followed by cleavage of the tosyl group is a convenient route to synthesize tetrahydropyrazolo [5,1-a]isoquinolines in good yields with excellent diastereoselectivities.
Collapse
Affiliation(s)
- Jaeeun No
- Department of Chemistry, College of Natural Science, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon 16227, Republic of Korea
| | - Young Jae Yun
- Department of Chemistry, College of Natural Science, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon 16227, Republic of Korea
| | - Sung-Gon Kim
- Department of Chemistry, College of Natural Science, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon 16227, Republic of Korea
| |
Collapse
|
58
|
Chalkha M, Ameziane el Hassani A, Nakkabi A, Tüzün B, Bakhouch M, Benjelloun AT, Sfaira M, Saadi M, Ammari LE, Yazidi ME. Crystal structure, Hirshfeld surface and DFT computations, along with molecular docking investigations of a new pyrazole as a tyrosine kinase inhibitor. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
59
|
Wang Y, Wang S, Wu Y, Zhao T, Liu J, Zheng J, Wang L, Lv J, Zhang T. Fast, highly enantioselective, and sustainable fluorination of 4-substituted pyrazolones catalyzed by amide-based phase-transfer catalysts. Org Chem Front 2023. [DOI: 10.1039/d3qo00269a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Highly enantioselective and sustainable fluorination of 4-substituted pyrazolones has been developed by amide-based phase-transfer catalysts.
Collapse
Affiliation(s)
- Yakun Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Shuaifei Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yufeng Wu
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P.R. China
| | - Ting Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P.R. China
| | - Jie Liu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Junlin Zheng
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Lin Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Jieli Lv
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Tao Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
60
|
Zerbib S, Khouili M, Catto M, Bouissane L. Sydnone: Synthesis, Reactivity and Biological Activities. Curr Med Chem 2023; 30:1122-1144. [PMID: 35726409 DOI: 10.2174/0929867329666220620123050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/07/2022] [Accepted: 03/24/2022] [Indexed: 11/22/2022]
Abstract
Sydnones are among the most well-known mesoionic compounds. Since their synthesis in 1935 by Earl and Mecknay, numerous researches have shown that the chemical behavior, physical and biological properties of sydnones make them the most useful compounds in organic chemistry. Sydnones undergo thermal 1,3-dipolar cycloaddition reaction with dipolarophiles (alkynes or alkenes) to give exclusively derivatives containing a pyrazole moiety exhibiting numerous applications, such as pharmaceuticals and agrochemicals. However, the sydnone cycloaddition reaction with alkynes requires harsh conditions, like high temperatures and long reaction times, giving poor regioselectivity to the resulting products. To overcome these constraints, new reactions named CuSAC (Copper- Catalyzed Sydnone-Alkyne Cycloaddition) and SPSAC (Strain-Promoted Sydnone- Alkyne Cycloaddition) have been developed, leading to pyrazoles with interesting constant kinetics.
Collapse
Affiliation(s)
- Souad Zerbib
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, BP 523, 23000 Beni-Mellal, Morocco
| | - Mostafa Khouili
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, BP 523, 23000 Beni-Mellal, Morocco
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy
| | - Latifa Bouissane
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, BP 523, 23000 Beni-Mellal, Morocco
| |
Collapse
|
61
|
Powerful Potential of Polyfluoroalkyl-Containing 4-Arylhydrazinylidenepyrazol-3-ones for Pharmaceuticals. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010059. [PMID: 36615256 PMCID: PMC9821843 DOI: 10.3390/molecules28010059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
4-Arylhydrazinylidene-5-(polyfluoroalkyl)pyrazol-3-ones (4-AHPs) were found to be obtained by the regiospecific cyclization of 2-arylhydrazinylidene-3-(polyfluoroalkyl)-3-oxoesters with hydrazines, by the azo coupling of 4-nonsubstituted pyrazol-5-oles with aryldiazonium chlorides or by the firstly discovered acid-promoted self-condensation of 2-arylhydrazinylidene-3-oxoesters. All the 4-AHPs had an acceptable ADME profile. Varying the substituents in 4-AHPs promoted the switching or combining of their biological activity. The polyfluoroalkyl residue in 4-AHPs led to the appearance of an anticarboxylesterase action in the micromolar range. An NH-fragment and/or methyl group instead of the polyfluoroalkyl one in the 4-AHPs promoted antioxidant properties in the ABTS, FRAP and ORAC tests, as well as anti-cancer activity against HeLa that was at the Doxorubicin level coupled with lower cytotoxicity against normal human fibroblasts. Some Ph-N-substituted 4-AHPs could inhibit the growth of N. gonorrhoeae bacteria at MIC 0.9 μg/mL. The possibility of using 4-AHPs for cell visualization was shown. Most of the 4-AHPs exhibited a pronounced analgesic effect in a hot plate test in vivo at and above the diclofenac and metamizole levels except for the ones with two chlorine atoms in the aryl group. The methylsulfonyl residue was proved to raise the anti-inflammatory effect also. A mechanism of the antinociceptive action of the 4-AHPs through blocking the TRPV1 receptor was proposed and confirmed using in vitro experiment and molecular docking.
Collapse
|
62
|
Polysorbate 21 Can Modulate the Antibacterial Potential of Two Pyrazol Derivatives. Biomolecules 2022; 12:biom12121819. [PMID: 36551246 PMCID: PMC9776004 DOI: 10.3390/biom12121819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
The combination of two compounds with known antimicrobial activity may, in some cases, be an effective way to limit the resistance to antibiotics of specific pathogens. Molecules carrying pyrazole moiety are well known for their bioactive properties and have wide applicability in the medical and pharmaceutical field. Surfactants have, among other useful properties, the ability to affect the growth of microorganisms. The paper reports on the effect of the combination of two pyrazole derivatives, (1H-pyrazol-1-yl) methanol 1-hydroxymethylpyrazole (SAM1) and 1,1'methandiylbis (1H-pyrazol) (AM1), with sorbitan monolaurate (polysorbate 21, Tween 21, T21) on the growth of Gram-positive and Gram-negative bacteria. The results demonstrated a different ability of this combination to inhibit Staphylococcus aureus and Escherichia coli. T21 intensified the inhibitory activity of the pyrazoles to a greater extent in the Gram-negative bacteria compared to the Gram-positive ones, a fact confirmed by time-kill experiments. The experimental data showed that the association of T21 with the pyrazoles led to the increased release of intracellular material and a more intense uptake of crystal violet, which indicates that the potentiation of the antibacterial effect was based on the modification of the normal permeability of bacterial cells. T21 acted as a modulating factor and increased the permeability of the membrane, allowing the accelerated penetration of the pyrazoles inside the bacterial cells. This fact is important in controlling the global increase in microbial resistance to antibiotics and antimicrobials and finding viable solutions to overcome the antibiotic crisis. The paper highlights the possibility of using non-toxic surfactant molecules in antimicrobial combinations with practical applications. This could widen the range of adjuvants in applications which would be useful in the control of resistant microorganisms.
Collapse
|
63
|
Synthesis of novel isoxazole-containing pyrazolines and pyrazoles via cycloaddition and elimination/aromatization process. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
64
|
Khudina OG, Elkina NA, Burgart YV, Ezhikova MA, Kodess MI, Esaulkova YL, Zarubaev VV, Shtro AA, Triandafilova GA, Krasnykh OP, Malysheva KO, Gerasimova NA, Evstigneeva NP, Saloutin VI. Synthesis and biological activity of 2-sulfonarylhydrazinylidene 1,3-diketones and their pyrazole derivatives. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3696-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
65
|
Synthesis, characterization, antioxidant potential, and cytotoxicity screening of new Cu(II) complexes with 4-(arylchalcogenyl)-1H-pyrazoles ligands. J Inorg Biochem 2022; 237:112013. [PMID: 36183642 DOI: 10.1016/j.jinorgbio.2022.112013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 01/18/2023]
Abstract
Two new Cu(II) complexes based on 4-(arylchalcogenyl)-1H-pyrazoles monodentate bis(ligand) containing selenium or sulfur groups (2a and 2b) have been synthesized and characterized by IR spectroscopy, high-resolution mass spectrometry (HRMS), and by X-ray crystallography. In the effort to propose new applications for the biomedical area, we evaluated the antioxidant activity and cytotoxicity of the newly synthesized complexes. The antioxidant activity of the Cu(II) complexes (2a - 2b) were assessed through their ability to inhibit the formation of reactive species (RS) induced by sodium azide and to scavenge the synthetic radicals 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS+). Both copper complexes containing selenium (2a) and sulfur (2b) presented in vitro antioxidant activity. The (1a - 1b and 2a - 2b) compounds did not show cytotoxicity in V79 cells at low concentrations. Furthermore, the antiproliferative activity of free ligands (1a - 1b) and their complexes (2a - 2b) were tested against two human tumor cell lines: MCF-7 (breast adenocarcinoma) and HepG2 (hepatocarcinoma). Also, 2a was tested against U2OS (osteosarcoma). Our results demonstrated that 1a and 1b show little or no growth inhibition activities on human cell lines.The 2a compound exhibited good cytotoxic activity toward human tumor cell lines. However, 2a showed no selectivity, with a selectivity index of 1.12-1.40. Complex 2b was selective for the MCF-7 human tumor cell lines with IC50 of 59 ± 2 μM. This study demonstrates that the Cu(II) complexes 2a and 2b represent promising antitumoral compounds, and further studies are necessary to understand the molecular mechanisms of these effects.
Collapse
|
66
|
Gorodnicheva NV, Vasil’eva OS, Ostroglyadov ES, Baichurin RI, Litvinov IA, Tyurenkov IN, Kovalev NS, Bakulin DA, Kurkin DV, Baichurina LV, Makarenko SV. Synthesis, structure, and biological activity of 4-hetaryl-2-pyrrolidones containing a pyrazole ring. Chem Heterocycl Compd (N Y) 2022; 58:598-607. [PMID: 36467774 PMCID: PMC9708518 DOI: 10.1007/s10593-022-03140-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/05/2022] [Indexed: 12/02/2022]
Abstract
Single diastereomers of 4-hetaryl-2-pyrrolidone-3(5)-carbo- and 2-[4-hetaryl-2-pyrrolidon-1-yl]acetohydrazides were used in reactions with 2,4-pentanedione, providing (3R*,4S*)-3-, (4R*,5R*)-5-(3,5-dimethyl-1H-pyrazole-1-carbonyl)- and 1-[2-(3,5-dimethyl-1H-pyrazol-1-yl)-2-oxoethyl]-4-hetaryl-2-pyrrolidones. The structures of the synthesized compounds were confirmed by spectral methods and X-ray structural analysis. Some of the obtained compounds were shown to possess nootropic and anxiolytic activity. Supplementary Information The online version contains supplementary material available at 10.1007/s10593-022-03140-4.
Collapse
Affiliation(s)
- Natal’ya V. Gorodnicheva
- Herzen State Pedagogical University of Russia, 48 Moyka River Embankment, Saint Petersburg, 191186 Russia
| | - Olga S. Vasil’eva
- Herzen State Pedagogical University of Russia, 48 Moyka River Embankment, Saint Petersburg, 191186 Russia
| | - Evgeny S. Ostroglyadov
- Herzen State Pedagogical University of Russia, 48 Moyka River Embankment, Saint Petersburg, 191186 Russia
| | - Ruslan I. Baichurin
- Herzen State Pedagogical University of Russia, 48 Moyka River Embankment, Saint Petersburg, 191186 Russia
| | - Igor A. Litvinov
- A. E. Arbuzov Institute of Organic and Physical Chemistry, 8 Akademika Arbuzova St., Kazan, 420088 Russia
| | - Ivan N. Tyurenkov
- Volgograd State Medical University, 1 Pavshikh Bortsov Sq., Volgograd, 400131 Russia
| | - Nikolay S. Kovalev
- Volgograd State Medical University, 1 Pavshikh Bortsov Sq., Volgograd, 400131 Russia
| | - Dmitry A. Bakulin
- Volgograd State Medical University, 1 Pavshikh Bortsov Sq., Volgograd, 400131 Russia
| | - Denis V. Kurkin
- Volgograd State Medical University, 1 Pavshikh Bortsov Sq., Volgograd, 400131 Russia
| | - Larisa V. Baichurina
- Kirov Military Medical Academy, 6 Akademika Lebedeva St., Saint Petersburg, 194044 Russia
| | - Sergey V. Makarenko
- Herzen State Pedagogical University of Russia, 48 Moyka River Embankment, Saint Petersburg, 191186 Russia
| |
Collapse
|
67
|
Gonçalves S, Vasconcelos MW, Mota TFM, Lopes JMH, Guimaraes LJ, Miglioranza KSB, Ghisi NDC. Identifying global trends and gaps in research on pesticide fipronil: a scientometric review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:79111-79125. [PMID: 35705759 DOI: 10.1007/s11356-022-21135-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Fipronil is a broad potent insecticide that belongs to the phenylpyrazole chemical family. Its action mode acting in the presynaptic and postsynaptic blocking the chlorine ions by the neurotransmitters GABA. It is considered highly toxic, and in some countries, its use has been prohibited. The objective of this review is to perform a scientometric analysis for global measurement of the research on the insecticide fipronil. All information in this study was searched in the Web of Science (WoS) database in December 2021. The search was carried using the term "fipronil." Thus, 2362 studies were selected. Most selected articles showed toxicity effects of fipronil on non-target organisms, analytical methods to detect the insecticide, environmental degradation processes, and efficiency in reducing insects through its use. The H index for this dataset was 91. The cooperation network of the authors among countries showed the USA as the most notorious, with 30.6% of studies, followed by China (15.7%) and Brazil (10.9%). There are many studies on the toxicity of fipronil in bees, forms of degradation, and effectiveness of this insecticide. The present work presents suggestions pointed out in the articles for further research and highlights the importance of studies involving fipronil, as well as studies of alternative pest control.
Collapse
Affiliation(s)
- Sandrieli Gonçalves
- Laboratory of Biological Analysis and Molecular Biology (BioMol), Universidade Tecnológica Federal Do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança s/n, km 04, Comunidade Sao Cristovão, P.O. Box 157, Dois Vizinhos, , Parana, 85660-000, Brazil
- Graduate Program in Biotechnology, Universidade Tecnológica Federal Do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança s/n, km 04, Comunidade Sao Cristovão, P.O. Box 157, Dois Vizinhos, Parana, 85660-000, Brazil
| | - Marina Wust Vasconcelos
- Laboratory of Biological Analysis and Molecular Biology (BioMol), Universidade Tecnológica Federal Do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança s/n, km 04, Comunidade Sao Cristovão, P.O. Box 157, Dois Vizinhos, , Parana, 85660-000, Brazil
- Graduate Program in Biotechnology, Universidade Tecnológica Federal Do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança s/n, km 04, Comunidade Sao Cristovão, P.O. Box 157, Dois Vizinhos, Parana, 85660-000, Brazil
| | - Thaís Fernandes Mendonça Mota
- Graduate Program in Biotechnology, Universidade Tecnológica Federal Do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança s/n, km 04, Comunidade Sao Cristovão, P.O. Box 157, Dois Vizinhos, Parana, 85660-000, Brazil.
- Collegiate of Biological Sciences, Universidade Estadual Do Paraná (UNESPAR), Campus Paranavaí, Avenida Gabriel Esperidião, s/n, Jardim Morumbi, Paranavaí, Parana, 87703-000, Brazil.
| | - Juliana Marceli Hofma Lopes
- Graduate Program in Agroecosystems (PPGSIS), Universidade Tecnológica Federal Do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança s/n, km 04, Comunidade Sao Cristovão, P.O. Box 157, Dois Vizinhos, Parana, 85660-000, Brazil
| | - Larissa Juliane Guimaraes
- Graduate Program in Agroecosystems (PPGSIS), Universidade Tecnológica Federal Do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança s/n, km 04, Comunidade Sao Cristovão, P.O. Box 157, Dois Vizinhos, Parana, 85660-000, Brazil
| | - Karina Silvia Beatriz Miglioranza
- Laboratorio de Ecotoxicología Y Contaminación Ambiental, , Instituto de Investigaciones Marinas Y Costeras (IIMyC), FCEyN, UNMDP-CONICET, Funes 3350, 7600, Mar del Plata, Argentina
| | - Nédia de Castilhos Ghisi
- Laboratory of Biological Analysis and Molecular Biology (BioMol), Universidade Tecnológica Federal Do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança s/n, km 04, Comunidade Sao Cristovão, P.O. Box 157, Dois Vizinhos, , Parana, 85660-000, Brazil
- Graduate Program in Biotechnology, Universidade Tecnológica Federal Do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança s/n, km 04, Comunidade Sao Cristovão, P.O. Box 157, Dois Vizinhos, Parana, 85660-000, Brazil
| |
Collapse
|
68
|
Cetin A, Oguz E, Türkan F. In Silico and In Vitro Analysis of Acetylcholinesteraseand Glutathione S-Transferase Enzymes of Substituted Pyrazoles. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222110263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
69
|
Chang J, Wang C, Yang S, Shi L, Zhang Y, Liu W, Meng J, Zeng J, Zhang R, Liu N, Xing D. Design, synthesis, and biological evaluation of diarylpyrazole derivatives as antitumor agents targeting microtubules. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
70
|
Synthesis and Characterization of a Calcium‐Pyrazolonato Complex. Observation of
In‐Situ
Desolvation During Micro‐Electron Diffraction. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
71
|
Saini P, Bari SS, Yadav P, Khullar S, Mandal SK, Bhalla A. Synthesis of
C2
‐Formamide(thiophene)pyrazolyl‐
C4
’‐carbaldehyde and their Transformation to Schiff's Bases and Stereoselective
trans
‐β‐Lactams: Mechanistic and Theoretical Insights. ChemistrySelect 2022. [DOI: 10.1002/slct.202202172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Preety Saini
- Department of Chemistry and Centre of Advanced Studies in Chemistry Panjab University Chandigarh 160014 India
| | - Shamsher S. Bari
- Department of Chemistry and Centre of Advanced Studies in Chemistry Panjab University Chandigarh 160014 India
| | - Pooja Yadav
- Department of Chemistry and Centre of Advanced Studies in Chemistry Panjab University Chandigarh 160014 India
| | - Sadhika Khullar
- Department of Chemistry Dr. B. R. Ambedkar National Institute of Technology Jalandhar 144011 Punjab India
| | - Sanjay K. Mandal
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali 140306 Punjab India
| | - Aman Bhalla
- Department of Chemistry and Centre of Advanced Studies in Chemistry Panjab University Chandigarh 160014 India
| |
Collapse
|
72
|
Bakhtiarian M, Khodaei MM. Pyridinium-based dual acidic ionic liquid supported on the pectin for efficient synthesis of pyrazoles. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
73
|
Wang N, Qiao Y, Du Y, Mei H, Han J. Assembly of trifluoromethylated fused tricyclic pyrazoles via cyclization of β-amino cyclic ketones. Org Biomol Chem 2022; 20:7467-7471. [PMID: 36102007 DOI: 10.1039/d2ob01391f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fused polycyclic pyrazoles are an important class of heterocyclic compounds; thus, the development of efficient methods for their preparation becomes highly urgent. Herein, we reported an efficient method for the synthesis of trifluoromethylated fused tricyclic pyrazoles via intramolecular cyclization of cyclic ketone-derived amines. Mechanistic studies provide evidence for the in situ generation of trifluoromethylated β-diazo ketones as intermediates via diazotization with the use of tert-butyl nitrite. The synthetic utility of this method is highlighted by scale-up synthesis and the derivatization of the obtained fused tricyclic pyrazole products.
Collapse
Affiliation(s)
- Nana Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yiming Qiao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Youlong Du
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Haibo Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
74
|
Feng J, Wang Y, Gao L, Yu Y, Baell JB, Huang F. Electrochemical Synthesis of Polysubstituted Sulfonated Pyrazoles via Cascade Intermolecular Condensation, Radical-Radical Cross Coupling Sulfonylation, and Pyrazole Annulation. J Org Chem 2022; 87:13138-13153. [PMID: 36166815 DOI: 10.1021/acs.joc.2c01609] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrochemical synthesis of polysubstituted sulfonated pyrazoles from enaminones and sulfonyl hydrazides was established under metal-free, exogenous-oxidant-free, and mild conditions. By judicious choice of different electrochemical reaction conditions, NH2-functionalized enaminones or N,N-disubstituted enaminones can react with aryl/alkyl sulfonyl hydrazides to afford tetra- or trisubstituted sulfonated pyrazoles in moderate to good yields, respectively. The gram-scale electrochemical transformation demonstrated the efficiency and practicability of this synthetic strategy. In addition, the sulfonated NH-pyrazole can be obtained via the dissociation of the N-tosyl group. Mechanistic studies reveal that the electrochemical cascade reaction synthesis of polysubstituted sulfonated pyrazoles proceeded via the sequence of intermolecular condensation, radical-radical cross coupling sulfonylation, and pyrazole annulation.
Collapse
Affiliation(s)
- Jiajun Feng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Yuzhi Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Luoyu Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Yang Yu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Jonathan B Baell
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China.,Medicinal Chemistry Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Fei Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China.,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| |
Collapse
|
75
|
Design, synthesis, and molecular docking of novel pyrazole-chalcone analogs of lonazolac as 5-LOX, iNOS and tubulin polymerization inhibitors with potential anticancer and anti-inflammatory activities. Bioorg Chem 2022; 129:106171. [PMID: 36166898 DOI: 10.1016/j.bioorg.2022.106171] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/22/2022]
Abstract
Uncontrolled inflammation predisposes to pleiotropic effects leading to cancer development thanks to promoting all stages of tumorigenesis. Therefore, cancer-associated inflammation has been delegated as the seventh hallmark of cancer. Thus, raging the war against both inflammation and cancer via the innovation of bioactive agents with dual anti-inflammatory and anticancer activities is a necessity. Herein, a novel series of pyrazole-chalcone analogs of Lonazolac (7a-g and 8a-g) have been synthesized and investigated for their in vitro anticancer activity against four cancer cell lines using the MTT assay method. Among all, hybrid 8g was the most potent against three cancer cell lines, HeLa, HCT-116, and RPMI-822 with IC50 values of 2.41, 2.41, and 3.34 µM, respectively. In contrast, hybrid 8g showed moderate inhibitory activity against MCF-7 with IC50 28.93 μM and with a selectivity profile against MCF-10A (non-cancer cells). Mechanistically, hybrid 8g was the most potent inhibitor against tubulin polymerization (IC50 = 4.77 µM), suggesting tubulin as a molecular target and explaining the observed cytotoxicity of hybrid 8g. This was mirrored by the detected potent pre-G1 apoptosis induction and G2/M cell cycle arrest. Moreover, hybrid8gexhibited selectivity against COX-2 (IC50 = 5.13 µM) more than COX-1 (IC50 = 33.46 µM), indicating that 8g may have lower cardiovascular side effects, but is still not potent as celecoxib (COX-2 IC50 = 0.204 µM, COX-1 = 35.8 µM). Notably, hybrid 8g showed promising inhibitory activity towards 5-LOX (IC50 = 5.88 µM). Finally, the anti-inflammatory activity of hybrid8 g was confirmed by high iNOS and PGE2 inhibitory activities in LPS-stimulated RAW cells with IC50 values of4.93 µM and 10.98 µM, respectively, that accompanied by showingthe most potent inhibition of NO release (70.61 % inhibition rate). Molecular docking studies of hybrid 8g confirmed good correlations with the executed biological results. Furthermore, hybrid 8g had good drug-likeness and suitable physicochemical properties. Taken together, the combined results suggested hybrid8gas a promising orally administered candidate in the journey of repurposing NSAIDs for cancer chemopreventionand treatment.
Collapse
|
76
|
Phakdeeyothin K, Viriyanukul T, Udomsasporn K, Phomphrai K, Yotphan S. Metal‐Free Aminomethylation of Pyrazolones: Direct Access to 4‐Aminomethylated Pyrazolones. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kunita Phakdeeyothin
- Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University 10400 Bangkok Thailand
| | - Tarm Viriyanukul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University 10400 Bangkok Thailand
| | - Kwanchanok Udomsasporn
- Department of Materials Science and Engineering School of Molecular Science and Engineering Vidyasirimedhi Instituteof Science and Technology (VISTEC) 21210 Wangchan Rayong Thailand
| | - Khamphee Phomphrai
- Department of Materials Science and Engineering School of Molecular Science and Engineering Vidyasirimedhi Instituteof Science and Technology (VISTEC) 21210 Wangchan Rayong Thailand
| | - Sirilata Yotphan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University 10400 Bangkok Thailand
| |
Collapse
|
77
|
Sun Y, Yang Z, Lu SN, Chen Z, Wu XF. Formal [4+1] Annulation of Azoalkenes with CF 3-Imidoyl Sulfoxonium Ylides and Dual Double Bond Isomerization Cascade: Synthesis of Trifluoromethyl-Containing Pyrazole Derivatives. Org Lett 2022; 24:6822-6827. [PMID: 36082936 DOI: 10.1021/acs.orglett.2c02746] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A straightforward strategy for the metal-free construction of trifluoromethyl-containing pyrazole derivatives has been achieved from readily available α-halo hydrazones and CF3-imidoyl sulfoxonium ylides. The cascade transformation proceeds through the formal [4+1] cycloaddition followed by an unexpected dual double bond isomerization. The protocol features mild conditions, easy operation, excellent substrate compatibility, and good regioselectivity. The synthetic utility is demonstrated by scale-up reaction and further elaboration of the obtained pyrazole products.
Collapse
Affiliation(s)
- Yue Sun
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zuguang Yang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shu-Ning Lu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhengkai Chen
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China.,Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straβe 29a, 18059 Rostock, Germany
| |
Collapse
|
78
|
Li MM, Huang H, Pu Y, Tian W, Deng Y, Lu J. A close look into the biological and synthetic aspects of fused pyrazole derivatives. Eur J Med Chem 2022; 243:114739. [PMID: 36126386 DOI: 10.1016/j.ejmech.2022.114739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022]
Abstract
The fusion of pyrazole scaffold with other skeletons creates a class of attractive molecules, demonstrating significant biological and chemical potentiality in the development of medicinal chemistry. Over the past few decades, numerous biologically active molecules featuring fused pyrazole moieties have been excavated and synthesized, some of which represented by sildenafil have been marketed as drugs, and the biological importance together with chemical synthesis strategies of fused pyrazole compounds, including structural modification based on lead compounds, have been steadily progressing. In this review, we focused our attention on the biological importance of fused pyrazoles and highlighted recent progress in the synthesis of this framework over the past 10 years. What' s more, the limitations, challenges, and future prospects were proposed, wishing to provide references for the development of pyrazole fused frameworks in the field of medicinal chemistry. Contents.
Collapse
Affiliation(s)
- Mei-Mei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Hui Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yiru Pu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wanrong Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China.
| |
Collapse
|
79
|
|
80
|
Ferreira TN, Brazil RP, McDowell MA, Cunha-Júnior EF, Costa PRR, Netto CD, Santos ECT, Genta FA. Effects of anti-Leishmania compounds in the behavior of the sand fly vector Lutzomyia longipalpis. PEST MANAGEMENT SCIENCE 2022; 78:2792-2805. [PMID: 35411662 DOI: 10.1002/ps.6900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Leishmaniasis is an infectious parasitic disease caused by pathogens of the genus Leishmania transmitted through the bite of adult female sand flies. To reduce case numbers, it is necessary to combine different control approaches, especially those aimed at the sand fly vectors. Innovative forms of control with the use of attractive sugar baits explored the fact that adult sand flies need to feed on sugars of plant origin. Leishmania parasites develop in the gut of sand flies, interacting with the sugars in the diet of adults. Recent studies have shown that sugar baits containing plant-derived compounds can reduce sand fly survival, the number of parasites per gut, and the percentage of infected sand flies. Several synthetic compounds produced from naphthoquinones and pterocarpans have anti-parasitic activity on Leishmania amazonensis and/or Leishmania infantum in cell culture. This work aimed to assess the inclusion of these compounds in sugar baits for blocking transmission, targeting the development of the Leishmania parasite inside the sand fly vector. RESULTS We evaluated the attractant or repellent properties of these compounds, as well as of the reference compound N,N'-diethyl-m-toluamide (DEET), in sugar baits. We also observed changes in feeding preference caused by these compounds, looking for anti-feeding or stimulation of ingestion. Pterocarpanquinone L4 and pentamidine showed attractant and repellent properties, respectively. CONCLUSION Based on the effects in feeding preference and intake volume, pterocarpanquinone L6, and the pyrazole-derived compound P8 were chosen as the most promising compounds for the future development of anti-Leishmania sugar baits. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Tainá Neves Ferreira
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Reginaldo Peçanha Brazil
- Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Mary Ann McDowell
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Edézio Ferreira Cunha-Júnior
- Laboratório de Imunoparasitologia, Unidade Integrada de Pesquisa em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Campus UFRJ-Macaé, Macaé, Brazil
| | - Paulo Roberto Ribeiro Costa
- Laboratório de Química Bioorgânica, Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Chaquip Daher Netto
- Laboratório de Química, Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Eduardo Caio Torres Santos
- Laboratório de Bioquímica de Tripanossomatídeos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Fernando Ariel Genta
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
81
|
Slathia N, Gupta A, Kapoor K. I2/ TBHP Reagent System: A Modern Paradigm for Organic Transformations. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Kamal Kapoor
- University of Jammu Department of Chemistry Department of Chemistry 180006 Jammu INDIA
| |
Collapse
|
82
|
Huo H, Li G, Shi B, Li J. Recent advances on synthesis and biological activities of C-17 aza-heterocycle derived steroids. Bioorg Med Chem 2022; 69:116882. [PMID: 35749841 DOI: 10.1016/j.bmc.2022.116882] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/15/2022] [Accepted: 06/08/2022] [Indexed: 11/02/2022]
Abstract
Steroids modification for improving their biological activities is one of the most efficient and fruitful methods to develop novel medicines. Steroids with aza-heterocycles attaching to the C-17 owing various biological activities have received great attentions and some of the compounds are developed successfully as drugs. In this review, the research of the syntheses and biological activities of steroids bearing various aza-heterocycles published in the last 8 years is assembled, and some important structure-activity relationships (SARs) of active compounds are presented. According to the analysis of the literatures and our experiences in this field, the potential of aza-heterocyclic steroids as medicinal drugs is proposed.
Collapse
Affiliation(s)
- Haibo Huo
- Department of Life Sciences, Changzhi University, Changzhi 046011, Shanxi, China
| | - Guixia Li
- Department of Basic Medicine, Changzhi Medical College, Changzhi, China
| | - Baojun Shi
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jian Li
- Department of Life Sciences, Changzhi University, Changzhi 046011, Shanxi, China; Department of Chemistry, Changzhi University, Changzhi 046011, Shanxi, China.
| |
Collapse
|
83
|
Silva VLM, Silva AMS. Revisiting the Chemistry of Vinylpyrazoles: Properties, Synthesis, and Reactivity. Molecules 2022; 27:molecules27113493. [PMID: 35684432 PMCID: PMC9182008 DOI: 10.3390/molecules27113493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Vinylpyrazoles, also known as pyrazolyl olefins, are interesting motifs in organic chemistry but have been overlooked. This review describes the properties and synthetic routes of vinylpyrazoles and highlights their versatility as building blocks for the construction of more complex organic molecules. Concerning the reactivity of vinylpyrazoles, the topics surveyed herein include their use in cycloaddition reactions, free-radical polymerizations, halogenation and hydrohalogenation reactions, and more recently in transition-metal-catalyzed reactions, among other transformations. The current state of the art about vinylpyrazoles is presented with an eye to future developments regarding the chemistry of these interesting compounds. Styrylpyrazoles were not considered in this review, as they were the subject of a previous review article published in 2020.
Collapse
|
84
|
Acid Catalyzed N-Alkylation of Pyrazoles with Trichloroacetimidates. ORGANICS 2022. [DOI: 10.3390/org3020009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
N-Alkyl pyrazoles are important heterocycles in organic and medicinal chemistry, demonstrating a wide range of biological activity. A new method for the N-alkylation of pyrazoles has been developed using trichloroacetimidate electrophiles and a Brønsted acid catalyst. These reactions provide ready access to N-alkyl pyrazoles which are present in a variety of medicinally relevant lead structures. Benzylic, phenethyl and benzhydryl trichloroacetimidates provide good yields of the N-alkyl pyrazole products. Unsymmetrical pyrazoles provide a mixture of the two possible regioisomers, with the major product being controlled by sterics. This methodology provides an alternative to other alkylation methods that require strong base or high temperature.
Collapse
|
85
|
Ni T, Ding Z, Xie F, Hao Y, Bao J, Zhang J, Yu S, Jiang Y, Zhang D. Design, Synthesis, and In Vitro and In Vivo Antifungal Activity of Novel Triazoles Containing Phenylethynyl Pyrazole Side Chains. Molecules 2022; 27:molecules27113370. [PMID: 35684308 PMCID: PMC9182106 DOI: 10.3390/molecules27113370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/12/2022] [Accepted: 05/21/2022] [Indexed: 12/04/2022] Open
Abstract
A series of triazole derivatives containing phenylethynyl pyrazole moiety as side chain were designed, synthesized, and most of them exhibited good in vitro antifungal activities. Especially, compounds 5k and 6c showed excellent in vitro activities against C. albicans (MIC = 0.125, 0.0625 μg/mL), C. neoformans (MIC = 0.125, 0.0625 μg/mL), and A. fumigatus (MIC = 8.0, 4.0 μg/mL). Compound 6c also exerted superior activity to compound 5k and fluconazole in inhibiting hyphae growth of C. albicans and inhibiting drug-resistant strains of C. albicans, and it could reduce fungal burdens in mice kidney at a dosage of 1.0 mg/kg. An in vivo efficacy evaluation indicated that 6c could effectively protect mice models from C. albicans infection at doses of 0.5, 1.0, and 2.0 mg/kg. These results suggested that compound 6c deserves further investigation.
Collapse
Affiliation(s)
- Tingjunhong Ni
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China;
| | - Zichao Ding
- Department of Organic Chemistry, School of Pharmacy, Navy Medical University, No. 325 Guohe Road, Shanghai 200433, China; (Z.D.); (F.X.); (Y.H.); (J.B.)
| | - Fei Xie
- Department of Organic Chemistry, School of Pharmacy, Navy Medical University, No. 325 Guohe Road, Shanghai 200433, China; (Z.D.); (F.X.); (Y.H.); (J.B.)
| | - Yumeng Hao
- Department of Organic Chemistry, School of Pharmacy, Navy Medical University, No. 325 Guohe Road, Shanghai 200433, China; (Z.D.); (F.X.); (Y.H.); (J.B.)
| | - Junhe Bao
- Department of Organic Chemistry, School of Pharmacy, Navy Medical University, No. 325 Guohe Road, Shanghai 200433, China; (Z.D.); (F.X.); (Y.H.); (J.B.)
| | - Jingxiang Zhang
- Center for New Drug Research, School of Pharmacy, Navy Medical University, No. 325 Guohe Road, Shanghai 200433, China;
| | - Shichong Yu
- Department of Organic Chemistry, School of Pharmacy, Navy Medical University, No. 325 Guohe Road, Shanghai 200433, China; (Z.D.); (F.X.); (Y.H.); (J.B.)
- Correspondence: (S.Y.); (Y.J.); (D.Z.)
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China;
- Correspondence: (S.Y.); (Y.J.); (D.Z.)
| | - Dazhi Zhang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China;
- Department of Organic Chemistry, School of Pharmacy, Navy Medical University, No. 325 Guohe Road, Shanghai 200433, China; (Z.D.); (F.X.); (Y.H.); (J.B.)
- Correspondence: (S.Y.); (Y.J.); (D.Z.)
| |
Collapse
|
86
|
Koca İ, Kamaci V, Özsoy C, Sert Y, Kani İ, Tutar L, Tutar Y. Pyrazolyl‐Benzoxazinone Derivatives as Dual Hsp Inhibitors in Human Breast Cancer. ChemistrySelect 2022; 7. [DOI: 10.1002/slct.202200359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/04/2022] [Indexed: 11/09/2022]
Abstract
AbstractHeat Shock Proteins (Hsps) play major role on the onset of several cancers. Metabolic rates of cancer cells are higher compared to that of untransformed cells. This accelerated rate force functional substrate proteins to fold faster than normal folding rate. Although, the process leads cell cycle halting and eventually induces apoptosis, Hsps help cell survival and inhibit apoptosis and fold substrate proteins especially signaling proteins. When cancer cells accelerate the metabolism for invasion and metastasis, substrate proteins must fold to their native state rapidly. Since, functional forms of the proteins must be folded properly, cancer cells overexpress Hsps to fold substrate proteins and avoid apoptosis. Hsp90 and Hsp70 play key role in these processes. Inhibition of either Hsp90 or Hsp70 display complementary function. Therefore, dual inhibition of Hsp70 and Hsp90 potentially provides anticancer affect. In silico studies showed that pyrazolyl‐benzoxazine derivatives display binding activity for both Hsps. For this purpose, pyrazole‐3‐carbonyl chloride were converted to pyrazolyl‐benzoxazine derivatives via reactions of anthranilic acids in good yields (68–83 %). The structures of the newly synthesized compounds were elucidated by IR‐NMR spectroscopy, elemental analysis, and single‐crystal X‐ray diffraction. Binding of the compounds inhibit function of Hsps and cause cytotoxic effect over MCF‐7 cells. The compounds display potential anticancer effects.
Collapse
Affiliation(s)
- İrfan Koca
- Faculty of Art and Science Department of Chemistry Yozgat Bozok University Yozgat Turkey
| | - Volkan Kamaci
- Faculty of Art and Science Department of Chemistry Yozgat Bozok University Yozgat Turkey
| | - Ceylan Özsoy
- Faculty of Pharmacy Department of Basic Pharmaceutical Sciences Division of Biochemistry Cumhuriyet University Sivas Turkey
| | - Yusuf Sert
- Sorgun Vocational School Yozgat Bozok University Yozgat Turkey
| | - İbrahim Kani
- Department of Chemistry Faculty of Science Eskisehir Technical University Eskisehir Turkey
- Medicinal Plants and Medicine Research Center of Anadolu University Eskisehir Turkey
| | - Lütfi Tutar
- Department of Molecular Biology and Genetics Faculty of Sciences Ahi Evran University Kırşehir Turkey
| | - Yusuf Tutar
- Faculty of Pharmacy Department of Basic Pharmaceutical Sciences D[ivision of Biochemistry University of Health Sciences-Turkey Istanbul Turkey
- Health Sciences Institutes Division of Oncology University of Health Sciences-Turkey Istanbul Turkey
- Fuat Sezgin Validebağ Research Center University of Health Sciences-Turkey Istanbul Turkey
| |
Collapse
|
87
|
Walunj Y, Kulkarni P, Shaikh AN, Chavan A, Bobade VD, Mhaske PC. Synthesis and Antimicrobial Screening of 3-Fluoromethyl Pyrazole Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2077391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yogesh Walunj
- Post-Graduate Department of Chemistry, S. P. Mandali’s Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University), Pune, India
- Department of Chemistry, Hutatma Rajguru Mahavidyalaya, Pune, India
| | - Pramod Kulkarni
- Department of Chemistry, Hutatma Rajguru Mahavidyalaya, Pune, India
| | - Abdullatif N. Shaikh
- Post-Graduate Department of Chemistry, S. P. Mandali’s Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University), Pune, India
- Department of Chemistry, Jijamata College of Science and Arts (Affiliated to Savitribai Phule Pune University), Ahmednagar, India
| | - Abhijit Chavan
- Post-Graduate Department of Chemistry, S. P. Mandali’s Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University), Pune, India
| | - Vivek D. Bobade
- Post-Graduate Department of Chemistry, H. P. T. Arts and R. Y. K. Science College (Affiliated to Savitribai Phule Pune University), Nashik, India
| | - Pravin C. Mhaske
- Post-Graduate Department of Chemistry, S. P. Mandali’s Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University), Pune, India
| |
Collapse
|
88
|
Feng Y, He J, Wei Y, Xie JW, Liu P. Iodine‐Promoted Tandem Pyrazole Annulation and C‐H Sulfenylation for the Synthesis of C4‐Sulfenylated Pyrazoles. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yijiao Feng
- Hunan University of Science and Engineering College of Chemistry and Bioengineering CHINA
| | - Jing He
- Shihezi University School of Chemistry and Chemical Engineering CHINA
| | - Yueting Wei
- Shihezi University School of Chemistry and Chemical Engineering CHINA
| | - Jian-Wei Xie
- School of Chemistry and Chemical Engineering Shihezi University North 4th Road 832003 Shihezi CHINA
| | - Ping Liu
- Shihezi University School of Chemistry and Chemical Engineering CHINA
| |
Collapse
|
89
|
Borah B, Chowhan LR. Ultrasound-assisted transition-metal-free catalysis: a sustainable route towards the synthesis of bioactive heterocycles. RSC Adv 2022; 12:14022-14051. [PMID: 35558846 PMCID: PMC9092113 DOI: 10.1039/d2ra02063g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/27/2022] [Indexed: 12/13/2022] Open
Abstract
Heterocycles of synthetic and natural origin are a well-established class of compounds representing a broad range of organic molecules that constitute over 60% of drugs and agrochemicals in the market or research pipeline. Considering the vast abundance of these structural motifs, the development of chemical processes providing easy access to novel complex target molecules by introducing environmentally benign conditions with the main focus on improving the cost-effectiveness of the chemical transformation is highly demanding and challenging. Accordingly, sonochemistry appears to be an excellent alternative and a highly feasible environmentally benign energy input that has recently received considerable and steadily increasing interest in organic synthesis. However, the involvement of transition-metal-catalyst(s) in a chemical process often triggers an unintended impact on the greenness or sustainability of the transformation. Consequently, enormous efforts have been devoted to developing metal-free routes for assembling various heterocycles of medicinal interest, particularly under ultrasound irradiation. The present review article aims to demonstrate a brief overview of the current progress accomplished in the ultrasound-assisted synthesis of pharmaceutically relevant diverse heterocycles using transition-metal-free catalysis.
Collapse
Affiliation(s)
- Biplob Borah
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Gandhinagar-382030 India
| | - L Raju Chowhan
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Gandhinagar-382030 India
| |
Collapse
|
90
|
Yao L, Zhang G, Yu L, Liu S, Wang X, Fan T, Kang H, Feng W. Development of 1,3,4-Oxadiazole Derived Antifungal Agents and Their Application in Maize Diseases Control. FRONTIERS IN PLANT SCIENCE 2022; 13:912091. [PMID: 35599869 PMCID: PMC9114798 DOI: 10.3389/fpls.2022.912091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Maize is an important food crop and its fungal disease has become a limiting factor to improve the yield and quality of maize. In the control of plant pathogens, commercial fungicides have no obvious effect on corn diseases due to the emergence of drug resistance. Therefore, it is of great significance to develop new fungicides with novel structure, high efficiency, and low toxicity to control maize diseases. In this paper, a series of 1,3,4-oxadiazole derivatives were designed and synthesized from benzoyl hydrazine and aromatic aldehydes through condensation and oxidation cyclization reaction. The antifungal activity of oxadiazole derivatives against three maize disease pathogens, such as Rhizoctonia solani (R. solani), Gibberella zeae (G. zeae), and Exserohilum turcicum (E. turcicum), were evaluated by mycelium growth rate method in vitro. The results indicated that most of the synthesized derivatives exhibited positive antifungal activities. Especially against E. turcicum, several compounds demonstrated significant antifungal activities and their EC 50 values were lower than positive control carbendazim. The EC 50 values of compounds 4k, 5e, and 5k were 50.48, 47.56, 32.25 μg/ml, respectively, and the carbendazim was 102.83 μg/ml. The effects of active compounds on E. turcicum microstructure were observed by scanning electron microscopy (SEM). The results showed that compounds 4k, 5e, and 5k could induce the hyphae of E. turcicum to shrink and collapse obviously. In order to elucidate the preliminary mechanism of oxadiazole derivatives, the target compounds 5e and 5k were docked with the theoretical active site of succinate dehydrogenase (SDH). Compounds 5e and 5k could bind to amino acid residues through hydrophobic contact and hydrogen bonds, which explained the possible mechanism of binding between the inhibitor and target protein. In addition, the compounds with antifungal activities had almost no cytotoxicity to MCF-7. This study showed that 1,3,4-oxadiazole derivatives were worthy for further attention as potential antifungal agents for the control of maize diseases.
Collapse
Affiliation(s)
- Lin Yao
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an, China
- College of Pharmacy, Xi’an Medical University, Xi’an, China
| | - Guanghua Zhang
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an, China
| | - Lili Yu
- College of Pharmacy, Xi’an Medical University, Xi’an, China
| | - Shaojing Liu
- College of Pharmacy, Xi’an Medical University, Xi’an, China
| | - Xiaoku Wang
- College of Pharmacy, Xi’an Medical University, Xi’an, China
| | - Tao Fan
- College of Pharmacy, Xi’an Medical University, Xi’an, China
| | - Hui Kang
- College of Pharmacy, Xi’an Medical University, Xi’an, China
| | - Wenzhi Feng
- College of Pharmacy, Xi’an Medical University, Xi’an, China
| |
Collapse
|
91
|
Eno EA, Mbonu JI, Louis H, Patrick-Inezi FS, Gber TE, Unimke TO, Okon EE, Benjamin I, Offiong OE. Antimicrobial activities of 1-phenyl-3-methyl-4-trichloroacetyl-pyrazolone: Experimental, DFT studies, and molecular docking investigation. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100524] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
92
|
Li MM, Huang H, Tian W, Pu Y, Zhang C, Yang J, Ren Q, Tao F, Deng Y, Lu J. Construction of multi-substituted pyrazoles via potassium carbonate-mediated [3 + 2] cycloaddition of in situ generated nitrile imines with cinnamic aldehydes. RSC Adv 2022; 12:13087-13092. [PMID: 35497007 PMCID: PMC9052213 DOI: 10.1039/d2ra00331g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022] Open
Abstract
A highly efficient potassium carbonate-mediated [3 + 2] cycloaddition reaction of hydrazonoyl chlorides with cinnamic aldehydes to furnish multi-substituted pyrazoles under nontoxic and mild conditions has been developed. A plausible stepwise cycloaddition reaction mechanism is proposed. This protocol featured broad substrate coverage, good functional group tolerance, wide scalability, and operational simplicity, as well as conveniently constructed pyrazole scaffolds.
Collapse
Affiliation(s)
- Mei-Mei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine Chengdu 611137 China
| | - Hui Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine Chengdu 611137 China
| | - Wanrong Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine Chengdu 611137 China
| | - Yiru Pu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine Chengdu 611137 China
| | - Chaozheng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine Chengdu 611137 China
| | - Jirui Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine Chengdu 611137 China
| | - Qing Ren
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Hong Kong SAR 999077 China
| | - Feiyan Tao
- Research and Development Centre, China Tobacco Sichuan Industrial Co., Ltd Chengdu 610066 China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine Chengdu 611137 China
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine Chengdu 611137 China .,Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University Hong Kong SAR 999077 China
| |
Collapse
|
93
|
Ghanbarpour A, Khazaei A, Moosavi-Zare AR, Akbarpour T, Mohammadi M, Sarmasti N. Synthesis of 4,4'-(Aryl Methylene)Bis(3-Methyl-1 H-Pyrazol-5-ol) Derivatives and Pyrano[2, 3- c] Pyrazole Derivatives Using an Engineered Copper-Based Nano-Magnetic Catalyst (Fe 3O 4@SiO 2/Si(OEt)(CH 2) 3NH/CC/EDA/Cu(OAc) 2). Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2067192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
| | | | | | | | - Mahsa Mohammadi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | |
Collapse
|
94
|
An Insight into All Tested Small Molecules against Fusarium oxysporum f. sp. Albedinis: A Comparative Review. Molecules 2022; 27:molecules27092698. [PMID: 35566050 PMCID: PMC9099577 DOI: 10.3390/molecules27092698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 12/27/2022] Open
Abstract
Bayoud disease affects date palms in North Africa and the Middle East, and many researchers have used various methods to fight it. One of those methods is the chemical use of synthetic compounds, which raises questions centred around the compounds and common features used to prepare targeted molecules. In this review, 100 compounds of tested small molecules, collected from 2002 to 2022 in Web of Sciences, were divided into ten different classes against the main cause of Bayoud disease pathogen Fusarium oxysporum f. sp. albedinis (F.o.a.) with structure-activity relationship (SAR) interpretations for pharmacophore site predictions as (δ-···δ-), where 12 compounds are the most efficient (one compound from each group). The compounds, i.e., (Z)-1-(1.5-Dimethyl-1H-pyrazole-3-yl)-3-hydroxy but-2-en-1-one 7, (Z)-3-(phenyl)-1-(1,5-dimethyl-1H-pyrazole-3-yl)-3-hydroxyprop-2-en-1-one 23, (Z)-1-(1,5-Dimethyl-1H-pyrazole-3-yl)-3-hydroxy-3-(pyridine-2-yl)prop-2-en-1-one 29, and 2,3-bis-[(2-hydroxy-2-phenyl)ethenyl]-6-nitro-quinoxaline 61, have antifungal pharmacophore sites (δ-···δ-) in common in N1---O4, whereas other compounds have only one δ- pharmacophore site pushed by the donor effect of the substituents on the phenyl rings. This specificity interferes in the biological activity against F.o.a. Further understanding of mechanistic drug-target interactions on this subject is currently underway.
Collapse
|
95
|
Synthesis and Characterization of Pyrazole-Enriched Cationic Nanoparticles as New Promising Antibacterial Agent by Mutual Cooperation. NANOMATERIALS 2022; 12:nano12071215. [PMID: 35407333 PMCID: PMC9000707 DOI: 10.3390/nano12071215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 02/06/2023]
Abstract
A pyrazole derivative (CB1) was previously evaluated in vivo for various pharmacological activities (with the exception of antimicrobial effects), using DMSO as the administrative medium, mainly due to its water insolubility. Considering the global necessity for new antimicrobial agents, CB1 attracted our attention as a candidate to meet this need, mainly because the secondary amine group in its structure would make it possible to obtain its hydrochloride salt (CB1H), thus effortlessly solving its water-solubility drawbacks. In preliminary microbiologic investigations on Gram-negative and Gram-positive bacteria, CB1H displayed weak antibacterial effects on MDR isolates of Gram-positive species, nonetheless better than those displayed by the commonly-used available antibiotics. Therefore, aiming at improving such activity and extending the antibacterial spectrum of CB1H to Gram-negative pathogens, in this first work CB1 was strategically formulated in nanoparticles using a cationic copolymer (P7) previously developed by us, possessing potent broad-spectrum bactericidal activity. Using the nanoprecipitation method, CB1H-loaded polymer nanoparticles (CB1H-P7 NPs) were obtained, which were analyzed by attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy to confirm the successful loading. Additionally, CB1H-P7 NPs were fully characterized in terms of morphology, size, polydispersity indices, surface charge, DL%, and EE%, as well as release and potentiometric profiles.
Collapse
|
96
|
Zhang Z, Cheng M, Guo J, Wan Y, Wang R, Fang Y, Jin Y, Xie SS, Liu J. Design, synthesis and biological evaluation of novel pyrazolone derivatives as selective butyrylcholinesterase inhibitors with antioxidant activity against Alzheimer's disease. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
97
|
Dahal A, Lo M, Singh S, Vo H, ElHage D, Jois SD, Murru S. 1,3-diarylpyrazolones as potential anticancer agents for non-small cell lung cancer: Synthesis and antiproliferative activity evaluation. Chem Biol Drug Des 2022; 99:620-633. [PMID: 35156777 PMCID: PMC10127554 DOI: 10.1111/cbdd.14030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/09/2022] [Accepted: 01/29/2022] [Indexed: 12/24/2022]
Abstract
A series of pyrazolone compounds with different substitution patterns have been synthesized using microwave-assisted methods and evaluated their in vitro antiproliferative activity against human lung adenocarcinoma cell lines (A549 and NCI-H522). Among the tested compounds, the pyrazolone P7 exhibited high antiproliferative activity against both A549 and NCIH522 cancer cell lines while being 10 times less cytotoxic to non-cancerous cells. Moreover, our compounds P7 and P11 exhibited higher antiproliferative activity and selectivity against A549 and NCIH522 cells compared with the clinically approved drugs Afatinib and Gefitinib. The cell cycle analysis showed that the compound P7 and P11 arrests the cell cycle at G0/G1 phase, whereas the compounds P13 and P14 involved in G2/M phase arrest. The results from antiproliferative activity screening, cell cycle analysis, and kinase profiling indicate that the suitably substituted 1,3-diarylpyrazolones exhibit high antiproliferative activity against non-small cell lung cancer cells.
Collapse
Affiliation(s)
- Achyut Dahal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisina, USA
| | - Mary Lo
- School of Sciences, College of Arts, Education & Sciences, University of Louisiana Monroe, Monroe, Louisina, USA
| | - Sitanshu Singh
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisina, USA
| | - Huu Vo
- School of Sciences, College of Arts, Education & Sciences, University of Louisiana Monroe, Monroe, Louisina, USA
| | - Denzel ElHage
- School of Sciences, College of Arts, Education & Sciences, University of Louisiana Monroe, Monroe, Louisina, USA
| | - Seetharama D Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisina, USA
| | - Siva Murru
- School of Sciences, College of Arts, Education & Sciences, University of Louisiana Monroe, Monroe, Louisina, USA
| |
Collapse
|
98
|
Kamalı A, Çakmak R, Boğa M. Anticholinesterase and antioxidant activities of novel heterocyclic Schiff base derivatives containing an aryl sulfonate moiety. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202100511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ayfer Kamalı
- Department of Medical Services and Techniques, Medical Laboratory Techniques Program, Vocational School of Health Services Batman University Batman Turkey
| | - Reşit Çakmak
- Department of Medical Services and Techniques, Medical Laboratory Techniques Program, Vocational School of Health Services Batman University Batman Turkey
| | - Mehmet Boğa
- Department of Analytical Chemistry, Faculty of Pharmacy Dicle University Diyarbakır Turkey
- Dicle University Health Sciences Application and Research Center (DÜSAM) Diyarbakır Turkey
| |
Collapse
|
99
|
Bayrakdar A, Mert S, Kasımoğulları R, Bangaru S, Manivannan P. Synthesis, spectroscopic (FT-IR and NMR), DFT and molecular docking studies of ethyl 1-(3-nitrophenyl)-5-phenyl-3-((4-(trifluoromethyl)phenyl)carbamoyl)-1H-pyrazole-4-carboxylate. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04681-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
100
|
Dawoud NTA, El-Fakharany EM, Abdallah AE, El-Gendi H, Lotfy DR. Synthesis, and docking studies of novel heterocycles incorporating the indazolylthiazole moiety as antimicrobial and anticancer agents. Sci Rep 2022; 12:3424. [PMID: 35236889 PMCID: PMC8891364 DOI: 10.1038/s41598-022-07456-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/15/2022] [Indexed: 12/17/2022] Open
Abstract
The current study was directed toward developing a new series of fused heterocycles incorporating indazolylthiazole moiety. The newly synthesized compounds were characterized through elemental analysis and spectral data (IR, 1H-NMR, 13C-NMR, and Mass Spectrometry). The cytotoxic effect of the newly synthesized compounds was evaluated against normal human cells (HFB-4) and cancer cell lines (HepG-2 and Caco-2). Among the synthesized compounds, derivatives 4, and 6 revealed a significant selective antitumor activity, in a dose-dependent manner, against both HepG-2 and Caco-2 cell lines, with lower risk toward HFB-4 cells (normal cells). Derivative 8 revealed the maximum antitumor activity toward both tumor cell lines, with an SI value of about 26 and IC50 value of about 5.9 μg/mL. The effect of these derivatives (8, 4, and 6) upon the expression of 5 tumor regulating genes was studied through quantitative real-time PCR, where its interaction with these genes was simulated through the molecular docking study. Furthermore, the antimicrobial activity results revealed that compounds 2, 7, 8, and 9 have a potential antimicrobial activity, with maximum broad-spectrum activity through compound 3 against the three tested pathogens: Streptococcus mutans, Pseudomonas aeruginosa, and Candida albicans. The newly prepared compounds also revealed anti-biofilm formation activity with maximum activity against Streptococcus mutans, Pseudomonas aeruginosa, and Candida albicans, respectively.
Collapse
Affiliation(s)
- Nadia T A Dawoud
- Chemistry Department, Faculty of Science, Girl's, Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute GEBRI, City of Scientific Research and Technological Applications, New Borg El Arab, Alexandria, 21934, Egypt.
| | - Abdallah E Abdallah
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg El Arab, Alexandria, 21934, Egypt
| | - Doaa R Lotfy
- Chemistry Department, Faculty of Science, Girl's, Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|