51
|
Fish PV, Steadman D, Bayle ED, Whiting P. New approaches for the treatment of Alzheimer's disease. Bioorg Med Chem Lett 2018; 29:125-133. [PMID: 30501965 DOI: 10.1016/j.bmcl.2018.11.034] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent chronic neurodegenerative disease. Current approved therapies are symptomatic treatments having some effect on cognitive function. Therapies that target β-amyloid (Aβ) have been the focus of efforts to develop a disease modification treatment for AD but these approaches have failed to show any clinical benefit so far. Beyond the 'Aβ hypothesis', there are a number of newer approaches to treat AD with neuroinflammation emerging as a very active area of research based on risk gene analysis. This short review will summarize approved drug therapies, recent clinical trials and new approaches for the treatment of AD.
Collapse
Affiliation(s)
- Paul V Fish
- Alzheimer's Research UK UCL Drug Discovery Institute, The Cruciform Building, University College London, Gower Street, London WC1N 1E 6BT, UK; The Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, UK.
| | - David Steadman
- Alzheimer's Research UK UCL Drug Discovery Institute, The Cruciform Building, University College London, Gower Street, London WC1N 1E 6BT, UK
| | - Elliott D Bayle
- Alzheimer's Research UK UCL Drug Discovery Institute, The Cruciform Building, University College London, Gower Street, London WC1N 1E 6BT, UK; The Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, UK
| | - Paul Whiting
- Alzheimer's Research UK UCL Drug Discovery Institute, The Cruciform Building, University College London, Gower Street, London WC1N 1E 6BT, UK; The Dementia Research Institute, The Cruciform Building, University College London, Gower Street, London WC1N 1E 6BT, UK
| |
Collapse
|
52
|
Li Z, Zhou Z, Deng F, Li Y, Zhang D, Zhang L. Design, synthesis, and biological evaluation of novel pan agonists of FFA1, PPARγ and PPARδ. Eur J Med Chem 2018; 159:267-276. [PMID: 30296685 DOI: 10.1016/j.ejmech.2018.09.071] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/27/2018] [Accepted: 09/29/2018] [Indexed: 12/17/2022]
|
53
|
Design, synthesis, and evaluation of novel l-phenylglycine derivatives as potential PPARγ lead compounds. Bioorg Med Chem 2018; 26:4153-4167. [PMID: 30001846 DOI: 10.1016/j.bmc.2018.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 06/13/2018] [Accepted: 07/04/2018] [Indexed: 12/19/2022]
Abstract
In accordance with the structural characteristics of thiazolidinedione drugs and highly bioactive tyrosine derivatives, we tentatively designed the l-phenylglycine derivatives TM1 and TM2 based on basic principles of drug design and then synthesized them. The in vitro screening of peroxisome proliferator-activated receptor gamma (PPARγ) activated activity, α-glucosidase inhibitory and dipeptidyl peptidase-4 inhibitory activities showed that the novel molecule M5 had efficient PPAR response element (PPRE) activated activity (PPRE relative activity 105.04% at 10 μg·mL-1 compared with the positive control pioglitazone, with 100% activity). Therefore, M5 was selected as the hit compound from which the TM3 and TM4 series of compounds were further designed and synthesized. Based on the PPRE relative activities of TM3 and TM4, we discovered another new molecule, TM4h, which had the strongest PPRE relative activity (120.42% at 10 μg·mL-1). In addition, the concentration-dependent activity of the highly active compounds was determined by assaying their half-maximal effective concentration (EC50) values. The molecular physical parameter calculation and the molecular toxicity prediction were used to theoretically evaluate the lead-likeness and safety of the active compounds. In conclusion, we identified a potential PPARγ lead molecule and developed a tangible strategy for antidiabetic drug development.
Collapse
|
54
|
Hong F, Xu P, Zhai Y. The Opportunities and Challenges of Peroxisome Proliferator-Activated Receptors Ligands in Clinical Drug Discovery and Development. Int J Mol Sci 2018; 19:ijms19082189. [PMID: 30060458 PMCID: PMC6121873 DOI: 10.3390/ijms19082189] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/16/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a well-known pharmacological target for the treatment of multiple diseases, including diabetes mellitus, dyslipidemia, cardiovascular diseases and even primary biliary cholangitis, gout, cancer, Alzheimer's disease and ulcerative colitis. The three PPAR isoforms (α, β/δ and γ) have emerged as integrators of glucose and lipid metabolic signaling networks. Typically, PPARα is activated by fibrates, which are commonly used therapeutic agents in the treatment of dyslipidemia. The pharmacological activators of PPARγ include thiazolidinediones (TZDs), which are insulin sensitizers used in the treatment of type 2 diabetes mellitus (T2DM), despite some drawbacks. In this review, we summarize 84 types of PPAR synthetic ligands introduced to date for the treatment of metabolic and other diseases and provide a comprehensive analysis of the current applications and problems of these ligands in clinical drug discovery and development.
Collapse
Affiliation(s)
- Fan Hong
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
- Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Pengfei Xu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Yonggong Zhai
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
- Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
55
|
Darwish KM, Salama I, Mostafa S, Gomaa MS, Khafagy ES, Helal MA. Synthesis, biological evaluation, and molecular docking investigation of benzhydrol- and indole-based dual PPAR-γ/FFAR1 agonists. Bioorg Med Chem Lett 2018; 28:1595-1602. [DOI: 10.1016/j.bmcl.2018.03.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 12/18/2022]
|
56
|
Nanjan MJ, Mohammed M, Prashantha Kumar BR, Chandrasekar MJN. Thiazolidinediones as antidiabetic agents: A critical review. Bioorg Chem 2018; 77:548-567. [PMID: 29475164 DOI: 10.1016/j.bioorg.2018.02.009] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 02/01/2018] [Accepted: 02/10/2018] [Indexed: 01/07/2023]
Abstract
Thiazolidinediones (TZDs) or Glitazones are an important class of insulin sensitizers used in the treatment of Type 2 diabetes mellitus (T2DM). TZDs were reported for their antidiabetic effect through antihyperglycemic, hypoglycemic and hypolipidemic agents. In time, these drugs were known to act by increasing the transactivation activity of Peroxisome Proliferators Activated Receptors (PPARs). The clinically used TZDs that suffered from several serious side effects and hence withdrawn/updated later, were full agonists of PPAR-γ and potent insulin sensitizers. These drugs were developed at a time when limited data were available on the structure and mechanism of PPARs. In recent years, however, PPAR-α/γ, PPAR-α/δ and PPAR-δ/γ dual agonists, PPAR pan agonists, selective PPAR-γ modulators and partial agonists have been investigated. In addition to these, several non PPAR protein alternatives of TZDs such as FFAR1 agonism, GPR40 agonism and ALR2, PTP1B and α-glucosidase inhibition have been investigated to address the problems associated with the TZDs. Using these rationalized approaches, several investigations have been carried out in recent years to develop newer TZDs devoid of side effects. This report critically reviews TZDs, their history, chemistry, mechanism mediated through PPAR, recent advances and future prospects.
Collapse
Affiliation(s)
- M J Nanjan
- TIFAC CORE, JSS College of Pharmacy, Ootacamund 643001, Tamil Nadu, India; JSS Academy of Higher Education and Research (Deemed to be University), Mysuru 570015, Karnataka, India
| | - Manal Mohammed
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Ootacamund 643001, Tamil Nadu, India; JSS Academy of Higher Education and Research (Deemed to be University), Mysuru 570015, Karnataka, India
| | - B R Prashantha Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru 570015, Karnataka, India; JSS Academy of Higher Education and Research (Deemed to be University), Mysuru 570015, Karnataka, India
| | - M J N Chandrasekar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Ootacamund 643001, Tamil Nadu, India; JSS Academy of Higher Education and Research (Deemed to be University), Mysuru 570015, Karnataka, India.
| |
Collapse
|
57
|
Colín-Lozano B, Estrada-Soto S, Chávez-Silva F, Gutiérrez-Hernández A, Cerón-Romero L, Giacoman-Martínez A, Almanza-Pérez JC, Hernández-Núñez E, Wang Z, Xie X, Cappiello M, Balestri F, Mura U, Navarrete-Vazquez G. Design, Synthesis and in Combo Antidiabetic Bioevaluation of Multitarget Phenylpropanoic Acids. Molecules 2018; 23:molecules23020340. [PMID: 29415496 PMCID: PMC6017591 DOI: 10.3390/molecules23020340] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 12/22/2022] Open
Abstract
We have synthesized a small series of five 3-[4-arylmethoxy)phenyl]propanoic acids employing an easy and short synthetic pathway. The compounds were tested in vitro against a set of four protein targets identified as key elements in diabetes: G protein-coupled receptor 40 (GPR40), aldose reductase (AKR1B1), peroxisome proliferator-activated receptor gama (PPARγ) and solute carrier family 2 (facilitated glucose transporter), member 4 (GLUT-4). Compound 1 displayed an EC50 value of 0.075 μM against GPR40 and was an AKR1B1 inhibitor, showing IC50 = 7.4 μM. Compounds 2 and 3 act as slightly AKR1B1 inhibitors, potent GPR40 agonists and showed an increase of 2 to 4-times in the mRNA expression of PPARγ, as well as the GLUT-4 levels. Docking studies were conducted in order to explain the polypharmacological mode of action and the interaction binding mode of the most active molecules on these targets, showing several coincidences with co-crystal ligands. Compounds 1–3 were tested in vivo at an explorative 100 mg/kg dose, being 2 and 3 orally actives, reducing glucose levels in a non-insulin-dependent diabetes mice model. Compounds 2 and 3 displayed robust in vitro potency and in vivo efficacy, and could be considered as promising multitarget antidiabetic candidates. This is the first report of a single molecule with these four polypharmacological target action.
Collapse
Affiliation(s)
- Blanca Colín-Lozano
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
| | - Samuel Estrada-Soto
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
| | - Fabiola Chávez-Silva
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
| | | | - Litzia Cerón-Romero
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
| | - Abraham Giacoman-Martínez
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México 09340, Mexico.
| | - Julio Cesar Almanza-Pérez
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México 09340, Mexico.
| | - Emanuel Hernández-Núñez
- Cátedra CONACyT, Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Mérida, Yucatán 97310, Mexico.
| | - Zhilong Wang
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, (Z.W.).
| | - Xin Xie
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, (Z.W.).
| | - Mario Cappiello
- Dipartimento di Biologia, Unità di Biochimica, University of Pisa, 56126 Pisa, Italy.
| | - Francesco Balestri
- Dipartimento di Biologia, Unità di Biochimica, University of Pisa, 56126 Pisa, Italy.
| | - Umberto Mura
- Dipartimento di Biologia, Unità di Biochimica, University of Pisa, 56126 Pisa, Italy.
| | - Gabriel Navarrete-Vazquez
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
| |
Collapse
|
58
|
Different Effects of Thiazolidinediones on In-Stent Restenosis and Target Lesion Revascularization after PCI: A Meta-Analysis of Randomized Controlled Trials. Sci Rep 2017; 7:14464. [PMID: 29089560 PMCID: PMC5663835 DOI: 10.1038/s41598-017-14873-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 10/17/2017] [Indexed: 12/12/2022] Open
Abstract
In-stent restenosis (ISR) remains the leading problem encountered after percutaneous coronary intervention (PCI). Thiazolidinediones (TZDs) has been shown to be associated with reduced ISR and target lesion revascularization (TLR); however, the results are inconsistent, especially between rosiglitazone and pioglitazone. In this study, fourteen RCTs with a total of 1350 patients were finally included through a systematical literature search of Embase, Pubmed, the Cochrane Library, and ClinicalTrials.gov from inception to January 31, 2017. The follow-up duration of the included trials ranged from 6 months to 18 months. The results demonstrated that TZDs treatment is associated with significantly reduced risk of TLR (RR:0.45, 95%CI 0.30 to 0.67 for pioglitazone, RR:0.68, 95%CI 0.46 to 1.00 for rosiglitazone). Pioglitazone is associated with significantly reduced risks of ISR (RR:0.47, 95%CI 0.27 to 0.81), major adverse cardiac events (MACE) (RR:0.44, 95%CI 0.30 to 0.64) and neointimal area (SMD: −0.585, 95%CI −0.910 to −0.261). No significant relationship was observed between rosiglitazone and ISR (RR:0.91, 95%CI 0.39 to 2.12), MACE (RR:0.73, 95%CI 0.53 to 1.00) and neointimal area (SMD: −0.164, 95%CI −1.146 to 0.818). This meta-analysis demonstrated that TZDs treatment is associated with significant reduction in ISR, TLR and MACE for patients after PCI. Pioglitazone treatment seems to have more beneficial effects than rosiglitazone and no significantly increased cardiovascular risk was detected for both agents.
Collapse
|
59
|
Dietary Anthocyanins and Insulin Resistance: When Food Becomes a Medicine. Nutrients 2017; 9:nu9101111. [PMID: 29023424 PMCID: PMC5691727 DOI: 10.3390/nu9101111] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 09/24/2017] [Accepted: 10/10/2017] [Indexed: 12/17/2022] Open
Abstract
Insulin resistance is an abnormal physiological state that occurs when insulin from pancreatic β-cells is unable to trigger a signal transduction pathway in target organs such as the liver, muscles and adipose tissues. The loss of insulin sensitivity is generally associated with persistent hyperglycemia (diabetes), hyperinsulinemia, fatty acids and/or lipid dysregulation which are often prevalent under obesity conditions. Hence, insulin sensitizers are one class of drugs currently employed to treat diabetes and associated metabolic disorders. A number of natural products that act through multiple mechanisms have also been identified to enhance insulin sensitivity in target organs. One group of such compounds that gained interest in recent years are the dietary anthocyanins. Data from their in vitro, in vivo and clinical studies are scrutinized in this communication to show their potential health benefit through ameliorating insulin resistance. Specific mechanism of action ranging from targeting specific signal transduction receptors/enzymes to the general antioxidant and anti-inflammatory mechanisms of insulin resistance are presented.
Collapse
|
60
|
Abstract
Biologically active epoxyeicosatrienoic acid (EET) regioisomers are synthesized from arachidonic acid by cytochrome P450 epoxygenases of endothelial, myocardial, and renal tubular cells. EETs relax vascular smooth muscle and decrease inflammatory cell adhesion and cytokine release. Renal EETs promote sodium excretion and vasodilation to decrease hypertension. Cardiac EETs reduce infarct size after ischemia-reperfusion injury and decrease fibrosis and inflammation in heart failure. In diabetes, EETs improve insulin sensitivity, increase glucose tolerance, and reduce the renal injury. These actions of EETs emphasize their therapeutic potential. To minimize metabolic inactivation, 14,15-EET agonist analogs with stable epoxide bioisosteres and carboxyl surrogates were developed. In preclinical rat models, a subset of agonist analogs, termed EET-A, EET-B, and EET-C22, are orally active with good pharmacokinetic properties. These orally active EET agonists lower blood pressure and reduce cardiac and renal injury in spontaneous and angiotensin hypertension. Other beneficial cardiovascular actions include improved endothelial function and cardiac antiremodeling actions. In rats, EET analogs effectively combat acute and chronic kidney disease including drug- and radiation-induced kidney damage, hypertension and cardiorenal syndrome kidney damage, and metabolic syndrome and diabetes nephropathy. The compelling preclinical efficacy supports the prospect of advancing EET analogs to human clinical trials for kidney and cardiovascular diseases.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/administration & dosage
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/chemistry
- Administration, Oral
- Animals
- Blood Pressure/drug effects
- Blood Pressure/physiology
- Cardiovascular Diseases/drug therapy
- Cardiovascular Diseases/physiopathology
- Fatty Acids, Monounsaturated/administration & dosage
- Fatty Acids, Monounsaturated/chemistry
- Humans
- Hypertension/drug therapy
- Hypertension/physiopathology
- Kidney Diseases/drug therapy
- Kidney Diseases/physiopathology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Structure-Activity Relationship
- Vasodilation/drug effects
- Vasodilation/physiology
Collapse
Affiliation(s)
- William B Campbell
- *Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI; and †Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | | | | | | |
Collapse
|
61
|
Contreras CM, Gutiérrez-García AG. Cognitive impairment in diabetes and poor glucose utilization in the intracellular neural milieu. Med Hypotheses 2017; 104:160-165. [PMID: 28673577 DOI: 10.1016/j.mehy.2017.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/30/2017] [Accepted: 06/07/2017] [Indexed: 02/01/2023]
Abstract
The main characteristic of diabetes is hyperglycemia. Depending on whether diabetes is type-1 or type-2, it is characterized by deficiencies in insulin secretion, insulin receptor sensitivity, hexokinase activity, and glucose transport. Current drug treatments are able to lower circulating glucose but do not address the problem of glucose utilization in the intracellular milieu, the consequence of which is tissue damage. In the long-term, such changes can produce structural damage in many cortical and subcortical brain areas that are related to cognitive function. Many epidemiological reports consider anxiety and depression as clinical entities that accompany diabetes. However, anxiety and depression in diabetes appear to occur in parallel and do not follow a causal relationship. From a behavioral perspective, anxiety may be considered adaptive, whereas depression can be considered reactive in response to changes in lifestyle and ailments that are caused by the disease. Therefore, the main alteration in diabetes seems to be cognitive function. We hypothesized that in type-2 diabetes, hypoglycemic medications do not restore the function of glucose in the intracellular compartment, which may have deleterious effects on neural tissue with behavioral consequences. In such a case, it is important to develop pharmacological interventions that directly restore plasma insulin levels, insulin receptor function, and hexokinase activity, thereby avoiding damage to neural tissue that is associated with cognitive deficits in diabetic patients, particularly patients with type-2 diabetes. The better management of such alterations in diabetes should be directed toward improving glucose utilization by neural tissue.
Collapse
Affiliation(s)
- Carlos M Contreras
- Unidad Periférica Xalapa, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Xalapa, Veracruz 91190, Mexico; Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz 91190, Mexico.
| | - Ana G Gutiérrez-García
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz 91190, Mexico; Facultad de Psicología, Universidad Veracruzana, Xalapa, Veracruz 91097, Mexico
| |
Collapse
|
62
|
Metwally K, Pratsinis H, Kletsas D. Novel 2,4- thiazolidinediones: Synthesis, in vitro cytotoxic activity, and mechanistic investigation. Eur J Med Chem 2017; 133:340-350. [DOI: 10.1016/j.ejmech.2017.03.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/15/2017] [Accepted: 03/23/2017] [Indexed: 01/26/2023]
|