51
|
Almaazmi SY, Singh H, Dutta T, Blatch GL. Exported J domain proteins of the human malaria parasite. Front Mol Biosci 2022; 9:978663. [PMID: 36120546 PMCID: PMC9470956 DOI: 10.3389/fmolb.2022.978663] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
The heat shock protein 40 (Hsp40) family, also called J domain proteins (JDPs), regulate their Hsp70 partners by ensuring that they are engaging the right substrate at the right time and in the right location within the cell. A number of JDPs can serve as co-chaperone for a particular Hsp70, and so one generally finds many more JDPs than Hsp70s in the cell. In humans there are 13 Hsp70s and 49 JDPs. The human malaria parasite, Plasmodium falciparum, has dedicated an unusually large proportion of its genome to molecular chaperones, with a disproportionately high number of JDPs (PfJDPs) of 49 members. Interestingly, just under half of the PfJDPs are exported into the host cell during the asexual stage of the life cycle, when the malaria parasite invades mature red blood cells. Recent evidence suggests that these PfJDPs may be functionalizing both host and parasite Hsp70s within the infected red blood cell, and thereby driving the renovation of the host cell towards pathological ends. PfJDPs have been found to localize to the host cytosol, mobile structures within the host cytosol (so called “J Dots”), the host plasma membrane, and specialized structures associated with malaria pathology such as the knobs. A number of these exported PfJDPs are essential, and there is growing experimental evidence that they are important for the survival and pathogenesis of the malaria parasite. This review critiques our understanding of the important role these exported PfJDPs play at the host-parasite interface.
Collapse
Affiliation(s)
- Shaikha Y. Almaazmi
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| | - Harpreet Singh
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, India
| | - Tanima Dutta
- Vice Chancellery, The University of Notre Dame Australia, Fremantle, WA, Australia
- The Institute of Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
- PathWest Nedlands, QEII Medical Centre, Nedlands, WA, Australia
| | - Gregory L. Blatch
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
- Vice Chancellery, The University of Notre Dame Australia, Fremantle, WA, Australia
- The Institute of Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
- *Correspondence: Gregory L. Blatch,
| |
Collapse
|
52
|
Synthesis, Leishmanicidal, Trypanocidal, Antiproliferative Assay and Apoptotic Induction of (2-Phenoxypyridin-3-yl)naphthalene-1(2 H)-one Derivatives. Molecules 2022; 27:molecules27175626. [PMID: 36080388 PMCID: PMC9457600 DOI: 10.3390/molecules27175626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
The coexistence of leishmaniasis, Chagas disease, and neoplasia in endemic areas has been extensively documented. The use of common drugs in the treatment of these pathologies invites us to search for new molecules with these characteristics. In this research, we report 16 synthetic chalcone derivatives that were investigated for leishmanicidal and trypanocidal activities as well as for antiproliferative potential on eight human cancers and two nontumor cell lines. The final compounds 8−23 were obtained using the classical base-catalyzed Claisen−Schmidt condensation. The most potent compounds as parasiticidal were found to be 22 and 23, while compounds 18 and 22 showed the best antiproliferative activity and therapeutic index against CCRF-CEM, K562, A549, and U2OS cancer cell lines and non-toxic VERO, BMDM, MRC-5, and BJ cells. In the case of K562 and the corresponding drug-resistant K562-TAX cell lines, the antiproliferative activity has shown a more significant difference for compound 19 having 10.3 times higher activity against the K562-TAX than K562 cell line. Flow cytometry analysis using K562 and A549 cell lines cultured with compounds 18 and 22 confirmed the induction of apoptosis in treated cells after 24 h. Based on the structural analysis, these chalcones represent new compounds potentially useful for Leishmania, Trypanosoma cruzi, and some cancer treatments.
Collapse
|
53
|
Mastachi-Loza S, Ramírez-Candelero TI, Benítez-Puebla LJ, Fuentes-Benítes A, González-Romero C, Vázquez MA. Chalcones, a Privileged Scaffold: Highly Versatile Molecules in [4+2] Cycloadditions. Chem Asian J 2022; 17:e202200706. [PMID: 35976743 DOI: 10.1002/asia.202200706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/14/2022] [Indexed: 11/09/2022]
Abstract
Chalcones are aromatic ketones found in nature as the central core of many biological compounds. They have a wide range of biological activity and are biogenetic precursors of other important molecules such as flavonoids. Their pharmacological relevance makes them a privileged scaffold, advantageous for seeking alternative therapies in medicinal chemistry. Due to their structural diversity and ease of synthesis, they are often employed as building blocks for chemical transformations. Chalcones have a carbonyl conjugated system with two electrophilic centers that are commonly used for nucleophilic additions, as described in numerous articles. They can also participate in Diels-Alder reactions, which are [4+2] cycloadditions between a diene and a dienophile. This microreview presents a chronological survey of studies on chalcones as dienes and dienophiles in Diels-Alder cycloadditions. Although these reactions occur in nature, isolation of chalcones from plants yields very small quantities. Contrarily, synthesis leads to large quantities at a low cost. Hence, novel methodologies have been developed for [4+2] cycloadditions, with chalcones serving as a 2π or 4π electron system.
Collapse
Affiliation(s)
- Salvador Mastachi-Loza
- Universidad de Guanajuato Division de Ciencias Naturales y Exactas, Departamento de Química, MEXICO
| | - Tania I Ramírez-Candelero
- Universidad Autonoma del Estado de Mexico Facultad de Quimica, Departamento de Química Orgánica, MEXICO
| | - Luis J Benítez-Puebla
- Universidad de Guanajuato Division de Ciencias Naturales y Exactas, Departamento de Química, MEXICO
| | - Aydee Fuentes-Benítes
- Universidad Autonoma del Estado de Mexico Facultad de Quimica, Departamento de Química Orgánica, MEXICO
| | - Carlos González-Romero
- Universidad Autonoma del Estado de Mexico Facultad de Quimica, Departamento de Química Orgánica, MEXICO
| | - Miguel A Vázquez
- Universidad de Guanajuato Division de Ciencias Naturales y Exactas, CHEMISTRY, NORIA ALTA S/N, 36050, GUANAJUATO, MEXICO
| |
Collapse
|
54
|
Elkanzi NAA, Hrichi H, Alolayan RA, Derafa W, Zahou FM, Bakr RB. Synthesis of Chalcones Derivatives and Their Biological Activities: A Review. ACS OMEGA 2022; 7:27769-27786. [PMID: 35990442 PMCID: PMC9386807 DOI: 10.1021/acsomega.2c01779] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/21/2022] [Indexed: 05/27/2023]
Abstract
Chalcone derivatives are considered valuable species because they possess a ketoethylenic moiety, CO-CH=CH-. Due to the presence of a reactive α,β-unsaturated carbonyl group, chalcones and their derivatives possess a wide spectrum of antiproliferative, antifungal, antibacterial, antiviral, antileishmanial, and antimalarial pharmacological properties. Recent developments in heterocyclic chemistry have led to the synthesis of chalcone derivatives, which had been biologically investigated toward certain disease targets. The major aspect of this review is to present the most recent synthesis of chalcones bearing N, O, and/or S heterocycles, revealing their biological potential during the past decade (2010-2021). Based on a review of the literature, many chalcone-heterocycle hybrids appear to exhibit promise as future drug candidates owing to their similar or superior activities compared to those of the standards. Thus, this review may prove to be beneficial for the development and design of new potent therapeutic drugs based on previously developed strategies.
Collapse
Affiliation(s)
- Nadia A. A. Elkanzi
- Chemistry
Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
| | - Hajer Hrichi
- Chemistry
Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
| | - Ruba A. Alolayan
- Chemistry
Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
| | - Wassila Derafa
- Chemistry
Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
| | - Fatin M. Zahou
- Biology
Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
| | - Rania B. Bakr
- Department
of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
55
|
Zhai J, Sun B, Sang F. Progress of isolation, chemical synthesis and biological activities of natural chalcones bearing 2-hydroxy-3-methyl-3-butenyl group. Front Chem 2022; 10:964089. [PMID: 36046729 PMCID: PMC9420912 DOI: 10.3389/fchem.2022.964089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Chalcones have a three-carbon α,β-unsaturated carbonyl system composed of two phenolic rings. Many chalcones have shown broad spectrum of biological activities with clinical potentials against various diseases. They are usually abundant in seeds, fruit skin, bark and flowers of most edible plants. Among them, chalcones bearing 2-hydroxy-3-methyl-3-butenyl (HMB) group have been reported several times in the past few decades due to their novel scaffolds and numerous interesting biological activities. In this paper, we reviewed the isolation of twelve natural chalcones and a natural chalcone-type compound bearing 2-hydroxy-3-methyl-3-butenyl group discovered so far, and reviewed their synthesis methods and biological activities reported in the literature. We anticipate that this review will inspire further research of natural chalcones.
Collapse
Affiliation(s)
- Jiadai Zhai
- Research Center of Chemical Biology and Pharmaceutical Chemistry, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Bingxia Sun
- Research Center of Chemical Biology and Pharmaceutical Chemistry, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Feng Sang
- Research Center of Chemical Biology and Pharmaceutical Chemistry, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
- *Correspondence: Feng Sang,
| |
Collapse
|
56
|
Rathod GK, Jain M, Sharma KK, Das S, Basak A, Jain R. New structural classes of antimalarials. Eur J Med Chem 2022; 242:114653. [PMID: 35985254 DOI: 10.1016/j.ejmech.2022.114653] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/22/2022] [Accepted: 07/31/2022] [Indexed: 11/19/2022]
Abstract
Malaria remains a major vector borne disease claiming millions of lives worldwide due to infections caused by Plasmodium sp. Discovery and development of antimalarial drugs have previously been dominated majorly by single drug therapy. The malaria parasite has developed resistance against first line and second line antimalarial drugs used in the single drug therapy. This has drawn attention to find ways to alleviate the disease burden supplanted by combination therapy with multiple drugs to overcome drug resistance. Emergence of resistant strains even against the combination therapy has now mandated the revision of the current antimalarial pharmacotherapy. Research efforts of the past decade led to the discovery and identification of several new structural classes of antimalarial agents with improved biological attributes over the older ones. The following is a comprehensive review, addressed to the new structural classes of heterocyclic and natural compounds that have been identified during the last decade as antimalarial agents. Some of the classes included herein contain one or more pharmacophores amalgamated into a single bioactive scaffold as antimalarial agents, which act upon the conventional and novel targets.
Collapse
Affiliation(s)
- Gajanan K Rathod
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Meenakshi Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Krishna K Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Samarpita Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Ahana Basak
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India.
| |
Collapse
|
57
|
Insilico validation and comparison of antifungal competence and druglikeness of some natural xanthones – A step towards antimycotic therapeutics. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
58
|
Kumari A, Karnatak M, Singh AS, Hassam M, Rawat V, Islam MS, Al-Majid AM, Singh M, Verma VP. Mechanistic Evaluation of the Stability of Arylvinyl-1,2,4-trioxanes under Acidic Conditions for Their Oral Administration as an Antimalarial Drug. ACS OMEGA 2022; 7:17984-17994. [PMID: 35664617 PMCID: PMC9161402 DOI: 10.1021/acsomega.2c01321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
A mechanistic approach to understand the course of metabolism for synthetic 1,2,4-trioxanes, potent antimalarial compounds, to evaluate their bioavailability for antimalarial action has been studied in the present work. It is an important parameter to study the course of metabolism of a drug candidate molecule when administered via oral route during its journey from oral intake to its target site. From the pharmacokinetics point of view, it determines the bioavailability of an active drug or a prodrug at the target point. In this work, synthetic arylvinyl-1,2,4-trioxanes 1a-u have been evaluated under various acidic conditions to mimic the milieu of the stomach (pH between 1.5 and 3.5) through which they have to pass when administered orally. The effect of acid on trioxanes led to their degradation into corresponding ketones and glyoxal. Under such acidic conditions glyoxal polymerized to form a nonisolable condensate product. The study indicates that the actual bioavailability of the drug is far less than the administered dose.
Collapse
Affiliation(s)
- Akriti Kumari
- Department
of Chemistry, Banasthali University, Banasthali Newai 304022, Rajasthan, India
| | - Manvika Karnatak
- Department
of Chemistry, Banasthali University, Banasthali Newai 304022, Rajasthan, India
| | - Ajit Shankar Singh
- Defence
Materials and Stores Research Development Establishment, G.T. Road, Kanpur 208013, India
| | | | - Varun Rawat
- Amity
School of Applied Sciences, Amity University
Haryana, Gurugram 122413, India
| | - Mohammad Shahidul Islam
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah Mohammed Al-Majid
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mandeep Singh
- Nuchem
Sciences, Saint-Laurent, Quebec H4R2N6, Canada
| | - Ved Prakash Verma
- Department
of Chemistry, Banasthali University, Banasthali Newai 304022, Rajasthan, India
| |
Collapse
|
59
|
Hybrid Catalysts from Copper Biosorbing Bacterial Strains and Their Recycling for Catalytic Application in the Asymmetric Addition Reaction of B2(pin)2 on α,β-Unsaturated Chalcones. Catalysts 2022. [DOI: 10.3390/catal12040433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The recycling of heavy metal contaminants from wastewater as a source of valuable products perfectly fits with the principles of a Circular Economy system in view of restoring pollutants back into the system endowed with new social and economic benefits. Heavy metals are often present in such a low concentration that it makes the removal efficiency difficult to realize through the conventional physicochemical methods with high selectivity. Biosorption, conversely, by EPSs (extracellular polymeric substances) produced by several bacterial cells’ strains, is gaining a great deal of attention as an economic, efficient and sustainable depolluting process of wastewater from metal cations such as copper. Metal coordination to EPS components was thus deeply investigated by 1H NMR titration experiments. The 1,10–Phenanthroline–copper complex was exploited for quantifying the ability of different strains to sequester copper by a practical UV-Vis spectrophotometric method. The obtained data distinguished Serratia plymuthica strain SC5II as the bacterial strain displaying copper-adsorbing properties higher than any other, with Stenotrophomonas sp. strain 13a resulting in the worst one. Different analytical techniques, i.e., Dynamic Light Scattering (DLS), FT-IR analysis and SEM spectroscopy were thus employed to rationalize these results. Finally, the obtained copper chelates were successfully employed as hybrid catalysts in the asymmetric boron addition to α,β-unsaturated chalcones for the synthesis of valuable pharmaceutical intermediates, thus placing waste management in a new circular perspective.
Collapse
|
60
|
Structure-based design, synthesis and antiproliferative action of new quinazoline-4-one/chalcone hybrids as EGFR inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
61
|
Prasanna CAL, Sharma A. Pharmacological exploration of triazole based therapeutics for Alzheimer disease: An overview. Curr Drug Targets 2022; 23:933-953. [DOI: 10.2174/1389450123666220328153741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/27/2022] [Accepted: 02/10/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Alzheimer`s disease (AD) is an irreversible progressive neurodegenerative disorder which may account for approximately 60-70% cases of dementia worldwide. AD is characterized by impaired behavioural and cognitive functions including memory, language, conception, attentiveness, judgment, and reasoning problems. The two important hallmarks of AD are the appearance of plaques and tangles of amyloid beta (Aβ) and tau proteins, respectively, in the brain based on the etiology of the disease including cholinergic impairment, metal dyshomeostasis, oxidative stress, and degradation of neurotransmitters. Currently, the used medication only provides alleviation of symptoms but not effective in curing the disease that is creating by an urge to develop new molecules to treat AD. Heterocyclic compounds have proven their ability to be developed as drugs for the treatment of various diseases. The five-membered heterocyclic compound triazole has received foremost fascination for the discovery of new drugs due to the possibility of structural variation and proved its significance in various drug categories. Therefore, this review summarizes mainly the recent advancements in the development of novel 1,2,3-triazole and 1,2,4-triazole based molecules in the drug discovery process for targeting various AD targets such as phosphodiesterase 1 (PDE1) Inhibitors, Apoptosis signal-regulating kinase 1 (ASK1) inhibitors, Somatostatin receptor subtype-4 (SSTR4) agonist, many other druggable targets, molecular modelling studies as well as various methodology for the synthesis of triazoles containing molecules such as Click reaction, Pellizzari and Einhorn-Brunner Reaction.
Collapse
Affiliation(s)
| | - Abha Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India
| |
Collapse
|
62
|
Aucamp J, N’Da DD. SHORT COMMUNICATION: In vitro antileishmanial efficacy of antiplasmodial active aminoquinoline-chalcone hybrids. Exp Parasitol 2022; 236-237:108249. [DOI: 10.1016/j.exppara.2022.108249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/24/2022] [Accepted: 03/16/2022] [Indexed: 11/30/2022]
|
63
|
Shamsudin NF, Ahmed QU, Mahmood S, Ali Shah SA, Khatib A, Mukhtar S, Alsharif MA, Parveen H, Zakaria ZA. Antibacterial Effects of Flavonoids and Their Structure-Activity Relationship Study: A Comparative Interpretation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041149. [PMID: 35208939 PMCID: PMC8879123 DOI: 10.3390/molecules27041149] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/12/2022]
Abstract
According to the latest report released by the World Health Organization, bacterial resistance to well-known and widely available antibacterial drugs has become a significant and severe global health concern and a grim challenge to tackle in order to cure infections associated with multidrug-resistant pathogenic microorganisms efficiently. Consequently, various strategies have been orchestrated to cure the severe complications related to multidrug-resistant bacteria effectively. Some approaches involved the retardation of biofilm formation and multidrug-resistance pumps in bacteria as well as the discovery of new antimicrobial agents demonstrating different mechanisms of action. In this regard, natural products namely alkaloids, terpenoids, steroids, anthraquinone, flavonoids, saponins, tannins, etc., have been suggested to tackle the multidrug-resistant bacterial strains owing to their versatile pharmacological effects. Amongst these, flavonoids, also known as polyphenolic compounds, have been widely evaluated for their antibacterial property due to their tendency to retard the growth of a wide range of pathogenic microorganisms, including multidrug-resistant bacteria. The hydroxylation of C5, C7, C3′, and C4′; and geranylation or prenylation at C6 have been extensively studied to increase bacterial inhibition of flavonoids. On the other hand, methoxylation at C3′ and C5 has been reported to decrease flavonoids’ antibacterial action. Hence, the latest information on the antibacterial activity of flavonoids is summarized in this review, with particular attention to the structure–activity relationship of this broad class of natural compounds to discover safe and potent antibacterial agents as natural products.
Collapse
Affiliation(s)
- Nur Farisya Shamsudin
- Drug Design and Synthesis Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang D. M., Malaysia; (N.F.S.); (A.K.)
| | - Qamar Uddin Ahmed
- Drug Design and Synthesis Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang D. M., Malaysia; (N.F.S.); (A.K.)
- Correspondence: (Q.U.A.); or (Z.A.Z.)
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Department of Pharmaceutical Engineering, Faculty of Engineering Technology (Chemical), Gambang Campus, Universiti Malaysia Pahang (UMP), Kuantan 26300, Pahang D. M., Malaysia
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor D. E., Malaysia;
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor D. E., Malaysia
| | - Alfi Khatib
- Drug Design and Synthesis Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang D. M., Malaysia; (N.F.S.); (A.K.)
| | - Sayeed Mukhtar
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (S.M.); (H.P.)
| | - Meshari A. Alsharif
- Chemistry Department, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia;
| | - Humaira Parveen
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (S.M.); (H.P.)
| | - Zainul Amiruddin Zakaria
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
- Correspondence: (Q.U.A.); or (Z.A.Z.)
| |
Collapse
|
64
|
Kucharski DJ, Jaszczak MK, Boratyński PJ. A Review of Modifications of Quinoline Antimalarials: Mefloquine and (hydroxy)Chloroquine. Molecules 2022; 27:1003. [PMID: 35164267 PMCID: PMC8838516 DOI: 10.3390/molecules27031003] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 11/16/2022] Open
Abstract
Late-stage modification of drug molecules is a fast method to introduce diversity into the already biologically active scaffold. A notable number of analogs of mefloquine, chloroquine, and hydroxychloroquine have been synthesized, starting from the readily available active pharmaceutical ingredient (API). In the current review, all the modifications sites and reactivity types are summarized and provide insight into the chemistry of these molecules. The approaches include the introduction of simple groups and functionalities. Coupling to other drugs, polymers, or carriers afforded hybrid compounds or conjugates with either easily hydrolyzable or more chemically inert bonds. The utility of some of the compounds was tested in antiprotozoal, antibacterial, and antiproliferative assays, as well as in enantiodifferentiation experiments.
Collapse
Affiliation(s)
| | | | - Przemysław J. Boratyński
- Department of Organic and Medicinal Chemistry, Wrocław University of Technology, Wyspiańskiego 27, 50-370 Wrocław, Poland; (D.J.K.); (M.K.J.)
| |
Collapse
|
65
|
Synthesis, Antimicrobial, Anti-virulence and Anticancer Evaluation of New 5(4H)-Oxazolone-Based Sulfonamides. Molecules 2022; 27:molecules27030671. [PMID: 35163939 PMCID: PMC8838850 DOI: 10.3390/molecules27030671] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 11/30/2022] Open
Abstract
Since the synthesis of prontosil the first prodrug shares their chemical moiety, sulfonamides exhibit diverse modes of actions to serve as antimicrobials, diuretics, antidiabetics, and other clinical applications. This inspiring chemical nucleus has promoted several research groups to investigate the synthesis of new members exploring new clinical applications. In this study, a novel series of 5(4H)-oxazolone-based-sulfonamides (OBS) 9a–k were synthesized, and their antibacterial and antifungal activities were evaluated against a wide range of Gram-positive and -negative bacteria and fungi. Most of the tested compounds exhibited promising antibacterial activity against both Gram-positive and -negative bacteria particularly OBS 9b and 9f. Meanwhile, compound 9h showed the most potent antifungal activity. Moreover, the OBS 9a, 9b, and 9f that inhibited the bacterial growth at the lowest concentrations were subjected to further evaluation for their anti-virulence activities against Pseudomonas aeruginosa and Staphylococcus aureus. Interestingly, the three tested compounds reduced the biofilm formation and diminished the production of virulence factors in both P. aeruginosa and S. aureus. Bacteria use a signaling system, quorum sensing (QS), to regulate their virulence. In this context, in silico study has been conducted to assess the ability of OBS to compete with the QS receptors. The tested OBS showed marked ability to bind and hinder QS receptors, indicating that anti-virulence activities of OBS could be due to blocking QS, the system that controls the bacterial virulence. Furthermore, anticancer activity has been further performed for such derivatives. The OBS compounds showed variable anti-tumor activities, specifically 9a, 9b, 9f and 9k, against different cancer lines. Conclusively, the OBS compounds can serve as antimicrobials, anti-virulence and anti-tumor agents.
Collapse
|
66
|
Total Synthesis of the Natural Chalcone Lophirone E, Synthetic Studies toward Benzofuran and Indole-Based Analogues, and Investigation of Anti-Leishmanial Activity. Molecules 2022; 27:molecules27020463. [PMID: 35056779 PMCID: PMC8778746 DOI: 10.3390/molecules27020463] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/02/2022] [Accepted: 01/06/2022] [Indexed: 11/24/2022] Open
Abstract
The potential of natural and synthetic chalcones as therapeutic leads against different pathological conditions has been investigated for several years, and this class of compounds emerged as a privileged chemotype due to its interesting anti-inflammatory, antimicrobial, antiviral, and anticancer properties. The objective of our study was to contribute to the investigation of this class of natural products as anti-leishmanial agents. We aimed at investigating the structure–activity relationships of the natural chalcone lophirone E, characterized by the presence of benzofuran B-ring, and analogues on anti-leishmania activity. Here we describe an effective synthetic strategy for the preparation of the natural chalcone lophirone E and its application to the synthesis of a small set of chalcones bearing different substitution patterns at both the A and heterocyclic B rings. The resulting compounds were investigated for their activity against Leishmania infantum promastigotes disclosing derivatives 1 and 28a,b as those endowed with the most interesting activities (IC50 = 15.3, 27.2, 15.9 μM, respectively). The synthetic approaches here described and the early SAR investigations highlighted the potential of this class of compounds as antiparasitic hits, making this study worthy of further investigation.
Collapse
|
67
|
Huang Z, Jin G. Licochalcone B induced apoptosis and autophagy in osteosarcoma tumor cells via the inactivation of PI3K/AKT/mTOR pathway. Biol Pharm Bull 2022; 45:730-737. [DOI: 10.1248/bpb.b21-00991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhihui Huang
- Department of Orthopaedics, The 904th Hospital of Joint Logistic Support Force
| | - Genyang Jin
- Department of Orthopaedics, The 904th Hospital of Joint Logistic Support Force
| |
Collapse
|
68
|
Synthesis, antibacterial, antifungal and computational study of (E)-4-(3-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-3-oxoprop-1-en-1-yl)benzonitrile. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
69
|
Liu W, He M, Li Y, Peng Z, Wang G. A review on synthetic chalcone derivatives as tubulin polymerisation inhibitors. J Enzyme Inhib Med Chem 2021; 37:9-38. [PMID: 34894980 PMCID: PMC8667932 DOI: 10.1080/14756366.2021.1976772] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Microtubules play an important role in the process of cell mitosis and can form a spindle in the mitotic prophase of the cell, which can pull chromosomes to the ends of the cell and then divide into two daughter cells to complete the process of mitosis. Tubulin inhibitors suppress cell proliferation by inhibiting microtubule dynamics and disrupting microtubule homeostasis. Thereby inducing a cell cycle arrest at the G2/M phase and interfering with the mitotic process. It has been found that a variety of chalcone derivatives can bind to microtubule proteins and disrupt the dynamic balance of microtubules, inhibit the proliferation of tumour cells, and exert anti-tumour effects. Consequently, a great number of studies have been conducted on chalcone derivatives targeting microtubule proteins. In this review, synthetic or natural chalcone microtubule inhibitors in recent years are described, along with their structure-activity relationship (SAR) for anticancer activity.
Collapse
Affiliation(s)
- Wenjing Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,Teaching and Research Section of Natural Medicinal Chemistry, School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Min He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,Teaching and Research Section of Natural Medicinal Chemistry, School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Yongjun Li
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Zhiyun Peng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Guangcheng Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| |
Collapse
|
70
|
Synthesis, characterization, DFT calculation, antifungal, antioxidant, CT-DNA/pBR322 DNA interaction and molecular docking studies of heterocyclic analogs. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
71
|
Rational drug design, synthesis, and biological evaluation of novel N-(2-arylaminophenyl)-2,3-diphenylquinoxaline-6-sulfonamides as potential antimalarial, antifungal, and antibacterial agents. DIGITAL CHINESE MEDICINE 2021. [DOI: 10.1016/j.dcmed.2021.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
72
|
Freitas TS, Xavier JC, Pereira RLS, Rocha JE, Campina FF, de Araújo Neto JB, Silva MMC, Barbosa CRS, Marinho ES, Nogueira CES, Dos Santos HS, Coutinho HDM, Teixeira AMR. In vitro and in silico studies of chalcones derived from natural acetophenone inhibitors of NorA and MepA multidrug efflux pumps in Staphylococcus aureus. Microb Pathog 2021; 161:105286. [PMID: 34793877 DOI: 10.1016/j.micpath.2021.105286] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
Bacterial resistance induced by efflux pumps is a frequent concern in clinical treatments involving multi-resistant bacteria. Staphylococcus aureus is a microorganism responsible for several types of infections and has several strains carrying efflux pumps, among them are the strain 1199B (NorA overexpresser), and the strain K2068 (MepA overexpresser). In this work, four chalcones derived from Croton anisodontus with modifications in the B ring in their structures were tested regarding their ability to inhibit NorA and MepA efflux pumps. The efflux pump inhibition mechanism was tested with the ethidium bromide substrate in the presence and absence of standard efflux pump inhibitors. The minimum inhibitory concentration values were also compared to those of strains that do not overexpress these efflux pumps. In order to gain some insights about the efflux pump mechanisms of these chalcones, two homology models were created (NorA and MepA) for a docking procedure. In addition, the ADME properties (absorption, distribution, metabolism and excretion) were also evaluated. The tested chalcones promoted synergism of the norfloxacin antibiotic by inhibiting associated efflux pumps. All four tested chalcones appear to bind to the binding sites of the efflux pump models in the same fashion as other chalcones with efflux pump inhibition capabilities. It was also verified that the chalcones 1-4 are well absorbed in the intestine, but with a decrease in their bioavailability, resulting in a low volume of distribution in the blood plasma, in addition to having a mild CNS activity. However, the chalcone 3 and 4 were not toxic due to metabolic activation. Whereas the chalcones 1 and 2 present a mutagenic risk, depending on the oral dose administered. The tested chalcones have not antibacterial activity; however, they are capable of inhibiting efflux pumps for the 1199B and K2068 strains. They promoted synergism of the norfloxacin antibiotic by inhibiting associated efflux pumps, as well as other associated mechanisms.
Collapse
Affiliation(s)
- Thiago S Freitas
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Jayze C Xavier
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Raimundo L S Pereira
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Janaína E Rocha
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Fábia F Campina
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - José B de Araújo Neto
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Maria M C Silva
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Cristina R S Barbosa
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Emmanuel S Marinho
- Group of Theoretical Chemistry and Electrochemistry, State University of Ceará, Campus FAFIDAM, Limoeiro do Norte, CE, Brazil
| | - Carlos E S Nogueira
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Department of Physics, Regional University of Cariri, Juazeiro do Norte, CE, Brazil
| | - Hélcio S Dos Santos
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Center for Exact Sciences and Technology - Chemistry Course, Vale do Acaraú University, Sobral, CE, Brazil
| | - Henrique D M Coutinho
- Group of Theoretical Chemistry and Electrochemistry, State University of Ceará, Campus FAFIDAM, Limoeiro do Norte, CE, Brazil
| | - Alexandre M R Teixeira
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Department of Physics, Regional University of Cariri, Juazeiro do Norte, CE, Brazil.
| |
Collapse
|
73
|
Constantinescu T, Lungu CN. Anticancer Activity of Natural and Synthetic Chalcones. Int J Mol Sci 2021; 22:11306. [PMID: 34768736 PMCID: PMC8582663 DOI: 10.3390/ijms222111306] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 11/16/2022] Open
Abstract
Cancer is a condition caused by many mechanisms (genetic, immune, oxidation, and inflammatory). Anticancer therapy aims to destroy or stop the growth of cancer cells. Resistance to treatment is theleading cause of the inefficiency of current standard therapies. Targeted therapies are the most effective due to the low number of side effects and low resistance. Among the small molecule natural compounds, flavonoids are of particular interest for theidentification of new anticancer agents. Chalcones are precursors to all flavonoids and have many biological activities. The anticancer activity of chalcones is due to the ability of these compounds to act on many targets. Natural chalcones, such as licochalcones, xanthohumol (XN), panduretin (PA), and loncocarpine, have been extensively studied and modulated. Modification of the basic structure of chalcones in order to obtain compounds with superior cytotoxic properties has been performed by modulating the aromatic residues, replacing aromatic residues with heterocycles, and obtaining hybrid molecules. A huge number of chalcone derivatives with residues such as diaryl ether, sulfonamide, and amine have been obtained, their presence being favorable for anticancer activity. Modification of the amino group in the structure of aminochalconesis always favorable for antitumor activity. This is why hybrid molecules of chalcones with different nitrogen hetercycles in the molecule have been obtained. From these, azoles (imidazole, oxazoles, tetrazoles, thiazoles, 1,2,3-triazoles, and 1,2,4-triazoles) are of particular importance for the identification of new anticancer agents.
Collapse
Affiliation(s)
- Teodora Constantinescu
- Department of Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University, 400012 Cluj-Napoca, Romania
| | - Claudiu N. Lungu
- Department of Surgery, Country Emergency Hospital Braila, 810249 Braila, Romania
| |
Collapse
|
74
|
Sheikh FA, Aamir MN, Haseeb MT, Abbas Bukhari SN, Farid ul Haq M, Akhtar N. Design, physico-chemical assessment and pharmacokinetics of a non-toxic orodispersible film for potential application in musculo-skeletal disorder. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
75
|
Synthesis, characterization, docking study and biological evaluation of new chalcone, pyrazoline, and pyrimidine derivatives as potent antimalarial compounds. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
76
|
Wang YJ, Wang TT, Liang CC, Li ZH, Zhao LM. Synthesis of Indolo[2,1- a]benzazepinones through Rhodium-Catalyzed Cascade Reactions of 2-Arylindoles with Allyl Alcohols. Org Lett 2021; 23:6272-6277. [PMID: 34328334 DOI: 10.1021/acs.orglett.1c02064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient synthesis of indolo[2,1-a]benzazepinones through rhodium-catalyzed cascade reactions of 2-arylindoles with allyl alcohols has been developed. This work expands the scope of products that are available through C-H activation/intramolecular annulation reactions of 2-arylindoles in organic synthesis.
Collapse
Affiliation(s)
- Yu-Jiao Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Tong-Tong Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Cai-Cai Liang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Zi-Hao Li
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Li-Ming Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
77
|
Xiao J, Gao M, Diao Q, Gao F. Chalcone Derivatives and their Activities against Drug-resistant Cancers: An Overview. Curr Top Med Chem 2021; 21:348-362. [PMID: 33092509 DOI: 10.2174/1568026620666201022143236] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 11/22/2022]
Abstract
Drug resistance, including multidrug resistance resulting from different defensive mechanisms in cancer cells, is the leading cause of the failure of the cancer therapy, posing an urgent need to develop more effective anticancer agents. Chalcones, widely distributed in nature, could act on diverse enzymes and receptors in cancer cells. Accordingly, chalcone derivatives possess potent activity against various cancers, including drug-resistant, even multidrug-resistant cancer. This review outlines the recent development of chalcone derivatives with potential activity against drug-resistant cancers covering articles published between 2010 and 2020 so as to facilitate further rational design of more effective candidates.
Collapse
Affiliation(s)
- Jiaqi Xiao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Meixiang Gao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Qiang Diao
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Feng Gao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
78
|
Rioux B, Pinon A, Gamond A, Martin F, Laurent A, Champavier Y, Barette C, Liagre B, Fagnère C, Sol V, Pouget C. Synthesis and biological evaluation of chalcone-polyamine conjugates as novel vectorized agents in colorectal and prostate cancer chemotherapy. Eur J Med Chem 2021; 222:113586. [PMID: 34116328 DOI: 10.1016/j.ejmech.2021.113586] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 12/27/2022]
Abstract
The aim of this study was to synthesize chalcone-polyamine conjugates in order to enhance bioavailability and selectivity of chalcone core towards cancer cells, using polyamine-based vectors. Indeed, it is well-known that polyamine transport system is upregulated in tumor cells. 3',4,4',5'-tetramethoxychalcone was selected as parent chalcone since it was found to be an efficient anti-proliferative agent on various cancer cells. A series of five chalcone-polyamine conjugates was obtained using the 4-bromopropyloxy-3',4',5'-trimethoxychalcone as a key intermediate. Chalcone core and polyamine tails were fused through an amine bond. These conjugates were found to possess a marked in vitro antiproliferative effect against colorectal (HT-29 and HCT-116) and prostate cancer (PC-3 and DU-145) cell lines. The most active conjugate (compound 8b) was then chosen for further biological evaluations to elucidate mechanisms responsible for its antiproliferative activity. Investigations on cell cycle distribution revealed that this conjugate can prevent the proliferation of human colorectal and prostate cancer cells by blocking the cell cycle at the G1 and G2 phase, respectively. Flow cytometry analysis revealed a sub-G1 peak, characteristic of apoptotic cell population and our inquiries highlighted apoptosis induction at early and later stages through several pro-apoptotic markers. Therefore, this chalcone-N1-spermidine conjugate could be considered as a promising agent for colon and prostatic cancer adjuvant therapy.
Collapse
Affiliation(s)
- Benjamin Rioux
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Aline Pinon
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Aurélie Gamond
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Frédérique Martin
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Aurélie Laurent
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Yves Champavier
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France; Université de Limoges, BISCEm NMR Platform, GEIST, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Caroline Barette
- Université Grenoble Alpes, CEA, INSERM, IRIG, BGE U1038, Genetics & Chemogenomics, 17 Avenue des Martyrs, Grenoble, 38054, France
| | - Bertrand Liagre
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Catherine Fagnère
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Vincent Sol
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Christelle Pouget
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France.
| |
Collapse
|
79
|
Sabnis RW. Novel Hexahydropyrimidine Compounds for Treating Malaria. ACS Med Chem Lett 2021; 12:679-680. [PMID: 34055206 DOI: 10.1021/acsmedchemlett.1c00171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1230 Peachtree Street NE, Suite 3100, Atlanta, Georgia 30309, United States
| |
Collapse
|
80
|
Bokosi FRB, Beteck RM, Mbaba M, Mtshare TE, Laming D, Hoppe HC, Khanye SD. Design, synthesis and biological evaluation of mono- and bisquinoline methanamine derivatives as potential antiplasmodial agents. Bioorg Med Chem Lett 2021; 38:127855. [PMID: 33609655 DOI: 10.1016/j.bmcl.2021.127855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 11/29/2022]
Abstract
Several classes of antimalarial drugs are currently available, although issues of toxicity and the emergence of drug resistant malaria parasites have reduced their overall therapeutic efficiency. Quinoline based antiplasmodial drugs have unequivocally been long-established and continue to inspire the design of new antimalarial agents. Herein, a series of mono- and bisquinoline methanamine derivatives were synthesised through sequential steps; Vilsmeier-Haack, reductive amination, and nucleophilic substitution, and obtained in low to excellent yields. The resulting compounds were investigated for in vitro antiplasmodial activity against the 3D7 chloroquine-sensitive strain of Plasmodium falciparum, and compounds 40 and 59 emerged as the most promising with IC50 values of 0.23 and 0.93 µM, respectively. The most promising compounds were also evaluated in silico by molecular docking protocols for binding affinity to the {001} fast-growing face of a hemozoin crystal model.
Collapse
Affiliation(s)
- Fostino R B Bokosi
- Department of Chemistry, Faculty of Science, Rhodes University, Makhanda 6140, South Africa.
| | - Richard M Beteck
- Department of Chemistry, Faculty of Science, Rhodes University, Makhanda 6140, South Africa; Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Mziyanda Mbaba
- Department of Chemistry, Faculty of Science, Rhodes University, Makhanda 6140, South Africa; Department of Chemistry, Faculty of Science, University of Cape Town, Rondebosch 7701, South Africa
| | - Thanduxolo E Mtshare
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
| | - Dustin Laming
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Makhanda 6140, South Africa
| | - Heinrich C Hoppe
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Makhanda 6140, South Africa; Department of Biochemistry and Microbiology, Faculty of Science, Rhodes University, Makhanda 6140, South Africa
| | - Setshaba D Khanye
- Department of Chemistry, Faculty of Science, Rhodes University, Makhanda 6140, South Africa; Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; Centre for Chemico- and Biomedicinal Research, Rhodes University, Makhanda 6140, South Africa.
| |
Collapse
|
81
|
Dutta T, Singh H, Gestwicki JE, Blatch GL. Exported plasmodial J domain protein, PFE0055c, and PfHsp70-x form a specific co-chaperone-chaperone partnership. Cell Stress Chaperones 2021; 26:355-366. [PMID: 33236291 PMCID: PMC7925779 DOI: 10.1007/s12192-020-01181-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
Plasmodium falciparum is a unicellular protozoan parasite and causative agent of a severe form of malaria in humans, accounting for very high worldwide fatality rates. At the molecular level, survival of the parasite within the human host is mediated by P. falciparum heat shock proteins (PfHsps) that provide protection during febrile episodes. The ATP-dependent chaperone activity of Hsp70 relies on the co-chaperone J domain protein (JDP), with which it forms a chaperone-co-chaperone complex. The exported P. falciparum JDP (PfJDP), PFA0660w, has been shown to stimulate the ATPase activity of the exported chaperone, PfHsp70-x. Furthermore, PFA0660w has been shown to associate with another exported PfJDP, PFE0055c, and PfHsp70-x in J-dots, highly mobile structures found in the infected erythrocyte cytosol. Therefore, the present study aims to conduct a structural and functional characterization of the full-length exported PfJDP, PFE0055c. Recombinant PFE0055c was successfully expressed and purified and found to stimulate the basal ATPase activity of PfHsp70-x to a greater extent than PFA0660w but, like PFA0660w, did not significantly stimulate the basal ATPase activity of human Hsp70. Small-molecule inhibition assays were conducted to determine the effect of known inhibitors of JDPs (chalcone, C86) and Hsp70 (benzothiazole rhodacyanines, JG231 and JG98) on the basal and PFE0055c-stimulated ATPase activity of PfHsp70-x. In this study, JG231 and JG98 were found to inhibit both the basal and PFE0055c-stimulated ATPase activity of PfHsp70-x. C86 only inhibited the PFE0055c-stimulated ATPase activity of PfHsp70-x, consistent with PFE0055c binding to PfHsp70-x through its J domain. This research has provided further insight into the molecular basis of the interaction between these exported plasmodial chaperones, which could inform future antimalarial drug discovery studies.
Collapse
Affiliation(s)
- Tanima Dutta
- The Vice Chancellery, The University of Notre Dame Australia, Fremantle, WA, Australia
- The Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Harpreet Singh
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, Punjab, India
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Gregory L Blatch
- The Vice Chancellery, The University of Notre Dame Australia, Fremantle, WA, Australia.
- The Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia.
| |
Collapse
|
82
|
Discovery of an orally active antitumor agent that induces apoptosis and suppresses EMT through heat shock protein 90 inhibition. Invest New Drugs 2021; 39:1179-1188. [PMID: 33644823 DOI: 10.1007/s10637-021-01083-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Background Nowadays, lung cancer seriously affects human health in the world. Therefore, it is of great significance to develop effective anti-lung cancer drugs. Methods In this work, chalcone derivative HYQ97 was designed via a molecular hybridization strategy. It was synthesized by the cycloaddition in the presence of sodium ascorbate under mild conditions. Lung cancer cell lines were cultured to investigate its antitumor effects in vitro and in vivo. Results HYQ97 inhibited the proliferation of lung cancer cell lines. Specifically, its IC50 value against lung cancer A549 cells was 74.26 nM. It could inhibit heat shock protein 90 (Hsp90) and degrade its client proteins in a dose-dependent manner. Furthermore, HYQ97 suppressed the epithelial mesenchymal transition process and induced apoptosis of A549 cells. Importantly, HYQ97 also had significant inhibitory effects on tumor growth in vivo. Conclusions Chalcone derivative HYQ97 is a promising candidate for lung cancer treatment.
Collapse
|
83
|
Narwal S, Kumar S, Verma PK. Synthesis and biological activity of new chalcone scaffolds as prospective antimicrobial agents. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-020-04359-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
84
|
Zhang Q, Hao C, Miao Y, Yun Y, Sun X, Pan Y, Sun J, Wang X. Design and synthesis of benzyl aminocoumarin and its anti-Alzheimer's activity. NEW J CHEM 2021. [DOI: 10.1039/d1nj02950a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Benzylaminocoumarin is a kind of compound with coumarin skeleton and benzylamino side chain structure at positions 3 and 4.
Collapse
Affiliation(s)
- Qiang Zhang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, P. R. China
| | - Canhua Hao
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, P. R. China
| | - Yuhang Miao
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, P. R. China
| | - Yinling Yun
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, P. R. China
| | - Xiaoya Sun
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, P. R. China
| | - Yinbo Pan
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, P. R. China
| | - Jie Sun
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, P. R. China
| | - Xiaojing Wang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, P. R. China
| |
Collapse
|
85
|
Role of the J Domain Protein Family in the Survival and Pathogenesis of Plasmodium falciparum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:97-123. [PMID: 34569022 DOI: 10.1007/978-3-030-78397-6_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Plasmodium falciparum has dedicated an unusually large proportion of its genome to molecular chaperones (2% of all genes), with the heat shock protein 40 (Hsp40) family (now called J domain proteins, JDPs) exhibiting evolutionary radiation into 49 members. A large number of the P. falciparum JDPs (PfJDPs) are predicted to be exported, with certain members shown experimentally to be present in the erythrocyte cytosol (PFA0660w and PFE0055c) or erythrocyte membrane (ring-infected erythrocyte surface antigen, RESA). PFA0660w and PFE0055c are associated with an exported plasmodial Hsp70 (PfHsp70-x) within novel mobile structures called J-dots, which have been proposed to be dedicated to the trafficking of key membrane proteins such as erythrocyte membrane protein 1 (PfEMP1). Well over half of the PfJDPs appear to be essential, including the J-dot PfJDP, PFE0055c, while others have been found to be required for growth under febrile conditions (e.g. PFA0110w, the ring-infected erythrocyte surface antigen protein [RESA]) or involved in pathogenesis (e.g. PF10_0381 has been shown to be important for protrusions of the infected red blood cell membrane, the so-called knobs). Here we review what is known about those PfJDPs that have been well characterised, and may be directly or indirectly involved in the survival and pathogenesis of the malaria parasite.
Collapse
|
86
|
Uchil A, Murali TS, Nayak R. Escaping ESKAPE: A chalcone perspective. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
87
|
Antibacterial activities of sulfonyl or sulfonamide containing heterocyclic derivatives and its structure-activity relationships (SAR) studies: A critical review. Bioorg Chem 2020; 105:104400. [DOI: 10.1016/j.bioorg.2020.104400] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/25/2020] [Accepted: 10/17/2020] [Indexed: 12/21/2022]
|
88
|
Lee H, Park RY, Park K. Total Syntheses of 4′,6′‐Dimethoxy‐2'‐Hydroxy‐3′,5′‐Dimethylchalcone Derivatives. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hana Lee
- School of Chemical Engineering and Material Science Chung‐Ang University 84 Heukseok‐ro, Dongjak‐gu, Seoul 06974 Republic of Korea
| | - Rae Yeon Park
- School of Chemical Engineering and Material Science Chung‐Ang University 84 Heukseok‐ro, Dongjak‐gu, Seoul 06974 Republic of Korea
| | - Kwangyong Park
- School of Chemical Engineering and Material Science Chung‐Ang University 84 Heukseok‐ro, Dongjak‐gu, Seoul 06974 Republic of Korea
| |
Collapse
|
89
|
Verma SK, Verma R, Verma S, Vaishnav Y, Tiwari SP, Rakesh KP. Anti-tuberculosis activity and its structure-activity relationship (SAR) studies of oxadiazole derivatives: A key review. Eur J Med Chem 2020; 209:112886. [PMID: 33032083 DOI: 10.1016/j.ejmech.2020.112886] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/19/2020] [Accepted: 09/23/2020] [Indexed: 01/09/2023]
Abstract
With the increasing number of cases of inactive and drug-resistance tuberculosis, there is an urgent need to develop new potent molecules set for fighting this brutal disease. Medicinal chemistry concerns the discovery, the development, the identification, and the interpretation of the mode of action of biologically active compounds at the molecular level. Molecules bearing oxadiazoles are one such class that could be considered to satisfy this need. Oxadiazole regioisomers have been investigated in drug discovery programs for their capacity to go about as powerful linkers and as pharmacophoric highlights. Oxadiazoles can go about as bioisosteric substitutions for the hydrazide moiety which can be found in first-line anti-TB drugs, and some have been likewise answered to cooperate with more current anti-TB targets. This present review summarizes the current innovations of oxadiazole-based derivatives with potential antituberculosis activity and bacteria discussing various aspects of structure-activity relationship (SAR).
Collapse
Affiliation(s)
- Santosh Kumar Verma
- School of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, Shaanxi, PR China; Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, Yulin University, Yulin, 719000, Shaanxi, PR China
| | - Rameshwari Verma
- School of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, Shaanxi, PR China; Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, Yulin University, Yulin, 719000, Shaanxi, PR China.
| | - Shekhar Verma
- University College of Pharmacy Raipur, Pt. Deendayal Upadhyay Memorial Health, Sciences and Aayush University of Chhattisgarh, Raipur, 492010, Chhattisgarh, India
| | - Yogesh Vaishnav
- Shri Shankaracharya Technical Campus, Shri Shankaracharya Group of Institutions, Bhilai, 491001, Chhattisgarh, India
| | - S P Tiwari
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, PR China
| | - K P Rakesh
- School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan, 430073, PR China.
| |
Collapse
|
90
|
Gupta MN, Roy I. Drugs, host proteins and viral proteins: how their promiscuities shape antiviral design. Biol Rev Camb Philos Soc 2020; 96:205-222. [PMID: 32918378 DOI: 10.1111/brv.12652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
Abstract
The reciprocal nature of drug specificity and target specificity implies that the same is true for their respective promiscuities. Protein promiscuity has two broadly different types of footprint in drug design. The first is relaxed specificity of binding sites for substrates, inhibitors, effectors or cofactors. The second involves protein-protein interactions of regulatory processes such as signal transduction and transcription, and here protein intrinsic disorder plays an important role. Both viruses and host cells exploit intrinsic disorder for their survival, as do the design and discovery programs for antivirals. Drug action, strictly speaking, always relies upon promiscuous activity, with drug promiscuity enlarging its scope. Drug repurposing searches for additional promiscuity on the part of both the drug and the target in the host. Understanding the subtle nuances of these promiscuities is critical in the design of novel and more effective antivirals.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160062, India
| |
Collapse
|
91
|
Jain S, Kumar S, Lamba BY, Patra J, Mahindroo N. Nanocatalysts: Applications in synthesis of chalcones – a review. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1817941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Sapna Jain
- Department of Applied Sciences and Humanities, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Sanjeev Kumar
- Department of Applied Sciences and Humanities, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Bhawna Yadav Lamba
- Department of Applied Sciences and Humanities, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Jeevan Patra
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Neeraj Mahindroo
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| |
Collapse
|
92
|
Sakata RP, Antoniolli G, Lancellotti M, Kawano DF, Guimarães Barbosa E, Almeida WP. Synthesis and biological evaluation of 2'-Aminochalcone: A multi-target approach to find drug candidates to treat Alzheimer's disease. Bioorg Chem 2020; 103:104201. [PMID: 32890999 DOI: 10.1016/j.bioorg.2020.104201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/17/2020] [Accepted: 08/01/2020] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative process that compromises cognitive functions. The physiopathology of AD is multifactorial and is mainly supported by the cholinergic and amyloid hypotheses, which allows the identification the fundamental role of some markers, such as the enzymes acetylcholinesterase (AChE) and β-secretase (BACE-1), and the β-amyloid peptide (Aβ). In this work, we prepared a series of chalcones and 2'-aminochalcones, which were tested against AChE and BACE-1 enzymes and on the aggregation of Aβ. All compounds inhibited AChE activity with different potencies. We have found that the majority of chalcones having the amino group are able to inhibit BACE-1, which was not observed for chalcones without this group. The most active compound is the one derived from 2,3-dichlorobenzaldeyde, having an IC50 value of 2.71 μM. A molecular docking study supported this result, showing a good interaction of the amino group with aspartic acid residues of the catalytic diade of BACE-1. Thioflavin-T fluorescence emission is reduced in 30 - 40%, when Aβ42 is incubated in the presence of some chalcones under aggregation conditions. In vitro cytotoxicity and in silico prediction of pharmacokinetic properties were also conducted in this study.
Collapse
Affiliation(s)
- Renata P Sakata
- Institute of Chemistry, University of Campinas, Brazil; Porphirio da Paz High School, Campinas, SP, Brazil
| | | | - Marcelo Lancellotti
- Faculty of Pharmaceutical Sciences, University of Campinas, 200, Candido Portinari, Campinas, SP ZC 13083-871, Brazil
| | - Daniel Fabio Kawano
- Faculty of Pharmaceutical Sciences, University of Campinas, 200, Candido Portinari, Campinas, SP ZC 13083-871, Brazil
| | | | - Wanda P Almeida
- Institute of Chemistry, University of Campinas, Brazil; Faculty of Pharmaceutical Sciences, University of Campinas, 200, Candido Portinari, Campinas, SP ZC 13083-871, Brazil.
| |
Collapse
|
93
|
Song F, Li Z, Bian Y, Huo X, Fang J, Shao L, Zhou M. Indole/isatin-containing hybrids as potential antibacterial agents. Arch Pharm (Weinheim) 2020; 353:e2000143. [PMID: 32667714 DOI: 10.1002/ardp.202000143] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
Abstract
The emergence and worldwide spread of drug-resistant bacteria have already posed a serious threat to human life, creating the urgent need to develop potent and novel antibacterial drug candidates with high efficacy. Indole and isatin (indole-2,3-dione) present a wide structural and mechanistic diversity, so their derivatives possess various pharmacological properties and occupy a salient place in the development of new drugs. Indole/isatin-containing hybrids, which demonstrate a promising activity against a panel of clinically important Gram-positive and Gram-negative bacteria, are privileged scaffolds for the discovery of novel antibacterial candidates. This review, covering articles published between January 2015 and May 2020, focuses on the development and structure-activity relationship (SAR) of indole/isatin-containing hybrids with potential application for fighting bacterial infections, to facilitate further rational design of novel drug candidates.
Collapse
Affiliation(s)
- Feng Song
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, China.,School of Life Sciences, Dezhou University, Dezhou, Shandong, China
| | - Zhenghua Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, China
| | - Yunqiang Bian
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, China
| | - Xiankai Huo
- Department of Medical Imaging, Dezhou People's Hospital, Dezhou, Shandong, China
| | - Junman Fang
- School of Life Sciences, Dezhou University, Dezhou, Shandong, China
| | - Linlin Shao
- School of Life Sciences, Dezhou University, Dezhou, Shandong, China
| | - Meng Zhou
- School of Life Sciences, Dezhou University, Dezhou, Shandong, China
| |
Collapse
|
94
|
Ramesh D, Joji A, Vijayakumar BG, Sethumadhavan A, Mani M, Kannan T. Indole chalcones: Design, synthesis, in vitro and in silico evaluation against Mycobacterium tuberculosis. Eur J Med Chem 2020; 198:112358. [DOI: 10.1016/j.ejmech.2020.112358] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/04/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022]
|
95
|
Véras JH, do Vale CR, da Silva Lima DC, dos Anjos MM, Bernardes A, de Moraes Filho AV, e Silva CR, de Oliveira GR, Pérez CN, Chen-Chen L. Modulating effect of a hydroxychalcone and a novel coumarin–chalcone hybrid against mitomycin-induced genotoxicity in somatic cells of Drosophila melanogaster. Drug Chem Toxicol 2020; 45:775-784. [DOI: 10.1080/01480545.2020.1776314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jefferson Hollanda Véras
- Laboratory of Radiobiology and Mutagenesis, Department of Genetics, Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia, Brazil
| | - Camila Regina do Vale
- Laboratory of Radiobiology and Mutagenesis, Department of Genetics, Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia, Brazil
| | - Débora Cristina da Silva Lima
- Laboratory of Radiobiology and Mutagenesis, Department of Genetics, Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Aline Bernardes
- Chemistry Institute, Universidade Federal de Goiás, Goiânia, Brazil
| | - Aroldo Vieira de Moraes Filho
- Laboratory of Radiobiology and Mutagenesis, Department of Genetics, Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia, Brazil
| | - Carolina Ribeiro e Silva
- Laboratory of Radiobiology and Mutagenesis, Department of Genetics, Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia, Brazil
| | | | | | - Lee Chen-Chen
- Laboratory of Radiobiology and Mutagenesis, Department of Genetics, Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|